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Atherosclerosis, characterized by the build-up of lipid-laden plaques, is 
the main underlying cause of various cardiovascular diseases (CVDs), includ-
ing myocardial infarction, peripheral vascular disease, arterial calcification, is-
chaemic cardiomyopathy, and a significant proportion of strokes. Endothelial 
cells, lining the luminal surface of the vessels, are major regulators of vascular 
homoeostasis and thereby play a crucial role in the development of athero-
sclerosis. Activation of endothelial cells by atherosclerotic risk factors results 
in cellular dysfunction and in the expression of pro-inflammatory cytokines 
and adhesion molecules, driving leukocyte migration and promoting the ac-
cumulation of leukocytes in the intima of the artery.

Over the last two decades, numerous studies have demonstrated that 
endothelial cells can acquire mesenchymal cell-like properties in a process 
called endothelial-to-mesenchymal transition (EndMT). During this tran-
sition, endothelial cells lose expression of classical cell markers, like 
VE-Cadherin and CD31, while they gain expression of mesenchymal mar-
kers, like alpha-smooth muscle actin. Through these cellular changes, 
EndMT contributes to CVDs like atherosclerosis1,2 and to other pro-
cesses and diseases including the vascular remodelling and neointima 
formation following vein grant transplantation.3 Although the exact 
role and underlying mechanisms of EndMT in atherosclerosis and other 
CVDs are being rigorously investigated at the moment, so far there still 
remain large knowledge gaps.

The endothelium is a specialized type of epithelium. Just as endothelial 
cells can undergo EndMT, epithelial cells can also undergo epithelial- 
to-mesenchymal transition (EMT). As it happens, there is a far larger 
body of knowledge relating to EMT than EndMT, with EMT first formally 
described in the 1960s.4,5 Therefore, many lessons about EndMT can po-
tentially be learned from the EMT process. Physiologically, EMT plays an 
important role in embryogenesis and wound healing, but on a pathological 
level, it has already been well established that EMT contributes to malignant 
progression, for example by increasing metastatic potential.6 Since carcin-
omas originate in epithelial tissues, EMT is understood to play a particularly 
important role in this type of cancer. The likely mechanism(s) whereby 
EMT promotes malignancy of epithelial tumours is by the acquisition of 
hallmark features of mesenchymal cells including increased motility, loss 
of cell–cell adhesion, and detachment from the epithelial basement mem-
brane. Due to its important role in carcinoma progression, it has been pro-
posed that the inhibition of EMT may be a promising therapeutic 

oncological approach, although due to several limitations, concrete evi-
dence for this clinical potential has remained elusive so far.

In a recent publication in Nature, Cassier et al.7 in their study Netrin-1 
blockade inhibits tumour growth and EMT features in endometrial cancer 
show clear pre-clinical and clinical evidence that EMT inhibition indeed 
has great clinical potential. Focusing on endometrial adenocarcinomas, 
the authors were able to show that netrin-1 and its main receptor 
UNC5B are up-regulated in tumour tissue compared with normal endo-
metrium. Based on this, Cassier et al. developed a monoclonal antibody 
called NP137 that neutralizes netrin-1 and blocks the netrin-1–UNC5B 
interaction. Treatment of mice with NP137 significantly decreased the 
development of endometrial tumours and increased the survival rate of 
these mice, demonstrating its potency. The authors then moved to study 
NP137 in patients with advanced endometrial carcinoma. In a Phase 1 trial 
with 14 patients who received NP137 every 2 weeks, there was no dose- 
limiting toxicity and 8 out of 14 patients achieved disease control (stable 
disease). Furthermore, at least in one exemplary case, NP137 treatment 
resulted in a striking 51% reduction of liver lesions within 6 weeks 
(Figure 1).

Interestingly, the primary mechanism behind these effects of NP137 was 
found to be inhibition of EMT, characterized by a decreased expression of 
mesenchymal genes and increased expression of the epithelial marker 
EpCAM. Inhibition of EMT occurred not only in mice but also in patients 
treated with NP137. Furthermore, single-cell RNA sequencing of lung biop-
sies before and after treatment showed that NP137 significantly reduced the 
tumour cell compartment. Besides this net decrease in cancer cells, the EMT 
score was also strongly decreased, demonstrating a more epithelial pheno-
type. It has already been described that EMT is a major cause of chemother-
apy resistance.8 Since NP137 inhibits EMT, Cassier et al. also investigated 
whether treatment resulted in a more beneficial outcome by comparing car-
boplatin–paclitaxel (CarboTaxol), the standard-of-care chemotherapy for 
the type of malignancy investigated, alone or with addition of NP137. At least 
in mice, it could be clearly demonstrated that the combined NP137/ 
CarboTaxol treatment was superior to CarboTaxol alone, thus creating 
the possibility that additive NP137 (on top of other agents) may hold prom-
ise for overcoming chemotherapeutic resistance. This notion is currently 
being further investigated in the Phase 2 GYNET trial (NCT04652076) in pa-
tients with endometrial or cervical cancer.
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Although great progress has been made over the last years to under-
stand the role of EMT in tumours, so far no pharmacological interventions 
are available to specifically target EMT in the clinic. Therefore, this study is 
seminal by proving the clinical potency of NP137. Although the cancer re-
search field is leading the way in efforts to bring the targeting of EMT to 
the clinic, it is important to extrapolate such observations to other re-
search fields like CVD. For example, intense research efforts have been 
invested in the identification of compounds that could be used as 
EndMT inhibitors. Although many of these studies are pre-clinical in na-
ture, several promising approaches have already been identified.9

However, a number of hurdles remain to be overcome, including a lack 
of robust human data related to EndMT and thus translational proof, 
and the lack of a standardized definition of EndMT. Furthermore, systemic 
targeting of EndMT as a therapeutic approach, say for example as a 
potential approach to stabilize atherosclerotic plaques, would require 
very careful evaluation due to the likely need for prolonged administration 
and thus off-target effects. For example, in relation to the current 
study where EMT is targeted by blocking netrin-1, major side effects 
may occur in a CVD context as netrin-1 itself has cardioprotective 
effects after ischaemia–reperfusion injury following a myocardial infarc-
tion, which may be lost after netrin-1 blocking approaches.8 Therefore, 
an approach whereby local delivery could be achieved might be favour-
able, though still very challenging from a technical perspective.10

Nevertheless, efforts are being made, particularly in pre-clinical studies, 
to direct nanoparticles to endothelial cells or macrophages, by adding 
specific peptides to the surface of the particles enabling cell-specific 
homing. Although such approaches are still in their infancy, it could be 
speculated that such local delivery methods would also be beneficial in 
the context of targeting EndMT in atherosclerosis and potentially for 
other CVDs.

Ultimately, this study from Cassier et al. highlights a long-awaited shift in 
our outlook towards EMT—being from an interesting biological ‘side 
observation’ or disease ‘epiphenomenon’, to EMT now being central to 
disease pathogenesis and a main therapeutic target. While the CVD field 
is still seemingly years behind that of our oncological colleagues, seen op-
timistically, this study provides important rationale and motivation to sug-
gest that the targeting of EndMT to ameliorate various CVDs might also 
someday evolve into an important and unique therapeutic approach.
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