Biophysical implications of lipid bilayer rheometry for mechanosensitive channels.

Bavi, Navid and Nakayama, Yoshitaka and Bavi, Omid and Cox, Charles D and Qin, Qing-Hua and Martinac, Boris (2014) Biophysical implications of lipid bilayer rheometry for mechanosensitive channels. Proceedings of the National Academy of Sciences of the United States of America, 111 (38). pp.13864-9. ISSN 1091-6490 (PMC OA)

Full text not available from this repository.
Link to published document: http://dx.doi.org/10.1073/pnas.1409011111

Abstract

The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace's law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension is seen at the apex of the patch and the lowest tension is encountered near the pipette wall. More importantly, there is only a negligible difference between the stress profiles of the outer and inner monolayers in the cell-attached configuration, whereas a substantial difference (∼30%) is observed in the excised configuration. Our results have far-reaching consequences for the biophysical studies of MS channels and ion channels in general, using the patch-clamp technique, and begin to unravel the difference in activity seen between MS channels in different experimental paradigms.
(NHMRC grant; number not listed)

Item Type: Article
Subjects: R Medicine > R Medicine (General)
Depositing User: Repository Administrator
Date Deposited: 15 Jan 2016 03:05
Last Modified: 22 Mar 2016 02:54
URI: https://eprints.victorchang.edu.au/id/eprint/165

Actions (login required)

View Item View Item