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Quantifying intrinsic and extrinsic 
control of single-cell fates in cancer 
and stem/progenitor cell pedigrees 
with competing risks analysis
J. A. Cornwell1,2,3, R. M. Hallett4, S. Auf der Mauer1, A. Motazedian4,5,6, T. Schroeder7,  
J. S. Draper4,5,8, R. P. Harvey2,3,9,10 & R. E. Nordon1,3

The molecular control of cell fate and behaviour is a central theme in biology. Inherent heterogeneity 
within cell populations requires that control of cell fate is studied at the single-cell level. Time-lapse 
imaging and single-cell tracking are powerful technologies for acquiring cell lifetime data, allowing 
quantification of how cell-intrinsic and extrinsic factors control single-cell fates over time. However, 
cell lifetime data contain complex features. Competing cell fates, censoring, and the possible inter-
dependence of competing fates, currently present challenges to modelling cell lifetime data. Thus 
far such features are largely ignored, resulting in loss of data and introducing a source of bias. Here 
we show that competing risks and concordance statistics, previously applied to clinical data and the 
study of genetic influences on life events in twins, respectively, can be used to quantify intrinsic and 
extrinsic control of single-cell fates. Using these statistics we demonstrate that 1) breast cancer cell 
fate after chemotherapy is dependent on p53 genotype; 2) granulocyte macrophage progenitors and 
their differentiated progeny have concordant fates; and 3) cytokines promote self-renewal of cardiac 
mesenchymal stem cells by symmetric divisions. Therefore, competing risks and concordance statistics 
provide a robust and unbiased approach for evaluating hypotheses at the single-cell level.

Studying intrinsic and extrinsic control of cell fate and behaviour is necessary to understand stem, progenitor, and 
cancer cell biology. However, variation in gene and protein expression leading to cellular heterogeneity requires 
biologists to study cellular systems at single cell resolution1,2. Time-lapse imaging and cell tracking are invaluable 
tools that enable cell fate outcomes to be recorded for individual cells3. Combined with fluorescent protein report-
ers, cell tracking provides insight into how a cell’s molecular state interacts with extrinsic stimuli to determine its 
fate. These technologies have been vital in answering fundamental questions in cell biology4–6.

Cell tracking generates cell lifetime data – which contain a record of cell fate and time to fate outcome – as well 
as kinship (familial relationships), which are visualised as single cell pedigrees (Fig. 1a; see also Supplementary 
Fig. S1). Figure 1b depicts cell lifetime data in table format for the example pedigree shown in Fig. 1a.

Lifetime data have been used to model cell fate competition7, the influence of heritable factors8, and cell cycle 
kinetics9. In such models, cell fate is described in probabilistic terms because fate outcomes are not predictable 
and appear stochastic in heterogeneous populations10. Importantly, the probability of a cell adopting a particular 
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fate is determined by its intrinsic state as well as extrinsic factors. Therefore, models of cell growth dynamics must 
include the influence of cell-intrinsic and extrinsic factors, as well as their interactions, on probabilistic estimates 
of single-cell fate outcomes.

To accurately quantify probabilistic cell fate outcomes requires one to consider a number of features of cell 
lifetime data: 1) cell fates may be unobserved (right censored); 2) cell fates may be in competition; 3) cell fates can 
be concordant in related cells; and 4) distinct cell fates may be intrinsically coupled11,12.

Right censoring refers to when a cell’s final fate is not observed - this occurs when a cell’s trajectory becomes 
ambiguous, if a cell exits the field-of-view, or when a cell’s fate was not recorded before the end of the observation 
period. Censored lifetimes are often discarded, although do contain information on whether a cell’s fate was 
realised before it was censored (see Fig. 1c). Competing cell fates are mutually exclusive fates, such that if one fate 
occurs the other is by necessity censored (e.g. division vs death). Such competition is identical to that defined 
for mutually exclusive endpoints for patients in clinical trials (e.g. patient death from cancer or from treatment 
condition). Concordance indicates temporal symmetry in the fate of kin, useful to determine if cell fate determi-
nants are inherited. Cell fate outcomes may be determined by independent or intrinsically coupled (dependent) 
processes, such that commitment to one outcome may influence the probability of an alternative outcome.

Studies to date have largely excluded cell lifetimes that are right censored or ignored censoring due to com-
petition, leading to significant loss of data and the introduction of bias to the quantification of cell fate. For 
example, if one restricts analyses to subsets of data where a final fate is observed (e.g., to calculate mean cell cycle 
times), results will be biased towards shorter lifetimes because longer lifetimes that have been right-censored 

Figure 1.  Single-cell tracking generates cell lifetime data that are visualized as single-cell pedigrees.  
(a) Stylised cartoon of a single cell pedigree showing the fate and time of fate for each cell (right censored, lost, 
division, death, differentiation, etc.), kinship relationships, and generation numbers. Measurements of a cell’s 
internal molecular state, morphological appearance, as well as other lifetime events such as cell-cell contact may 
be recorded within a single cell pedigree. Establishment of kinship relationships within a single cell pedigree 
provides unique access to study the influence of inheritance on cell fate outcomes. (b) Cell lifetime data from the 
pedigree shown in (a), depicted in table format. Note: only sibling cell clusters are shown in the table.  
(c) Example of heterogeneous fate outcomes and right censoring that is inherent within single cell pedigrees. 
The green and red boxes demarcate observed and right censored fates. Lost cells are also considered to be right 
censored because their final fate is not observed. The two pedigrees on the left of the grey dotted line exemplify 
symmetric fate outcomes in siblings, i.e. the pair of daughter cells produced by the first division in each 
pedigree divide at the same time. The two pedigrees on the right of the grey dotted line exemplify asymmetric 
fate outcomes in siblings, i.e. the pair of daughter cells produced by the first division in each pedigree have 
discordant fates as a result of right censoring and competing fate outcomes. Importantly, if censored lifetimes 
and discordant fates are discarded from cell lifetime analysis (i.e. only pedigrees on the left of the grey dotted 
line would be included) then conclusions are biased towards symmetric fates and shorter cell lifetimes.
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are under sampled (Fig. 1c). This problem is overcome by the Kaplan-Meier (KM) estimator13,14 which includes 
right-censored cell lifetimes to estimate cell fate probabilities. However, the utility of the KM is limited to 
instances when there is a single fate outcome (e.g., all cells divide or all cells die), and will overestimate the proba-
bility of individual outcomes if there are competing fates15,16. For example, if one applies KM analysis to quantify 
cell division then cell death outcomes would be considered right-censored (i.e. a cell which has not yet divided). 
Furthermore, the exclusion of right-censored data affects contemporary methods for analysing concordance in 
the fate of kin. For example, Pearson’s correlation coefficient only includes cell pairs with known fate outcomes 
and, therefore, it is biased towards symmetric fate outcomes (Fig. 1c and Table 1). Thus, exclusion of cellular life-
times may have unintended consequences when quantifying the effect of intrinsic or extrinsic factors on cell fate 
outcomes and concordance in cell fate. To prevent such selection bias, a method that includes all cell lifetimes to 
quantify cell fate is necessary.

