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Abstract

Aims The morphology and function of the left atrium (LA) are intimately tied to left ventricular loading conditions. Data pertaining 
to the effect of transcatheter aortic valve replacement (TAVR) on LA function and geometry are scarce. The aim of the study 
was to quantify associations between TAVR and LA remodelling by pooling available data from published observational 
studies.

Methods 
and results

A systematic review and meta-analysis were performed. Studies reporting serial LA speckle-tracking echocardiographic 
(STE) data, before and after TAVR, were included. Other outcome data included LA area and indexed volume (LAVi) 
and standard chamber measurements. Outcomes were stratified by timing of follow-up echocardiography: early (<6 
months) or late (≥6 months). Twelve studies were included, comprising 1066 patients. The mean reduction in LAVi was 
2.72 mL/m2 [95% confidence interval (CI) 1.37–4.06, P < 0.01]. LA reservoir function improved overall by a mean difference 
(MD) of 3.71% (95% CI 1.82–5.6, P < 0.01), although there was significant heterogeneity within the pooled studies (I2 =  
87.3%). Significant improvement in reservoir strain was seen in both early follow-up (MD 3.1%, P < 0.01) and late fol
low-up studies (MD 4.48%, P = 0.03), but heterogeneity remained high (I2 = 65.23 and 94.4%, respectively). Six studies re
ported a change in LA contractile function, which recovered in the early follow-up studies (MD 2.26, P < 0.01), but not in the 
late group (MD 1.41, P = 0.05). Pooled improvement in LA booster function was 1.96% (95% CI 1.11–2.8, P < 0.01).

Conclusion TAVR is associated with significant negative LA remodelling, and an improvement in LA mechanics, quantified by STE. The 
prognostic implications of these findings require further study.
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Graphical Abstract

LA, left atrium; STE, speckle-tracking echocardiography; TAVR, transcatheter aortic valve replacement.
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Introduction
Progressive aortic stenosis (AS) is associated with hypertrophic remodel
ling of the left ventricle, ultimately leading to reactive fibrosis and impaired 
ventricular function, which is associated with a poor prognosis.1 Advances 
in echocardiographic techniques, specifically speckle-tracking echocardiog
raphy (STE), have facilitated more granular assessment of tissue deform
ation and mechanical cardiac function. STE reveals early myocardial 
dysfunction in patients with significant AS prior to symptom development 
or overt deterioration in systolic function, quantified by the left ventricular 
ejection fraction (LVEF).2 Owing to this robust sensitivity to subtle impair
ments in ventricular function, strain imaging also provides important prog
nostic information.3 Left atrial (LA) strain imaging can be employed to 
quantify the phases of LA function during the cardiac cycle. LA mechanical 
function can be divided into three key phases: (i) reservoir phase: collection 
of pulmonary venous flow during ventricular systole; (ii) conduit phase: pas
sive transit of blood to the left ventricle during early ventricular diastole; and 
(iii) contractile/booster phase: active contraction of the atrium during late 
ventricular diastole.4 The triphasic strain curve produced by STE during 
the cardiac cycle quantifies LA distensibility and contractility during these 
phases. LA mechanical function, measured with STE, has demonstrated in
dependent prognostic discriminatory power for a range of cardiomyo
pathic states and valvular diseases, including aortic stenosis.5–7 Impaired 
LA function also predicts major adverse cardiac events.8 However, the po
tential reversibility of LA mechanical dysfunction following transcatheter 

aortic valve replacement (TAVR), and the potential prognostic implications 
are scarcely reported. As such, we sought to quantify these associations by 
pooling available data from published observational studies.

Methods
This systematic review was registered with PROSPERO (CRD42023485102) 
and performed according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines.

Eligibility
To be eligible for inclusion, studies needed to report serial LA strain mea
surements, as quantified by STE, both before and after transcatheter aortic 
valve implantation (TAVI). Prospective and retrospective studies were 
included.

