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Genetic testing in cardiovascular disease
Michael P Gray1,2 , Diane Fatkin3, Jodie Ingles4, Elizabeth N Robertson1,5, Gemma A Figtree1,2,6

Cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality globally and is responsible for 
an estimated 32% of deaths.1 An effort over many decades 

targeting modifiable risk factors has resulted in significant 
improvements in mortality and age-adjusted prevalence. 
However, the improved medical management and decreased 
mortality have also resulted in a 193% increase in overall CVD 
prevalence globally over the past 30 years. New approaches 
to prevention and early disease detection are greatly needed. 
Genetic testing has been incorporated into routine management 
of monogenic CVD, such as hypertrophic cardiomyopathy and 
primary arrhythmic syndromes. Advances in sequencing and 
computational biology now additionally provide unprecedented 
insights into the genetic contribution to common complex 
conditions, including coronary artery disease (CAD) and atrial 
fibrillation. Maximising the use of these genetic tools for the 
identification and prediction of CVD will require innovative 
prospective implementation studies and a rapid upskilling of 
our health workforce beyond the traditional clinical genetic 
pathways.

This narrative review seeks to provide an overview of the 
current evidence and recommendations for genetic testing 
in CVD, as well as evidence behind emerging platforms (eg, 
polygenic risk scoring). We searched the online databases 
PubMed and MEDLINE between September 2022 and April 2023 
for expert consensus guidelines, consensus opinions, systematic 
reviews, meta-analyses and review manuscripts in English 
language published since 1 January 2010. Search terms included 
“cardiovascular disease[MESH Major Topic]” or “cardiovascular 
diseases[MESH Major Topic]” and/or “genetic test”, “genetic 
risk”, “genetic risk score”, “polygenic risk score”, “genome-wide 
association study”, and “guidelines”. Manuscripts included in 
these documents were individually reviewed and included as 
appropriate based on authors’ experience.

Monogenic conditions

Monogenic disorders with Mendelian inheritance patterns are 
characterised by the presence of a single genetic variant with 
large effect size that is sufficient to lead to a disease phenotype 
(Box). Monogenic diseases can have dominant, recessive or x-
linked inheritance patterns, and are categorised according to 
their autosomal or mitochondrial gene location. Despite well 
characterised examples in the CVD space, spanning from severe 
derangements in lipid metabolism to myocardial conditions 
associated with arrhythmias and early sudden cardiac death, 
these make up only a small proportion of the burden of CVD. 
Some important examples are described below based on 
inclusion in expert consensus guidelines.

Lipid metabolism

Familial hypercholesterolaemia is an autosomal dominant 
condition characterised by significantly elevated concentrations 

of circulating low-density lipoprotein (LDL) cholesterol 
(LDL-C) and is the most common monogenic condition in 
humans, affecting an estimated one in 300 people.2 Nearly 
1500 pathogenic variants have been identified across the three 
main causative genes (LDLR, APOB and PCSK9) affecting 
components of plasma lipoprotein cellular uptake and these 
collectively have a population prevalence of 0.32%.3 Case–
control studies have demonstrated a nearly tenfold increased 
familial hypercholesterolaemia prevalence in people with 
CAD and more than 20-fold increased prevalence in people 
with premature CAD compared with the general population.3 
Familial hypercholesterolaemia is most frequently diagnosed 
clinically using the Dutch Lipid Clinic Network and/or Simon 
Broome tools.4,5 However, these clinical diagnostic algorithms 
have limitations, particularly when diagnosing children and 
adolescents. Identification of pathogenic variants can facilitate 
cascade testing, allowing for earlier diagnosis and aggressive 
LDL-targeting pharmacotherapy for biological family members, 
thus having a substantial impact on medical management.

Thoracic aortic disease

Heritable thoracic aortic disease is defined as aortic aneurysms 
and/or dissection with strong genetic association and no 
other discernible features. This, therefore, often results in 
catastrophic clinical presentation, as only about 5% of patients 
with thoracic aortic aneurysm and dissection are symptomatic 
before dissection.6 The lack of physical features results in 
difficulty in assessing true prevalence and heritability, with a 
predicted incidence of 2.9–4.3 cases per 100 000 person-years and 
suspected autosomal dominant inheritance pattern.7,8 Eleven 
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Summary

•	 Cardiovascular disease (CVD) is the leading cause of morbidity 
and mortality globally and is responsible for an estimated one-
third of deaths as well as significant morbidity and health care 
utilisation.