Competing risks (CR) analysis is a method routinely applied to clinical patient data which contain similar 
features to cell lifetime data15. Patients in a clinical trial have competing fates (e.g., death from cancer versus from 
the cancer treatment) which may be right censored (e.g., patient leaves trial or trial ends)16. CR analysis enables 
one to quantify the probability of each competing fate over time, as well as how the probability of a specific fate 
outcome is influenced by extrinsic or intrinsic factors15. This is achieved by the development of CR regression 
models that estimate a cumulative incidence function (CIF) for each competing risk (see Supplementary Text 1).

As mentioned above, cell fate outcomes are said to be in competition because only one fate is observed for 
each cell (e.g. division vs death). Thus, in statistical modelling, observed CIFs are derived from pre-competition 
probability distributions that have been shaped by censoring17. In such a model the first fate to occur determines 
the observed cell fate while the alternate outcome is censored. However, one cannot determine the dependence 
structure of the pre-competition multivariate distribution from observed CIFs18,19. A Monte Carlo simulation 
illustrating this principle is shown in Fig. 2. The observed division (or death) times were identically distributed, 
however their bivariate pre-competition distributions had different correlation coefficients (Fig. 2a, r =​ 0.39, 
Fig. 2b, r =​ 0.96). CR analysis accurately estimates the cumulative incidence of the observed competing fates 
(Fig. 2c) from the observed data, with no dependence on the correlation coefficient. However, KM overestimates 
the cumulative incidence function for competing fates and is dependent on the correlation coefficient (Fig. 2d). 
KM was applied by making the erroneous assumptions that a) division and death are independent and b) division 
right censors death and vice versa. Therefore, unlike other statistics, CR analysis addresses the potential that cell 
fate outcomes may be coupled. Furthermore, in contrast to the KM method CR analysis provides a more accurate 
estimate of individual fate outcomes if they are in competition.

Observations Method Selection bias Stochastic model Ref.

Time to fate

Mean time to fate: 
Group comparisons 
two-tailed unpaired 
Student t-test. Excludes right censored 

lifetimes and CR

Not applicable Rodgers et al.43

Frequency distribution: 
Fitting of parametric 
distributions. Tests for 
goodness-of-fit

Parametric survival function Duffy et al. 17

Kaplan Meier statistic: 
Cox regression analysis

CR are assumed to be 
right censoring times.

Empirical or semiparametric 
survival function with covariates Huang et al. 14

Counting fate outcomes

Frequency distributions 
and pie charts: 
Contingency tables and 
Pearson’s chi-squared 
test

Excludes time to fate 
and right censored 
lifetimes

Not applicable Hallett et al. 20

Time to fate and outcome

Pearson’s correlation 
coefficient: Fitting 
parametric multivariate 
distributions.

Excludes right censored 
lifetimes. Independent 
CR.

Temporal competition between 
uncorrelated pre-competition CR 
distribution 

Duffy et al. 17

CR cumulative 
incidence function: CR 
regression

Includes right censored 
lifetimes and competing 
fates. Independent or 
dependent CR.

Non-parametric and 
semiparametric CIF for each fate 
with covariates

Not applied

Counting fate outcomes 
in kin

Yule’s Q, Binomial 
test: Concordance/
discordance analysis

Excludes time to fate 
and right censored 
lifetimes

Not applicable

Scherf et al. 12 
Duffy et al. 17

Time to fate and outcome 
in kin

Pearson’s correlation 
coefficient : Bivariate 
correlation analysis

Excludes right 
censored lifetimes and 
competing

Kinjyo et al. 30

Intraclass correlation 
coefficient (ICC), 
Pearson’s correlation 
coefficient (PCC).

Excludes right 
censored lifetimes and 
competing fates. 

Monte Carlo simulation of kin 
lifetime assuming no concordance/
discordance

Scherf et al. 12

Cross-odds ratio 
(COR): CR regression 
with clustering. 

Includes right censored 
lifetimes and competing 
fates. Independent or 
dependent CR. Time 
invariant COR.

Gamma copula model to calculate 
conditional concordance probability 
of kin

Not applied

Table 1.   Comparison of statistical methods applied to single cell lifetime data.
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CR regression (CRR) estimates how a covariate affects the probability of competing outcomes. Scheike and 
Zhang developed flexible methods to construct CRR models for clinical patient data18. Analogously, we develop 
CRR models to study cell lifetime data (Supplementary Text 1). Scheike and Sun applied concordance probability 
statistics to model heritable influences on lifetime events in monozygotic and dizygotic twins19. For example, 
they show that menopause was concordant in monozygotic twins. Analogously, one could apply CR concordance 
analysis to quantify concordant fates amongst cellular kin (siblings; mother-daughter; 1st cousins; 2nd cousins) to 
determine if latent, heritable factors control cell fate (Supplementary Text 1d).

Here we apply CR analysis to cell lifetime data including 1) construction of non-parametric and 
semi-parametric regression models that describe the effect of intrinsic and extrinsic factors (covariates) on cell 
fates; 2) statistical tests to determine whether covariate effects are significant; and 3) kinship clustering and con-
cordance analysis to quantify inheritance of cell fate. Detailed descriptions of these methods are provided in 
Supplementary Text 1. This study also compares CR statistics to contemporary statistical tools applied to cell life-
time data, to demonstrate that CR analysis is an improved approach to unbiased testing of biological hypotheses 
at the single-cell level (Table 1).