Search strategy
A systematic search of PubMed, Embase, and Web of Science was con
ducted using combinations of the following MeSH and keyword terms: 
transcatheter aortic valve implantation; TAVI; transcatheter aortic valve re
placement; TAVR; left atrial strain; atrial strain; strain. The full search strat
egy is available in Supplementary data online, Table S1. The databases were 
queried from their inception until October 2023. To ensure comprehensive 
capture, an additional manual reference check of pertinent literature, in
cluding recent review articles, was performed.
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Data extraction and management
A standardized, pre-piloted form was used to extract data from the in
cluded studies. Two reviewers (T.M. and L.B.) independently extracted 
data. Discrepancies were discussed following a cross-check. The extracted 
data included information pertaining to study type, methodology, strain 
software, and population characteristics. Echocardiographic variables of 
interest were the aortic valve area (AVA), mean aortic valve gradient, 
LVEF, LA area, LA volume indexed to body surface area (LAVi), and LA 
function, quantified by STE.

Assessment of bias
Studies were assessed for risk of bias and methodological quality using the 
Newcastle–Ottawa tool for assessing risk of bias in cohort studies.9 The in
cluded studies were rated on three different domains, including the selec
tion of the study groups, the comparability of the groups, and the 
ascertainment of the outcome. The quality score ranges from 0 to 9 points, 
where 1–3, 4–6, and 7–9 points reflect a high, intermediate, and low risk of 
bias, respectively.

Data analysis
Analyses were performed using R software (R Foundation for Statistical 
Computing, Vienna, Austria). Changes in LA strain parameters from base
line were stratified by duration of follow-up (<6 and ≥6 months). Where 
continuous data were reported as median and interquartile range (IQR), 
means were estimated according to the method described by Luo 
et al.,10 and standard deviations according to the method described by 
Wan et al.11 Due to the paucity of studies and the heterogeneity of out
come reporting, some results are presented qualitatively with relevant fig
ures. Where data were sufficiently homogeneous to permit pooling and 
meta-analysis, differences were expressed as the mean difference (MD) 
with a 95% confidence interval (CI) for continuous outcomes. Studies re
porting peak atrial longitudinal strain (PALS), according to the recommen
dations of the EACVI/ASE/Industry Task Force,12 which corresponds to 
reservoir function, were pooled with studies specifically reporting reservoir 
function. The Hedges random-effects model was used, which has utility in 
correcting for bias in small sample sizes. Heterogeneity was assessed using 
the I2 statistic, with an I2 > 50%, indicating significant heterogeneity. 
Potential bias was also visualized using funnel plots. Where significant het
erogeneity existed, meta-regression was performed. A two-tailed value of 
P = 0.05 was used to claim statistical significance.

Results
A total of 697 studies were identified from the search. Following dupli
cate removal and initial screening for eligibility, 61 full-text studies were 
retrieved for assessment. Forty-nine studies were excluded, leaving 12 
studies for final inclusion (Figure 1).

Baseline characteristics
The characteristics of the included studies are outlined in Table 1. The 
pooled cohort totalled 1066 patients. The average age of participants 
was 80.8 years. The median LVEF and AVA were 53.7% (IQR 53– 
58.8) and 0.71 cm2 (IQR 0.69–0.73), respectively. Seven of the 12 stud
ies reported early follow-up data, and most participants underwent 
TAVR with a self-expanding valve, compared with a balloon-expandable 
valve. Six studies utilized EchoPAC strain software, ahead of TomTec 
and QLab (used in two studies each). All studies demonstrated inter
mediate risk of bias.

LA geometry
Eleven of the 12 studies reported change in LAVi (Figure 2). The mean 
overall reduction in LAVi was 2.72 mL/m2 following TAVI (95% CI 

1.37–4.06, P < 0.01, low heterogeneity: I2 = 0%). When stratified by 
duration of follow-up (early or late), a significant change was seen in 
both early and late follow-up groups (see Supplementary data online, 
Figures S1 and S2).