•	 Technological and bioinformatic advances have facilitated 
the discovery of pathogenic germline variants for some 
specific CVDs, including familial hypercholesterolaemia, 
cardiomyopathies and arrhythmic syndromes. Use of these 
genetic tests for earlier disease identification is increasing due, 
in part, to decreasing costs, Medicare rebates, and consumer 
comfort with genetic testing.

•	 However, CVDs that occur more commonly, including coronary 
artery disease and atrial fibrillation, do not display monogenic 
inheritance patterns. Genetically, these diseases have generally 
been associated with many genetic variants each with a small 
effect size. This complexity can be expressed mathematically as 
a polygenic risk score. Genetic testing kits that provide polygenic 
risk scoring are becoming increasingly available directly to 
private-paying consumers outside the traditional clinical setting.

•	 An improved understanding of the evidence of genetics in CVD 
will offer clinicians new opportunities for individualised risk 
prediction and preventive therapy.
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genes have been identified as definitively or strongly associated 
with heritable thoracic aortic disease, with most of them relevant 
to maintaining vascular wall integrity. The role of vascular 
smooth muscle cell dysfunction in the development of thoracic 
aneurysms has been well characterised,9 and, indeed, these 
genes can be grouped based on the role of the coded protein 
in smooth muscle cell contractile function, extracellular matrix 
adhesion, and transforming growth factor-β (TGF-β) signalling.10 
A variant in ACTA2, encoding α-2 actin with smooth muscle 
cell-specific contractile function, is the most common genetic 
variant associated with heritable thoracic aortic disease, with a 
penetrance of about 50% and identified in 12–21% of cases.11,12 
Genetic screening programs have been proposed due to their 
potential impact on surgical intervention and familial case 
identification, especially in patients with early onset, a positive 
family history of dissection, and no history of hypertension.13

In addition, causative pathogenic gene variants have been 
identified in syndromes with vascular manifestations; for 
example, vascular Ehlers–Danlos (COL3A1),14 Loeys–Dietz 
(TGFBR1/2),15,16 and Marfan (FBN1) syndromes.17,18 Genetic 
testing in these settings aids identification of the syndrome and 
can play an important role, as there are substantial differences 
in how the vasculature is affected in each syndrome. Genes 
associated with vasculopathies, including COL3A1 and 

TGFBR2, have additionally been implicated in other forms of 
arterial dissection, including spontaneous coronary artery 
dissection.19,20

Inherited cardiomyopathies

Inherited cardiomyopathies are a spectrum of cardiac diseases 
broadly classified into hypertrophic, dilated, arrhythmogenic 
and restrictive phenotypic subtypes, which are not explained 
by the presence of ischaemic, congenital, hypertensive or 
valvular disease. Although epidemiological data are scarce due 
to underdiagnosis, at least 0.6% of the population are estimated 
to be affected by this spectrum of diseases, with significant 
differences in clinical presentation depending on sex and race.21

Hypertrophic cardiomyopathy is a primary myocardial 
disorder that is characterised by asymmetric ventricular 
hypertrophy and distinctive histopathological features, 
including myofibril hypertrophy, disarray, and interstitial 
fibrosis. Hypertrophic cardiomyopathy is generally caused 
by deleterious variants in sarcomere genes, with variants 
in MYH7 and MYBPC3 identified in nearly 70% of cases.22 It 
is important to differentiate hypertrophic cardiomyopathy 
from other heritable disorders that mimic this condition, 
some of which have specific therapies, including glycogen 

Basic overview of genetic contribution to disease*

CI = confidence interval; HR = hazard ratio; LDL = low-density lipoprotein; LDL-C = low-density lipoprotein cholesterol; SNP = single-nucleotide polymorphism. * This can be simplified 
into monogenic and polygenic disorders, recognising that genetic contribution is a spectrum and many diseases display patterns from both. These patterns are additionally affected by 
comorbid conditions, lifestyle factors and environmental exposures. Source: Image created with Biore​nder.​com. The data included in the atrial fibrillation example were from Marston 
et al.50 ◆
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storage disorders, Fabry disease and cardiac amyloidosis.23 
Despite decades of research into the genetic underpinnings of 
hypertrophic cardiomyopathy, a subset of patients will have 
negative results on genetic testing. Although this may reflect 
undiscovered monogenic forms of disease, it has been proposed 
that ventricular hypertrophy, in some cases, might result from 
combinations of common variants.