We draw upon two existing datasets and generate one novel dataset to demonstrate the utility of CR analysis 
for testing specific biological hypotheses. In our first analysis we apply CRR models to confirm that wild-type 
(WT) p53 protects breast cancer (BC) cells against chemotherapy20. Clinical efficacy of chemotherapeutic treat-
ments relies on inducing death rather than halting division. The response of a BC cell to chemotherapy depends 
upon its p53 status, an important consideration for clinicians21. Hallett et al. applied time-lapse imaging to com-
pare WT p53 and mutant p53 (MUT) BC cell responses to doxorubicin (Dox) or Nutlin3A (Nut)20. Nut inhibits 

Figure 2.  Bivariate plots and histograms demonstrating that pre-competition probability distributions 
(bivariate plots) cannot be identified from post-competition distributions for division and death 
(histograms). In (a,b) pre-competition distributions show varying degrees of correlation (rho =​ 0.39 and 
rho =​ 0.96, respectively) while observed division and death distributions remain unaffected. (c) Competing 
risks analysis of time to division and death for the distributions shown in (a,b). Dotted lines represent 95% 
confidence intervals. Note that there is no dependence on the correlation coefficient (rho). (d) Kaplan-Meier 
analysis of time to division and death for the distributions shown in (a,b). Note that the probability of death and 
division is over estimated, and there appears to be dependence on the value of the correlation coefficient.
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the interaction between p53 and Mdm2, an E3-ubiquitin ligase, stabilizing p53 and preventing S-phase entry. Dox 
is genotoxic and thus induces DNA damage. Thus, in this analysis we apply contemporary statistical tools and CR 
analysis to the Hallet et al. dataset to study the effect of chemotherapeutics and p53 status on division and death 
in BC cells.

In our second analysis we introduce CR concordance statistics by studying the association between division 
and differentiation times in cellular kin derived from granulocyte/macrophage progenitors (GMP)22. Vertical 
transmission of molecular determinants of cell fate (RNA and protein expression, epigenetic modifications, etc.) 
varies over different time scales and spans multiple generations23. Inherited traits in related cells are reflected in 
their concordant fates. Concordance in fate for 1st or 2nd cousins infers inheritance from a common grandparent, 
or great-grandparent, which have been transmitted over two or three generations (Supplementary Fig. S1). Here, 
we contrast existing methods for quantifying association in cell fate with CR concordance statistics using data that 
describe GMP proliferation and differentiation in response to hematopoietic cytokines22.

In our third and principal analysis, we utilize factorial design experiments and CRR models to quantify the 
effects of extrinsic cytokines on division, death, and self-renewal of cardiac colony-forming units – fibroblast 
(cCFU-F). cCFU-F are a subset of SCA1+/PDGFRα​+/CD31− cardiac interstitial cells in adult mice and have 
properties of stem cells24. cCFU-F are quiescent in vivo; however when plated they proliferate and their in vitro 
descendants can differentiate into multiple mesodermal lineages. cCFU-F share a similar gene expression sig-
nature to bone marrow-mesenchymal stem cells (BM-MSC) as shown by comprehensive immunophenotype 
and transcriptome analyses25. By employing single cell transcriptome analysis, Noseda et al. recently confirmed 
that within the adult murine myocardium, PDGFRα​ expression demarcates clonogenic cells within the SCA1+ 
interstitial population24,26. Here, we apply CRR to investigate how cytokines stimulate self-renewal of PDGFRα​+  
cCFU-F, and apply CR concordance analysis to show for the first time that PDGFRα​+ cCFU-F self-renew by 
symmetric cell divisions.

Thus we aim to provide a statistical toolkit for biologists to test hypothesis at the single-cell level without 
bias. The CR methods described within will improve the accuracy of population-level modelling of cell growth 
dynamics from single-cell observations, by providing greater insight into the mechanistic control of single cell 
fate decisions.

Results
p53 mediates competing cell fate outcomes in BC cells in response to chemotherapy.  
Chemotherapy treatment modulated the relative frequency of division, death, and right-censored outcomes 
(Fig. 3a). Analysis of cell cycle times (Fig. 3b) showed that the mean cell cycle duration was significantly shorter 
in WT cells than MUT cells in both control (17.9 ±​ 8.6 hrs in WT vs 25.6 ±​ 12.6 hrs in MUT, p <​ 0.001, ±​SD) 
and Nut treated groups (4.1 ±​ 2.5 hrs in WT vs 32.56 ±​ 16.7 hrs in MUT, p <​ 0.0001, ±​SD). This result revealed 
the effect of genotype and chemotherapy on cell cycle times. However, a large proportion of cell lifetimes (up to 
87.3%) were not included in the analysis because they were right censored (Fig. 3a), introducing a strong source 
of bias.

To quantify how intrinsic (p53 status) and extrinsic (chemotherapy) factors (covariates) affected division and 
death probabilities we constructed a non-parametric CRR linear regression model (see Supplementary Text 2). 
This model, presented using Wilkinson-Rogers notation27, is shown in equation (1)

+ + + + +~division or death CIF WT Dox Nut WT Dox WT Nut( ) 1 ( : ) ( : ) (1)

In this model the 1 represents the baseline CIF of untreated MUT cells (Fig. 3c,d, black dashed lines), and a colon 
represents the interaction between two covariates (e.g. WT:Dox). To generate CIFs for individual factors, or com-
bination of factors, their effects were added to the baseline CIF (see Supplementary Text 2). Qualitative analysis 
of empirical CIFs revealed that Nut treated WT cells (Fig. 3c, red dashed lines) had reduced division probability 
relative to untreated WT cells (green dashed lines), Nut treated MUT cells (light pink dashed lines), and untreated 
MUT cells (black dashed lines). In contrast, Nut treatment did not change the death probability of WT cells 
(Fig. 3d, red dashed lines) relative to untreated WT cells (green dashed lines), Nut treated MUT cells (light pink 
dashed lines) or untreated MUT cells (black dashed lines).

To quantify the effect of each factor on division and death semi-parametric models were developed using 
the method described in Supplementary Text 1c. Semi-parametric models were used to estimate coefficients for 
each variable in the model if the variable was shown to have constant effects over time (Supplementary Text 2a, 
and Table S1–S3). The estimated coefficients quantified the magnitude of the effect that each variable had on the 
outcome of interest, i.e. division or death. The CRR models for division and death are shown in equation (2) and 
equation (3), respectively.