LA function
All studies reported reservoir indices, albeit six studies referred to this 
as PALS, and six specifically as reservoir strain. LA reservoir function im
proved overall by an MD of 3.71% (Figure 3; 95% CI 1.82–5.6, P < 0.01), 
although there was significant heterogeneity within the pooled studies 
(I2 = 87.3%). Significant improvement in reservoir strain was seen in 
both early follow-up (MD 3.1%, P < 0.01) and late follow-up studies 
(MD 4.48%, P = 0.03), but heterogeneity remained high (I2 = 65.23 
and 94.4%, respectively). Funnel plot visualization demonstrated 
some asymmetry, although this was not statistically significant (P =  
0.12, Supplementary data online, Figure S3). Meta-regression was per
formed to test the influence of the following study characteristics: base
line LVEF, proportion of study participants with atrial fibrillation (AF), 
mean study age, and strain software used. Using a Knapp and 
Hartung adjustment (given mixed continuous and categorical variables), 
meta-regression did not reveal a statistically significant influence of 
these variables (F statistic = 1.12, P = 0.55) with significant residual het
erogeneity (I2 = 84.5%). Although not significant, there was a trend to
wards greater improvement in reservoir function with lower baseline 
LVEF (see Supplementary data online, Figure S4).

Six studies reported a change in LA booster/contractile function, 
which recovered in the early follow-up studies (MD 2.26, P < 0.01), 
but not in the late group (MD 1.41, P = 0.05). Pooled improvement in 
LA booster function was 1.96% (Figure 4; 95% CI 1.11–2.8, P < 0.01, 
low heterogeneity: I2 = 0%). Five studies reported conduit indices. 
There was a high level of heterogeneity (I2 = 90.1%). The mean im
provement in conduit strain was 2.23%, but this was not statistically sig
nificant (Figure 5; 95% CI −0.56 to 5.02, P = 0.12). No significant 
difference was observed when the studies were stratified. 
Meta-regression was not performed owing to the low number of studies 
reporting this metric.

Discussion
The aim of our study was to quantify improvement, if any, in LA mech
anical function following TAVR, as quantified by STE. The key findings of 
this meta-analysis are that, following TAVR, the LA negatively remodels 
(reduces in size), and this is associated with improved distensibility, as 
quantified by an improvement in reservoir function. We identified a sig
nificant overall improvement in LAVi (2.72 mL/m2), which was not in
dividually demonstrated by all but one study, highlighting the utility of 
meta-analysis. LA dilation and dysfunction are clearly highly prevalent 
in the TAVR population. In all studies, the mean baseline LAVi values 
were abnormal by current consensus criteria (>34 mL/m2), as were 
the mean baseline reservoir strain values (<39.4%).25 Although LVEF 
was generally preserved, diastolic dysfunction was highly prevalent, 
but only one group clearly stratified diastology, according to contem
porary guidelines.18 Spethmann et al.18 found that all patients had 
some degree of diastolic dysfunction, but nearly half improved by 
one grade, and some completely normalized. Interestingly, Poulin 
et al.19 did not replicate this finding despite the similar sample size, 
and D’Ascenzi et al.17 did not find an association between diastolic func
tion (or its post-TAVR change) and the observed improvement in LA 
strain. It has been suggested that LA strain may be more appropriate 
than contemporary markers of filling pressures, such as E/e′.18
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Regardless, further research elucidating the link between diastolic func
tion and LA functional recovery is needed.

The reversal of left ventricular hypertrophy following aortic valve 
replacement, and the prognostic implications, have been studied 
exhaustively.26 However, cardiac adaptation to aortic stenosis is 
non-uniform; not all patients demonstrate reactive hypertrophy to 
the chronic pressure load of aortic stenosis, and not all patients 
favourably remodel the following treatment.27 Nor is pathological 
cardiac change confined to the valve or left ventricle—important 
prognostic information is contained within the LA. Both LA reverse 
remodelling and improvement in LA strain indices following TAVR 

have shown association with improved survival, albeit in a small 
cohort.23 It is also well known that dilation of the LA and impairment 
in mechanical function are associated with an increased risk of stroke 
and stroke related to incident AF.28,29 It has recently been reported 
that LA strain and strain rate are also predictive of new onset AF fol
lowing AVR, both transcatheter and surgical.19,30 Poulin et al. found 
that LA early diastolic strain rate, a marker of conduit function, was 
associated with new AF following TAVR, raising the question of 
whether improvement in LA strain following TAVR might be asso
ciated with stroke risk reduction. This is currently unknown and re
quires further research.