Dilated cardiomyopathy is a disorder with prevalence estimates 
of up to one in 250 persons and has numerous causes, which can 
be genetic or acquired.24,25 These distinctions are increasingly 
blurred, with evidence of rare genetic variants in patients with 
environmental causes of dilated cardiomyopathy and vice 
versa. A genetic basis for disease is often not apparent in the 
index case, and a positive family history may only emerge after 
successive relatives are diagnosed.26 Although more than 250 
disease genes have been reported, recent gene curation efforts 
have shown that only ten to 20 genes currently have robust 
evidence for dilated cardiomyopathy causation (Supporting 
Information, table 1).26-28 Truncating variants in the gene TTN 
(TTNtv), which encodes the sarcomeric protein titin, are the 
most common genetic cause of dilated cardiomyopathy, present 
in up to 20% of cases.29 Interpreting the clinical significance of 
TTNtv may be challenging, as these variants are also present in 
up to 3% of the general population.30 It has been proposed that 
a “second hit” might modify severity in TTNtv carriers, which 
is currently an area of active research.31,32

Arrhythmogenic cardiomyopathy is an umbrella term that 
refers to a group of highly arrhythmic cardiomyopathies that 
variably affect the right and/or left ventricles.33 This includes 
arrhythmogenic right ventricular cardiomyopathy that mainly 
affects the right ventricle, but frequently has left ventricular 
involvement, and arrhythmic forms of dilated cardiomyopathy, 
such as those associated with LMNA, FLNC, RBM20 and SCN5A 
variants.34 Arrhythmogenic right ventricular cardiomyopathy 
exhibits autosomal dominant inheritance in most cases, with 
pathogenic variants identified in desmosomal genes.35 There 
is often incomplete penetrance with variable expressivity. 
Truncating variants in PKP2 are most frequently implicated and 
typically give rise to the right-sided phenotype.36 In addition, 
pathogenic variants have been identified in non-desmosome 
encoding genes, albeit all with less frequency.

Inherited arrhythmic disorders

Inherited arrhythmic syndromes include monogenic conditions 
such as long QT syndrome (LQTS), catecholaminergic 
polymorphic ventricular tachycardia, Brugada syndrome, and 
familial forms of atrial fibrillation. LQTS is one of the most 
common inherited cardiac conduction diseases, which can lead 
to sudden cardiac death and is believed to occur in about 50 
infants per 100 000.37 Nearly 80% of patients with a prolonged 
corrected QT interval, in the absence of structural heart disease 
and exposure to QT prolonging drugs, have an identifiable 
LQTS-associated genetic variant,38 which mostly demonstrates 
an autosomal dominant inheritance pattern. Three genes have 
been definitively associated with LQTS. LQT1 and LQT2 have 
been associated with potassium channel protein-encoding 
genes KCNQ1 and KCNH2 respectively.39,40 Genetic association 
with LQT3 is more complex, with gain-of-function variants in 
SCN5A, which encode a sodium channel subunit, associated 
with disease and identified in about 10% of LQTS cases.41 
Mutations in SCN5A have additionally been associated with 
Brugada syndrome, cardiac conduction abnormalities and 
dilated cardiomyopathy.

Complex genetics and cardiovascular disease

Advances in sequencing, computational power, analytical 
approaches, and global collaborations have been central to 
unlocking the contributions of genetic variation to commonly 
occurring complex CVD, such as CAD and atrial fibrillation.

Genome-wide association studies (GWAS) using large case-
control studies have identified common variants associated with 
disease without surveillance bias to specific biological pathways 
or genes of interest. Due to the substantial overlap between cases 
and controls, the prognostic significance of a single-nucleotide 
polymorphism (SNP) in an individual patient is limited. 
Polygenic risk scores (PRS) have been derived to increase the 
clinical utility of these data by assessing the collective effects of 
SNP profiles in individual subjects. Emerging research in certain 
complex CVD suggests that patients with very high scores have 
an increased risk of disease several-fold higher than that of the 
population average, and indeed a risk level equivalent to risk 
conferred by some monogenic disorders.