+ + + + +~division CIF const WT Dox Nut const WT Dox const WT Nut1 ( ) ( : ) ( : ) (2)

+ + + + +~death CIF const WT Dox const Nut const WT Dox WT Nut1 ( ) ( ) ( : ) : (3)

In these models const() indicates parametric terms that had constant coefficients. These models revealed that 
Nut treatment of WT cells reduced division probability by a factor of −​1.15 ±​ 0.22 (Fig. 3c solid green vs solid 
red lines, p <​ 0.001, ±​SE). Nut also reduced the division probability for MUT cells, though the effect was much 
smaller (Fig. 3c solid black vs solid light pink lines, p <​ 0.01). The probability of death was not significantly 
affected by Nut (Fig. 3d and Supplementary Table S3).

Figure 3c shows that Dox reduced division probability in both MUT (solid black vs solid pink lines, p <​ 0.001) 
and WT cells (solid green vs solid blue lines, −​0.58 ±​ 0.20, p <​ 0.005). In contrast, Fig. 3d shows that Dox 
increased death probability in MUT cells (solid black vs solid pink lines, p <​ 0.001) but not WT cells. Notably, 
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WT cells had a proliferative advantage over MUT cells as they had a higher division probability in controls 
(Fig. 3c solid green vs solid black lines 0.63 ±​ 0.20, p <​ 0.005).

These analyses demonstrate how CR statistics allow cell fate outcomes to be quantified by including every 
cell’s lifetime, rather than a subset of observed outcomes. This is an important contribution because on average 
across all groups 41.7% of BC cell fate outcomes were unobserved (Fig. 3a). Furthermore, CR analysis doesn’t 
assume that CR are independent28,29; in contrast to other parametric models that consider death and division to 
be independent outcomes17. These results also confirmed the dependence of p53 mediated death and division 
pathways in BC cells, further highlighting that consideration of such dependency will improve the efficacy of 
chemotherapeutic treatments.

CR concordance analysis quantifies the influence of latent, heritable determinants on cell fate 
in GMP kinship clusters.  Correlation analyses - Pearson’s correlation coefficient (PCC) and intraclass cor-
relation (ICC) – measure temporal association in fate outcomes in related cells from paired observations8,9,17. 
Permutation tests compare fate outcomes of kin to randomly sampled cell pairs to test for significant associations 
within kinship clusters12,30. Such statistics biasedly select symmetric fate outcomes because right-censored and 
discordant fates are excluded (Table 1, Fig. 1c). Yule’s Q17 and the binomial test12 measure concordance using the 
relative frequency of cell fate outcomes, but exclude right-censored fates (Table 1, Fig. 1c). Thus, such tests limit 
the detection of asymmetric outcomes and do not allow one to study temporal association in fate, making it diffi-
cult to attribute concordance in cell fate to heritable fate determinants.

Figure 3.  Effect of chemotherapy on division and death of WT (pooled BT474 and MCF7 cell lines) and 
MUT (pooled MDA-MB231 and T47D cell lines) BC cells treated with Dox or Nut. (a) Pie-charts showing 
the distribution of fate outcomes (division, death, right censored) in control and dox treated WT and MUT BC 
cells. (b) Mean cycle time in control and dox treated WT and MUT BC cells. Right censored lifetimes are not 
included in calculation of mean cycle time. **Indicates p <​ 0.001 and n.s. is not significant. (c) Non-parametric 
(dashed lines) and semi-parametric (solid lines) CIF for division probability in WT (green), MUT (black), 
MUT +​ Nut (light pink), WT +​ Dox (blue), WT +​ Nut (red), and MUT +​ dox (pink). (b) Non-parametric 
(dashed lines) and semi-parametric (solid lines) CIF for death probability in WT (green), MUT (black), 
MUT +​ Nut (light pink), WT +​ Dox (blue), WT +​ Nut (red), and MUT +​ Dox (pink). (d) The estimated 
coefficients for semi-parametric models are shown in Supplementary Table S3. All data analysed are from 
pooled observations from replicate wells for each condition (N =​ 853 cells).



www.nature.com/scientificreports/

7Scientific Reports | 6:27100 | DOI: 10.1038/srep27100

We propose CR concordance probability and the cross-odds ratio (COR) as unbiased methods to study asso-
ciation in cell fate. These methods include right-censored lifetimes, CR, and a clustering variable that denotes 
kinship relationships (Supplementary Text 1d and Fig. S1). The COR measures how timely occurrence of one 
event affects the odds of another19. Here the COR was utilized to measure how the occurrence of an event for one 
cell (e.g., time to division or differentiation) affected the odds of the same event occurring in its kin. The COR is 
a simple measure; a COR >​ 1 indicates concordant fates and a COR <​ 1 indicates discordant fates. Here, the null 
hypothesis is that cell fates are independent (COR =​ 1). Additionally, we demonstrate that CR concordance anal-
ysis uniquely allows one to visualise how association in fate varies over time (Supplementary Text 1d).

We apply our analysis to GMPs that were isolated from LysM::GFP mice, differentiated using either GCSF or 
MCSF, and tracked up to 7 generations22. LysM::GFP reported lysozyme expression and was used to time onset 
of uni-lineage commitment for both granulocyte and macrophage fate6. Firstly, to understand the influence of 
growth factors (GF =​ 0 or 1, GCSF or MSCF, respectively) and differentiation (GFP =​ 0 or 1) on division and death 
probabilities we constructed a non-parametric CRR model, shown in equation (4).

+ + +~division or death CIF GFP GF GFP GF( ) 1 ( : ) (4)

This model showed that GCSF and MCSF had indistinguishable effects on division and death probabilities 
(Fig. 4a,b, black line), suggesting these extrinsic factors have the same effect on division and death outcomes 
in GMPs. In contrast, after differentiation into macrophage and granulocyte progeny both division and death 
probabilities were significantly altered (Fig. 4a,b). These results suggested that the growth factor specific effects 
on division and death outcomes are latent until lineage commitment (GFP onset).

Concordance in cell fate was then investigated by constructing CRR models that included a clustering variable 
to identify cell kinship (Table 2 and Supplementary Text 3). The COR shown in Table 2 reveal that time to division 
was highly concordant within all kinship clusters. The degree of concordance was inversely related to the number 
of divisions between cells in the cluster and their common ancestor (i.e. siblings >​1st cousins >​2nd cousins). This 
trend was visualised by plotting the conditional and unconditional probabilities (Fig. 4c,d). COR for undiffer-
entiated cells (GFP−) were 20.9 ±​ 0.61 for siblings; 3.7 ±​ 0.9 for 1st cousins; 3 ±​ 0.63 for 2nd cousins. We observed 
weaker concordance in differentiated cells (GFP+)−​3.71 ±​ 0.66 for siblings; 2.1 ±​ 0.2 for 1st cousins; 1.38 ±​ 0.12 
for 2nd cousins. Pearson’s correlation analysis revealed a similar pattern of correlated time to fate (Supplementary 
Fig. S2 and Fig. S3).