Figure 1 PRISMA flow chart for record screening and assessment. The initial search yielded 697 studies, of which 12 were eligible for inclusion.
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Several covariates may contribute to heterogeneity of the included 
studies, including inter-vendor variability, LA strain nomenclature, 
prevalence of AF, and differences in the type of valve prosthesis 
(which can influence residual transaortic gradient and left ventricular 
reverse remodelling). Meta-regression demonstrated that baseline 
LVEF, AF, age, and strain software accounted for some, but not all, 
of the heterogeneity. Also, measurement of reservoir function is in
fluenced by the apical excursion of the mitral annulus in the systole. 
Therefore, any improvement in this phenomenon afforded by TAVR 
could influence this observation. Ten of the 12 studies reported a 
normal mean left ventricular function at baseline; hence, theoretically, 
a significant change in mitral annular excursion following TAVR might 
not be expected.

LA strain nomenclature warrants highlighting. It is important to note 
that measurement of LA strain can be referenced to either the onset of 
the QRS complex (end of ventricular diastole) or the beginning of the P 
wave (beginning of atrial systole, late ventricular diastole). This has im
portant implications for the magnitude of deformation measured, and 
how each phasic component is calculated. For example, peak positive 
strain corresponds to conduit function when timed to the P wave, 
and reservoir strain when timed to the QRS. Further confusion arises 
when LA mechanical phases are labelled according to events in the 
left ventricle. For example, Sabatino et al. report ‘LA systolic strain’, 
which corresponds to QRS-gated peak positive strain, and, therefore, 
the reservoir phase. Weber et al. report LA global peak longitudinal 
strain, corresponding to the same phase. Indeed, 6 of the 12 studies 
in this meta-analysis reported peak LA longitudinal strain or equivalent, 
and 5 reported specific reservoir, conduit, and contractile strain values. 
Coyle et al. used PALS nomenclature but did not specify whether P 
wave or QRS gating was implemented. The authors infer that PALS re
flects reservoir function, suggesting that they used QRS gating. The re
maining studies reporting PALS also utilized QRS referencing. Presently, 
standardized strain referencing to the QRS, and labelling according to 
the LA cycle, is recommended.12,31

Future directions
LA geometry and function are well-described prognostic discriminators 
for multiple left heart conditions. For patients with aortic stenosis, both 
LA size and function have demonstrated independent incremental 
prognostic information32,33; however, current studies quantifying LA 
function using strain imaging are limited in both number and sample 
size. Moreover, the independent prognostic value of LA functional re
covery following TAVR and whether intervention at an earlier stage 
may afford biologically plausible protection from the known conse
quence of adverse LA remodelling, such as new onset AF, are yet to 
be demonstrated in large prospective cohorts. Assessment of LA func
tion with strain imaging may provide more sensitive assessments of left 
ventricular diastolic function and improve our ability to identify patients 
at risk for adverse outcomes. Incorporating these parameters of LA 
structure and function in the assessment of patients with aortic stenosis 
may ultimately improve risk stratification and selection for therapy. 
Prospective data are very much needed.

Limitations
Although 10 of the 12 studies were prospective in design, most studies 
did not report several other covariates known to influence left ven
tricular remodelling following TAVR, such as paravalvular leak. All stud
ies were observational cohort studies, and we did not analyse 
patient-level data. Nevertheless, the strength of our study lies in the 
pooling of multiple studies yielding a combined cohort of 1066 patients, 
representing the only meta-analysis of LA strain dynamics following 
TAVR to date.
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Figure 2 Forest plot of studies reporting changes in LAVi (mL/m2). Studies are listed in descending order of sample size.

Figure 3 Forest plot of studies reporting changes in LA reservoir strain. Studies are listed in descending order of sample size.
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Figure 4 Forest plot of studies reporting change in contractile/booster function. Studies are listed in descending order of sample size.

Figure 5 Forest plot of studies reporting changes in conduit strain. Studies are listed in descending order of sample size.
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Conclusion
The LA plays a critical role in modulating left ventricular filling and func
tion. STE can be used to quantify LA mechanical function and has de
monstrated independent prognostic power across a range of cardiac 
conditions, including aortic stenosis. Hitherto, scarcely described is the 
extent of LA reverse remodelling following TAVR. This meta-analysis 
of 12 observational studies revealed significant negative LA remodelling 
following TAVR, and an improvement in LA mechanics, quantified by 
STE. The prognostic implications of these findings require further study.
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