CAD heritability is classically estimated to be about 40–60%,42,43 
a proportion not fully explained by causal rare variants in 
genes associated with monogenic lipid disorders. More than 
200 significant GWAS loci have been identified in European 
populations and incorporated into multiple CAD-PRS 
algorithms. Only about half of included SNPs have previously 
been associated with traditional CAD risk factors, including 
lipid metabolism and blood pressure. In a pivotal study in 2016 
that included data from more than 55 000 participants from four 
separate cohorts, the relative risk of incident CAD events was 
increased by 91% in participants with a top quintile CAD-PRS 
compared with those in the bottom quintile.44 Importantly, the 
detrimental effect of a high CAD-PRS was able to be offset by 
adopting a healthier lifestyle, with an observed 46% relative risk 
reduction of CAD events. In another study using CAD-PRS of 1.7 
million genetic variants, the relative risk of CAD was 4.17-fold 
higher in participants with top versus bottom quintile scores, a 
result independent of traditional risk factors.45

Atrial fibrillation is the most common cardiac arrhythmia in 
Australia and affects about one in 18 Australians aged over 55 
years.46 It confers an increased risk of stroke and heart failure 
and constitutes a growing health care and economic burden. 
Although atrial fibrillation can occur as a familial condition, it 
is more commonly a complex trait in which age, sex, genetics, 
comorbid conditions, and lifestyle factors are key components. 
Nearly 200 chromosomal loci that influence atrial fibrillation 
susceptibility have been identified by GWAS, and several atrial 
fibrillation-PRS have been devised. Several prospective cohort 
studies suggest that atrial fibrillation-PRS are predictive of 
incident atrial fibrillation (Box  1) and that addition of atrial 
fibrillation-PRS improves predictive ability into models that 
include age and sex,47 as well as into a model including clinical 
data such as anthropometrics, blood pressure, smoking status, 
blood pressure-lowering medication, diabetes, and history of 
myocardial infarction and heart failure.48-51 Atrial fibrillation-
PRS may also be useful for predicting the risk of atrial fibrillation 
recurrence after ablation procedures.52

Guidelines and screening recommendations

An exponential expansion of technical and analytical capacity 
has contributed to an increase in genomic research and 
associations with CVD. However, there is a distinct lack of trial 
data measuring the impact of genetic test implementation.
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Broadly, current guideline recommendations for genetic testing 
in the clinical setting support its use to confirm causation of 
a clinical diagnosis for a CVD with established, monogenic 
inheritance patterns, and to guide cascade genetic and clinical 
testing in at-risk family members. Cascade genetic testing refers 
to a process wherein targeted genetic testing is offered to at-risk 
first degree biological relatives of an individual with a germline 
pathogenic variant; this is typically an iterative process, with 
further testing of first degree relatives of newly identified 
probands to reduce incidence, morbidity, health care utilisation, 
and mortality from certain diseases or conditions.53,54 Individuals 
should be considered for genetic testing if they have a confirmed 
or suspected heritable CVD, who are at high a priori risk for a 
pathogenic variant, and typically following collection of a three-
generation family history and pre-test genetic counselling.55 A 
multidisciplinary team with competencies in CVD management 
and clinical genomics is ideally placed to offer cardiac genetic 
testing in this setting, considering emerging evidence, 
recommendations from both medical and clinical genomic 
societies, and legal or regulatory implications for the patient. 
Pragmatically, the presenting patient is typically the individual 
referred for genetic testing; however, the multidisciplinary team 
should consider proband genetic testing of another affected 
relative with a more severe phenotype, if available, to increase 
the chance of identifying a pathogenic variant.