Concordance was weaker between mothers and daughters than for cells within the same generation, indi-
cating greater variation in intergenerational times than intragenerational times; COR were 0.53 ±​ 0.16 and 
−​0.19 ±​ 0.07 for GFP− and GFP+ cells, respectively (Table 2 and Fig. 4c,d, green lines). Negative COR for GFP− 
mother-daughter clusters indicated discordant fates, attributed to longer cell cycle times in differentiated cells that 
lead to greater discordance in fate outcomes (Supplementary Fig. S2 and Fig. S3).

Onset of GFP fluorescence and differentiation occurred in generations 0–6 over a 7 day period, but was syn-
chronized in cells with a common ancestor (Fig. 4e,f). COR for onset of GFP expression, taken from the time the 
stimulus was received by ancestors, were 1.3 ±​ 0.35, 3.4 ±​ 0.23 and 2.9 ±​ 0.16 for sisters, 1st cousins and 2nd cous-
ins, respectively (Table 2). Correlation analysis corroborated these findings: r =​ 0.95, 0.91, and 0.88 for siblings, 
1st cousins, and 2nd cousins, respectively (Supplementary Fig. S4), though on average only half of all pairs were 
analysed because right censored and discordant fates were excluded (Fig. 4g,h).

Excluding censored cell fates resulted in significant selection bias in all kinship clusters (Fig. 4g). For example, 
when analysing time to division for GFP- GMPs Yule’s Q test quantified concordance in cell fate, while ICC and 
PCC quantified correlation in time to fate (Supplementary Table S4). However, these tests only included limited 
subsets of cell lifetime data (Fig. 4h and Supplementary Table S4). CR concordance analysis included all cell 
observations and therefore is an unbiased method for quantifying the influence of latent, heritable determinants 
on cell fate.

bFGF, PDGF, and TGFβ1 stimulate cardiac MSC self-renewal by symmetric PDGFRα+ divisions.  
Proliferation and colony-forming assays are routinely used to measure self-renewal of CFU-F from BM and 
other tissues31. These assays rely on population snapshots and therefore obscure the underlying detail of dynamic 
single-cell behaviour3,32. Studying single cell behaviour is critical since a cell’s response to one cytokine may 
depend on the presence of other cytokines via interacting intracellular signalling pathways33. Here, we study the 
effect of cytokine stimulation on cCFU-F division, death, and self-renewal.

cCFU-F were isolated from 8–12 week old PdgfraGFP/+ knockin mouse hearts, which express a nuclear ver-
sion of GFP under Pdgfra cis-regulatory control. cCFU-F were expanded in serum through 3 passages and then 
exposed to basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), and transforming 
growth factor-beta 1 (TGFβ​1) in serum free medium (SFM). These growth factors were selected as their ability to 
stimulate MSC proliferation and self-renewal is well characterised34. Cells were observed by time-lapse micros-
copy and single cell tracking for 96 hours. We observed GFP− and GFP+ cells that had fibroblast morphology, 
as well as larger, myofibroblast-like cells that were GFP− (Fig. 5a). Interactions between intrinsic Pdgfra-GFP 
expression and cytokine treatment were resolved using a two-level (present or absent), full-factorial (all combi-
nations) experimental design (Supplementary Text 4 and Table S5). We applied CRR models to quantify cytokine 
effects on division and death (Supplementary Text 5a), as well as the effect of interactions between cytokine stim-
ulation and Pdgfra-GFP expression (Supplementary Text 5b). CRR models and concordance analysis were then 
used to analyse symmetric and asymmetric self-renewal of cCFU-F (Supplementary Text 5c–e). Results derived 
from CRR models were also validated by population-based proliferation and CFU-F assays.
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First, we constructed a CRR model to quantify single factor, as well as two factor (bFGF:PDGF; PDGF:TGFβ​1;  
bFGF:TGFβ​1) and three factor (bFGF:PDGF:TGFβ​1) interactions on division probability for generation 0 cells 
(see equation (5)).

β+ + +~division CIF const PDGF const FGF const TGF1 ( ( ) ( ) ( )) (5)3

The model showed that the division probability was greater with all three factors, compared to bFGF, PDGF 
or TGFβ​1 alone (Fig. 5b). There was synergy between these cytokines because bFGF:PDGF:TGFβ​1 had a larger 
effect (2.55 ±​ 0.76) than the combined effects of single factors (TGFβ​1; 0.249 ±​ 0.11; PDGF: 0.4 ±​ 0.12; and bFGF: 
0.49 ±​ 0.15) or no factors (Fig. 5b, Supplementary Fig. S5 and Text 5a). Empiric CIFs followed the same trend, 
demonstrating goodness-of-fit of the parametric model (Supplementary Fig. S5 and Text 5a). Similar observa-
tions were made for cells whose birth was observed (generation >​0, Supplementary Fig. S5). Population-based 
proliferation and CFU-F assays validated the results derived from our model (Supplementary Text 4 and Fig. S6). 
Without factors cells did not proliferate, while bFGF alone had the greatest (p <​ 0.001), and TGFβ​1 alone had the 
smallest effect on division probability (p =​ 0.003), respectively. Effects on survival were screened; only TGFβ​1 
increased death probability (Supplementary Fig. S5 and Text 5a).

Figure 4.  CR regression and concordance analysis of division, death, and differentiation in GMPs treated 
with hematopoietic cytokines. (a) Simulated CIFs for division for GFP- cells (black) treated with MCSF or 
GCSF, GFP+​ cells treated with MCSF (green), and GFP+​ cells treated with GCSF (red). Dashed lines show 
standard error (SE). (b) Simulated CIF for death for GFP- cells (black), treated with MCSF or GCSF, GFP+​ 
cells treated with MCSF (green), and GFP+​ cells treated with GCSF (red). Dashed lines show SE. (c) Division 
concordance probability for GFP- siblings (black), parent-child (green), 1st cousins (red), and 2nd cousins (blue). 
Dashed lines are 95% confidence intervals (CI). (d) Division concordance probability for GFP+​ siblings (black), 
parent-child (green), 1st cousins (red), and 2nd cousins (blue). (e) Histogram showing the number of cells that 
transition from GFP- to GFP+​ in each generation (MCSF and GCSF pooled data). (f) Concordance probability 
for onset of GFP expression after MCSF treatment for siblings (black), 1st cousins (red), and 2nd cousins (blue). 
Dashed lines are 95% CI. (g) Histograms showing the proportion of concordant, discordant, and censored fate 
outcomes in mother-daughter (MD), sibling (S), 1st cousin (C1), and 2nd cousin (C2) kinship clusters. (h) The 
percentage of cell lifetime data used by statistical tests for quantifying association in cell fate (averaged over all 
kinship clusters). CRR models and COR are shown in Table 2.
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To investigate renewal of the cCFU-F phenotype (defined by SCA1+/PDGFRα​+/CD31− expression) we 
showed that cCFU-F cultures did not lose the stem cell marker SCA-1, nor gain the endothelial marker CD31 
(Supplementary Table S22). However, single cell Pdgfra-GFP expression varied considerably and was related to 
cytokine treatment (Fig. 5c and Supplementary Fig. S7). Thus, PDGFRα​ expression could be used to identify 
renewal of the cCFU-F phenotype, as reported by Chong et al.24 and confirmed by Noseda et al.26.

We developed CRR models that included a variable for GFP intensity in order to study the interaction effects 
of cytokines on Pdgfra expression (Supplementary Text 5b). These models showed that of the cytokines promot-
ing division, only PDGF had a significant positive interaction with GFP expression (p <​ 0.001, Supplementary 
Text 5b). In contrast, GFP expression was not related to death probability. To classify cells as GFP+ and GFP− 
we established a threshold of GFP expression, below which PDGF did not affect division probability (Fig. 5c,d 
and Supplementary Text 5b). We observed a relatively constant proportion of GFP+ cells in each generation 
(Supplementary Fig. S7), which was hypothesised to be achieved by self-renewal of GFP+ cells.

To study renewal of GFP+ cells we divided cell fate outcomes into four CR categories: 1. GFP+ division; 2. 
GFP− division; 3. GFP+ death; and 4. GFP− death (Fig. 5e and Supplementary Text 5c). The CRR model showed 
that division probability for GFP+ cells treated with PDGF:bFGF (the factors of greatest effect) was >​0.5, while 
division probability of GFP− cells treated with bFGF (knowing PDGF had no effect) was <​0.2 (Fig. 5f and 
Supplementary Text 5c). Figure 5g shows that GFP+ cells were derived mostly from GFP+ mothers (50.7%) but 
also GFP− mothers (6.8%), while GFP− cells were derived equally from GFP+ and GFP− mothers (20.4% and 
22.1%, respectively). This agreed with our CRR model (Fig. 5h and Supplementary Fig. S7). Taken together, these 
findings confirmed that GFP+ cells self-renew (probability >​ 0.5), while GFP− cells do not renew over multiple 
generations because their renewal probability is less than 0.5. We also validated functional self-renewal of cCFU-F 
cultured in bFGF, PDGF and TGFβ​1 by demonstrating maintenance of in vitro lineage potency (data not shown).

We next investigated if GFP+ cells self-renew symmetrically or asymmetrically (Fig. 6a). Firstly, we divided 
sibling pairs (for all sibling pairs and GFP+ pairs) into groups where both siblings divided, both died, fates were 
discordant, or where at least one sibling’s fate was right censored (Fig. 6b). We observed strong correlation in 
time to division for all siblings pairs and GFP+ pairs (all pairs: ICC =​ 0.78, and r =​ 0.71, p <​ 0.001; GFP+ pairs: 
ICC =​ 0.89, r  =​ 0.79, p <​ 0.001, Fig. 6b,c). Yule’s Q also estimated strong concordance in fate for both groups 
(all pairs: Q =​ 0.79, GFP+: Q =​ 0.89, Fig. 6b). Figure 6d shows that the mean difference in cycle times between 
cell pairs from random permutations was much greater than that of the observed mean difference between sib-
ling pairs (all pairs: 18.37 ±​ 1.24 hrs vs 8.59 hrs, t =​ 10.19, p <​<​ 0.001, GFP+ pairs:16.72 ±​ 1.34 hrs vs 7.16 hrs, 
t =​ 10.23, p <​<​ 0.001, see Supplementary Text 6). These different tests all demonstrated strong correlation and 
concordance in fate of siblings; however they are inherently biased toward symmetric fate outcomes (Table 1). 
Therefore, we applied CR concordance analysis to quantifying the COR for GFP+ sibling cell divisions19. This 
analysis included right censored data as well as temporal information regarding time to fate, to quantify syn-
chronicity in sibling cell divisions (Fig. 6a and Supplementary Text 5e).

We established whether the conditional probability of a GFP+ division for one cell was increased given that its 
sibling was GFP+ and had divided. We constructed CRR models for GFP+ divisions that included a cluster term 
to identify sibling pairs (SiblingClusterID), shown in equation (6) (see Supplementary Text 5e).

+ + ++ ~GFP sibling division PDGF FGF cluster SiblingClusterID1 ( ) (6)

The conditional probability of a GFP+ division was significantly higher than the unconditional probability 
of a GFP+ division (Fig. 6e and Supplementary Text 5e), establishing that the probability of a GFP+ division 
for a cell was increased if its sibling was also GFP+ and had divided. The COR for GFP+ divisions in siblings 
was 10.7 ±​ 1.35 (±​SE, p <​ 0.001), demonstrating that cultured cCFU-F self-renew by symmetric divisions using 
Pdgfra-GFP expression as a marker of cell fate.