The multidisciplinary team should consider the clinical 
applicability of genes selected for screening, resisting the 
inclination to use larger, broader genetic panels due to the 
more limited clinical application, higher number of variants of 
unknown significance, and opportunity for incidental secondary 
genetic findings. The Clinical Genome Resource (ClinGen, 
https://​clini​calge​nome.​org) provides an up-to-date resource for 
evaluating the contribution of a gene and variant to a disease. 
Variant classification is a process of considering whether there 
is sufficient evidence to identify a variant as the cause of disease 
(ie, pathogenic, likely pathogenic [P/LP]) or not (ie, benign, likely 
benign). Where there is insufficient or conflicting evidence, an 
uncertain variant of unknown significance classification will 
be made. Regular review of variant classifications is necessary, 
with flow-on impact to at-risk relatives who may have used this 
information in cascade genetic testing.

Pre- and post-test genetic counselling by a trained genetic 
counsellor is important in ensuring individuals have made a 
sufficiently informed decision to proceed with testing and have 
considered potential implications for themselves and their family.56 
A summary letter directed towards the relatives, delineating the 
genetic finding, may be provided to support family communication 
and the opportunity for at-risk relatives to consider for cascade 
clinical and/or genomic testing as appropriate for the condition.

An example of guideline recommendations for genetic testing, 
and genes currently receiving a “definitive” or “strong” clinical 
validity classification by ClinGen, is outlined below and 
presented in the Supporting Information, table 1.

Lipid metabolism

Genetic testing should be considered in patients with total 
cholesterol of 6.5 mmol/L or greater in the absence of secondary 
causes, or an LDL-C of 5–6.5 mmol/L in the context of past medical 
or family history of premature CAD (Medicare Benefits Schedule 
[MBS] item 73352).57 Cascade screening of first degree biological 
family members — involving LDL-C measurement, targeted 
variant testing, or both — is also advised (MBS item 73353).

Thoracic aortic disease

Genetic testing for heritable thoracic aortic disease is recommended 
in individuals with disease diagnosed under 60 years of age or 
if a positive family history has been identified.58 It should be 
noted that only 20–30% of causative genes for heritable thoracic 
aortic disease have been identified. Genetic testing is additionally 
recommended in patients with suspected Marfan, vascular 
Ehlers–Danlos, or Loeys–Dietz syndromes to support accurate 
genetic counselling and screening of at-risk family members.58 
However, no tests are currently Medicare-rebated and should be 
completed in the context of specialist clinics.

Inherited cardiomyopathies

Genetic testing is recommended in all patients meeting clinical 
criteria for hypertrophic cardiomyopathy, dilated cardiomyopathy 
and arrhythmogenic cardiomyopathy, especially when used to 
enable cascade screening.59-61 Where a patient does not meet 
the clinical diagnostic criteria, genetic testing is not routinely 
recommended; however, there may be value for those in whom a 
monogenic cause is strongly suspected and the testing is performed 
in a centre with high level expertise, given the high prevalence of 
variants of unknown significance.56,62 Cascade genetic testing 
for these conditions in first degree biological family members is 
recommended if a disease-causing variant is identified.

Specialists or consultant physicians can request Medicare-
rebated genetic testing for hypertrophic cardiomyopathy, dilated 
cardiomyopathy or arrhythmogenic cardiomyopathy in patients 
with a clinical presentation, family history, or laboratory findings 
consistent with the inherited cardiomyopathy (MBS item 73392). 
Targeted genetic screening of first degree biological relatives 
may be requested by specialists or consultant physicians if a P/
LP variant is identified (MBS item 73393). Genetic testing may 
additionally be requested for reproductive partners of the proband 
to determine reproductive risk (MBS item 73394).

Inherited arrhythmic disorders

Genetic testing is recommended in individuals with known 
or suspected LQTS based on clinical presentation, family 
history, and electrocardiogram; genetic testing is additionally 
recommended in asymptomatic adults with a QTc greater than 
500 ms in adults and greater than 480 ms pre-puberty, in the 
absence of conditions expected to result in QT prolongation.61 
Importantly, genetic testing in LQTS is unique in that results 
can allow for independent risk prognostication and inform 
therapeutic decision making.63 Cascade, variant-specific genetic 
screening of first degree relatives is recommended if a confident 
genetic variant is identified in the proband.61

Medicare-rebated genetic testing for inherited cardiac 
arrhythmic syndromes or channelopathies may be ordered by 
specialists or consultant physicians for patients whose clinical 
presentation or family history indicates a greater than 10% risk 
of a pathogenic variant (MBS item 73416). If a P/LP variant is 
identified, specialists or consultant physicians may order 
variant-specific testing in first degree biological relatives (MBS 
item 73417) or reproductive partners (MBS item 73418).