CRR model
Link 

function* GFP** Growth factor
log(COR) 
±SE p-value

division CIF ~ 1 +​ const (GF) cluster (siblings) FG −​ MCSF/GCSF 20.9 ±​ 0.613 0

division CIF ~ 1 +​ const (GF) cluster (1st cousins) FG −​ MCSF/GCSF 3.68 ±​ 0.901 4 ×​ 10−5

division CIF ~1 +​ const (GF) cluster (2nd cousins) FG −​ MCSF/GCSF 3.04 ±​ 0.629 1 ×​ 10−6

division CIF ~ 1 +​ GF +​ cluster 
(mother – daughter) FG −​ MCSF/GCSF 0.526 ±​ 0.158 9 ×​ 10−4

division CIF ~ 1 +​ cluster (sisters) FG +​ MCSF 3.71 ±​ 0.657 2 ×​ 10−8

division CIF ~ 1 +​ cluster (1st cousins) FG +​ MCSF 2.13 ±​ 0.203 0

division CIF ~ 1 +​ cluster (2nd cousins) FG +​ MCSF 1.38 ±​ 0.116 0

division CIF ~ 1 +​ cluster (mother – daughter) FG +​ MCSF −​0.19 ±​ 0.07 0.01

GFP onset CIF ~ 1 +​ GF +​ cluster (siblings) Add −​ →​ +​ MCSF/GCSF 1.32 ±​ 0.345 2 ×​ 10−4

GFP onset CIF ~1 +​ cluster (1st cousins) Add −​ →​ +​ MCSF/GCSF 3.36 ±​ 0.228 0

GFP onset CIF ~1 +​ cluster (2nd cousins) Add −​ →​ +​ MCSF/GCSF 2.91 ±​ 0.155 0

GFP onset ~ 1 +​ GF +​ cluster (mother – daughter) Add −​ →​ +​ MCSF/GCSF −​0.935 ±​ 0.153 9 ×​ 10−10

Table 2.   Effect of kinship relationships on division and differentiation (GFP expression) concordance.  
*​FG =​ Fine – Gray model, Add =​ Additive model, *​*​−​ denotes GFP−, +​ denotes GFP+, (−​ →​ +​) denotes a 
GFP negative to GFP positive transition.
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Figure 5.  The effect of cytokines and PDGFRα expression on probability of division, death, and self-
renewal of cCFU-F. (a) Overlaid phase contrast and fluorescence (GFP) image of Pdgfra-GFP cCFU-F 
showing heterogeneity in morphology and GFP expression. *​and **indicate GFP+ and GFP− spindle-
shaped cells, respectively. ***Indicates a GFP− cell with a myofibroblast morphology. (b) CIF (solid lines) 
for division (generation 0) given TGFβ​1 (green), bFGF (blue), PDGF(red), all three factors (black), or no 
factors (grey). Dashed lines show standard errors (SE). (c) Histogram showing variation in Pdgfra-GFP 
intensity, and threshold limit used to classify GFP+ and GFP− cells. (d) Simulated CIF (solid lines) for division 
(generation >​ 0) of GFP+ cells with PDGF (green), GFP+ without PDGF (blue), GFP− cells with PDGF 
(red), and GFP− cells without PDGF (black). Dashed lines show SE. (e) Pie-charts showing the frequency of 
observed fate outcomes for GFP+ and GFP− cells. (f) Simulated CIF (solid lines) for GFP+ divisions (green) vs 
GFP− divisions (black). Dashed green and red lines are 95% confidence intervals (CI). (g) Pie-chart showing 
inheritance of GFP. GFP+ mothers give rise to a majority of GFP+ and a minority of GFP− daughter cells, while 
GFP− mothers equally give rise to GFP− and GFP+ cells. (h) Simulated CIF (solid line) showing that GFP+ 
mothers give rise to a majority of GFP+ and a minority of GFP− daughters. Dashed lines are 95% CI. All data 
analysed are from pooled observations from replicate wells for each condition (N =​ 1316 cells).
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In conclusion, our analysis demonstrates that bFGF, PDGF and TGFβ​-1 are sufficient for cCFU-F self-renewal. 
Renewal activity resided within the PDGFRα​+ cell subset, though FGFR and TGFβ​R are likely co-expressed by 
PDGFRα​+ cCFU-F. Concordance analysis showed that these cytokines stimulate self-renewal of PDGFRα​+ cells 
by symmetric divisions. CRR and CR concordance analysis thus allowed us to quantify stem cell renewal dynam-
ics at single cell level. Such detailed characterization of cCFU-F will help to shed light on their potential role in 
remodelling cardiac tissue in response to injury.

Discussion
We have shown that BC cell division and death after treatment with cytotoxic agents are dependent on p53 gen-
otype. Alternatively, one may hypothesise that fate outcomes are determined by independent, autonomous pro-
cesses that compete within each cell11,17. While such models have been proposed to describe cell growth dynamics, 
one is unable to establish dependence between competing fates because in statistical modelling pre-competition 
distributions cannot be determined from lifetime data alone (Fig. 2)35. Importantly, the CR models we presented 
make no assumption of independence28. In the future a CRR model could be enhanced through correlating p53 
activities in single BC cells with their fate - since division and death outcomes in BC cells also depend on temporal 
fluctuations of p53 state29.

We describe statistical tools for analysing concordance in cell fate, advancing upon previous methods that 
do not take into account censorship and competition. Familial concordance in fate has been reported to exist in 
different cellular systems9,36. These observations suggest that latent, heritable determinants of fate are transmitted 
vertically to determine fate and time to fate. Heritable determinants may be signalling components, segregated 
proteins, and epigenetic or genetic alterations37. Dependence of fate in kin and independence of fate in unre-
lated cells contributes to population heterogeneity, and must be considered for accurate modelling of cell growth 
dynamics9,11, e.g. to determine if two heritable factors could explain correlation in time to division and death in 
lymphocytes8. We advance upon previous approaches for quantifying concordance in cell fate by applying CR 
concordance probability statistics that accommodate right-censored and competing fate outcomes. We quantified 

Figure 6.  Symmetry in cCFU-F sibling cell fate outcomes. (a) Illustration of symmetric GFP+ division.  
(b) Relative proportion of discordant, concordant, and right-censored fates for cCFU-F sibling pairs. Q is Yule’s 
Q estimate of association in fate. ICC is the intraclass correlation coefficient, numbers in brackets are 95% CI. 
(c) PCC in sibling cell divisions, GFP+ pairs (green), GFP− pairs (blue). r is Pearson’s correlation coefficient and 
numbers in brackets are 95% CI. For all cells N =​ 84 pairs, and for GFP+ cells N =​ 51 pairs. (d) Distribution of 
the mean difference between 10,000 random permutations of cell pairs for all cells (left) and GFP+ pairs (right). 
μ​ and SD represent the mean and standard deviation of the randomly generated distributions, respectively. The 
observed mean difference in cell cycle for all siblings was 8.59 hr. The observed mean difference in cell cycle for 
GFP+ pairs was 7.17 hr. In both groups the observed mean difference was significantly shorter than the mean 
difference between randomly sampled cell pairs. (e) Probandwise concordance (black), showing the conditional 
probability of a GFP+ division for sibling 1 given a GFP+ division for sibling 2 had occurred (black dashed line, 
95% CI). The unconditional probability of a GFP+ division (red solid line) is much lower. +​/−​ indicates SD. All 
data analysed are from pooled observations from replicate wells for each condition (N =​ 1316 cells).
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concordance in fate for GMP kin, showing that it is stronger for siblings than for 1st and 2nd cousins. An analysis 
of further removed kin (i.e. 3rd cousins) could determine what degree of familial separation results in loss of 
concordance. In contrast to reports by Sandler et al.38, we observed that division times for mother-daughter pairs 
are also correlated, though more weakly than cells within the same generation, which we attribute to intergener-
ational cell cycle lengthening; a nascent inherited characteristic that reduces concordance. Macrophage progeny 
had increased cell cycle lengths and weaker sibling concordance compared to GMPs, similar to that observed 
during neural stem cell differentiation - where increased cell cycle length increased the frequency of asymmetric 
divisions in siblings39. Weaker concordance may be attributed to divergence of protein synthesis that does not 
occur during shorter cycle times40. Our results support the concept that cell fate outcomes are inheritable, and 
that the influence of inheritance may be diluted by cell division. In the future, our analysis could be extended by 
investigating how extrinsic factors influence concordance.

Factorial design and CRR models were applied to the analysis of PDGFRα​+ renewal within cultures of 
cCFU-F. CRR showed that bFGF, TGFβ​-1, and PDGF synergistically stimulated cCFU-F proliferation and 
self-renewal. Synergism between these factors has been reported33, though not demonstrated in single cells. CRR 
confirmed that Pdgfra-GFP expression marks cells that respond to PDGF signalling. A recent single cell analysis 
of the SCA1+ interstitial fraction of adult murine myocardium confirmed that PDGFRα​ marks cardiogenic clo-
nogenic cells24,26. By applying CRR and concordance analysis to cell lifetime data we demonstrated that cultured 
cCFU-F renew by symmetric PDGFRα​+ divisions. Given the large number of censored lifetimes and the marked 
heterogeneity in cCFU-F cultures, this finding would be difficult to prove robustly using the other statistical 
methods shown in Table 1 because of their selection bias. Our results show that the probability of division for 
PDGFRα​+ cCFU-F is increased by stimulation with PDGF. Over the last decades the dogma that the adult mam-
malian heart is a post-mitotic organ has been overturned, resulting in increased interest in cardiac regeneration. 
Our results provide insight into what molecular cues could be used to stimulate cCFU-F to actively proliferate 
and self-renew in vivo. In the future such insight may enable development of new therapies that target cCFU-F in 
order to enhance their response to cardiac injury.

Throughput of single-cell tracking is increasing3. Without robust statistical tools it is likely that erroneous 
conclusions will be drawn through selection bias. CRR offers a comprehensive method to evaluate biological 
hypotheses at the single cell level using all cell lifetime data. Single cell tracking, transcriptional profiling and CR 
statistics are essential tools for directly establishing the causative link between molecular pathways and cell fate.

Materials and Methods
Isolation and culture of mouse GMPs.  All details of isolation and culture of mouse GMPs was described 
previously6.

Time-lapse imaging and single cell tracking of GMPs.  Details of time-lapse imaging and single cell 
tracking of GMPs has previously been described6.

Cell culture and generation of H2GFOIP reporter lines.  Cell culture and generation of H2GFOIP 
reporter lines has been described previously20.

Live Cell Imaging and Single Cell Tracking of BC Cell Lines.  Details for live and high content imaging 
are described previously20.

Isolation and expansion of cardiac colony forming unit (cCFU).  cCFU were isolated from 8–12 
week old PDGFRa-GFP transgenic C57/BL6 mice, as previously described24. After FACS cells were collected 
in medium containing 20% FCS. Cells were expanded in 20% serum by plating at 250 cells/cm2 in 10 cm dishes 
coated with gelatin. For live cell imaging experiments, cells at passage 4 were plated at 250 cells/cm2 in 24-well live 
cell imaging plates (Ibidi) and exposed to factorial combinations of cytokines in SFM. See Supplementary Text 4 
for details on the design and analysis of factorial design experiments.

Colony Forming Unit (CFU) Assay.  Passage 4 cells were plated at 50 cells/cm2 in 35 mm dishes in tripli-
cates. After 8 days cells were stained with crystal violet to visualise colonies, as described previously24. Colonies 
with more than 25 cells and greater than 2 mm in diameter were counted.

Proliferation.  Passage 4 cells were plated at 200 cells/cm2 in 35 mm dishes in triplicates. After 6 days in cul-
ture (or when cells reached 80% confluence) cells counted. Each replicate was counted twice.

Live Cell Imaging and Single Cell Tracking of cCFU-F.  Live cell imaging was performed using a Leica 
live cell imaging microscope (DMI6000B) equipped with x-y-z controller and hardware autofocus. Phase contrast 
(PH) images were acquired every 15 minutes for 96 hours. GFP was detected every 2–3 hours (300ms exposure). 
Images were exported to Matlab to remove background noise, enhance contrast, and stitch contiguous sites. 
Custom-written software implemented in Matlab (Nordon’s Tracking Tool) was used to manually track cell nuclei 
through consecutive frames, to build trajectories and record fate outcomes (division, death, and right censored 
[lost or not complete]). Positions of cell nuclei in PH images were used to measure GFP intensity in the fluores-
cence channel, by recording pixel intensities. Two wells per condition were tracked.

Animal ethics.  All experimental methods involving mice were carried out in accordance with the relevant 
guidelines and regulations, and were approved by the St Vincent’s Hospital/Garvan Institute of Medical Research 
Animal Ethics Committee (AEC). AEC approval number 13/02.
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Statistical analysis.  All statistical analyses were implemented in custom-written scripts in R41 and 
MATLAB®​ (MATLAB 2015b, The MathWorks Inc., Natick, MA). The timereg42 and mets packages were used to 
implement competing risks regression and concordance analysis. A two-tailed Student’s t test (α​ =​ 0.05) was used 
to compare mean cell cycle times of BC cells. Details of all statistical tests applied are available as Supplementary 
material. All relevant code and cell lifetime data are available at the GitHub repository (https://github.com/
Jamcor/crpaper).
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