CVD without Mendelian inheritance patterns

Genetic testing in polygenic forms of CVD, including common 
CVD such as CAD and atrial fibrillation, is still evolving and not 
currently recommended in a clinical setting.64 Despite strong 
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association of PRS with the relevant disease state, prospective 
studies collecting evidence on use of these tools are still 
required for clinical translation. Currently, the role of PRS in 
patient management remains an active area of research. Close 
observation of PRS implementation for other non-cardiovascular 
conditions, including cancer, will be beneficial.

Medicolegal, insurance and workforce implications

There are several insurance, medicolegal and workforce 
implications remaining in law and practice which warrant 
consideration. Globally, consumers report genetic discrimination 
for insurance coverage as a leading cause of concern when 
considering testing.65 In Australia, under the Disability 
Discrimination Act 1992 (Cth),66 genetic information is legally 
permitted to be incorporated into non-health insurance policy 
underwriting, including disability, income protection, life and 
mortgage insurance.67 The standards and policy framework are 
self-regulated by the insurance industry through the Financial 
Services Council, a members’ association representing more than 
100 financial services firms. Since 2019, following a Parliamentary 
Joint Committee recommendation that genetic discrimination 
be banned in the life insurance underwriting process,68 the 
Financial Services Council issued a moratorium on the request 
for, or use of, genetic information during policy underwriting.69 
However, the legal position and ability of insurance providers to 
use this information during future policy underwriting remains 
unchanged. Australians have been fortunate for the recent listing 
of several genetic tests for monogenic cardiac diseases on the 
MBS, making these accessible at no cost to the patient; clinicians 
should refer to the MBS Online tool (www.​mbson​line.​gov.​au) for 
an up-to-date list of rebated genetic tests and eligibility criteria. 
The need for specialised services and genetic counselling to 
support broad access will greatly increase as more specialists 
and families wish to pursue this testing.70

Future directions

Incorporation of genomic testing into CVD assessment offers 
a unique opportunity to further personalise diagnosis and 
treatment for the individual patient, and, in some cases, target 
cascade clinical and genomic screening in family members. 
However, significant gaps remain which impede incorporation 
of these powerful tools into more routine clinical practice.

Diversity and inclusion in genomic research increase both 
the groups of individuals benefitting from these novel tools 
and our scientific understanding of the genetic basis for CVD. 
Efforts at a regulatory level have sought to increase the diversity 
and inclusivity of research participants in genetic research. 
However, validation studies in historically under-represented 
ancestry groups frequently demonstrate attenuated or non-
significant results,71,72 and substantial gaps remain in patients 
from poorly represented ancestry groups, perpetuating health 
disparities. Numerous studies have shown individuals from 
diverse ancestry groups have a lower diagnostic yield from 

genetic testing, due to the higher rate of variants of unknown 
significance compared with individuals of European ancestry.73

Furthermore, prospective studies and implementation research 
are necessary to measure the efficacy, health economic, and 
psychosocial impacts of incorporating genetic testing for CVD 
diagnosis and management. Networks of academic researchers, 
primary care and specialty clinicians, clinical geneticists, 
payers, and health policy experts need to be organised and 
supported, providing a platform for efficient, prospective clinical 
implementation studies of emerging tools. One such network, the 
Partnership for Precision Prevention in CAD, has been formed in 
Australia, supported by a National Health and Medical Research 
Council Partnership Grant (GNT2005790). This network has 
developed a primary care-based clinical network and launched 
the first prospective study testing implementation of a PRS-
triaged coronary calcium scan for the diagnosis of subclinical 
CAD in individuals at low to moderate five-year CVD risk (Trial 
No. ACTRN12622000436774).

Conclusion

Substantial advances have been made in the past three decades 
associating CVD to markers of genetic risk. In some conditions, 
implementation of genetic testing has improved risk prediction 
in individual patients, guided treatment decisions, and facilitated 
cascade screening in at-risk biological family members, leading 
to earlier diagnoses and intervention. However, further 
implementation studies and clinical trials are needed to develop 
evidence for effective incorporation into the medical practice.
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