Machine learning prediction of progressive subclinical myocardial dysfunction in moderate aortic stenosis

Namasivayam, Mayooran and Meredith, Thomas and Muller, David W. M. and Roy, David A. and Roy, Andrew K. and Kovacic, Jason C. and Hayward, Christopher S. and Feneley, Michael P. (2023) Machine learning prediction of progressive subclinical myocardial dysfunction in moderate aortic stenosis. Frontiers in Cardiovascular Medicine, 10. ISSN 2297-055X

Available under License Creative Commons Attribution No Derivatives.

Download (4MB) | Preview
Link to published document:


BACKGROUND: Moderate severity aortic stenosis (AS) is poorly understood, is associated with subclinical myocardial dysfunction, and can lead to adverse outcome rates that are comparable to severe AS. Factors associated with progressive myocardial dysfunction in moderate AS are not well described. Artificial neural networks (ANNs) can identify patterns, inform clinical risk, and identify features of importance in clinical datasets. METHODS: We conducted ANN analyses on longitudinal echocardiographic data collected from 66 individuals with moderate AS who underwent serial echocardiography at our institution. Image phenotyping involved left ventricular global longitudinal strain (GLS) and valve stenosis severity (including energetics) analysis. ANNs were constructed using two multilayer perceptron models. The first model was developed to predict change in GLS from baseline echocardiography alone and the second to predict change in GLS using data from baseline and serial echocardiography. ANNs used a single hidden layer architecture and a 70%:30% training/testing split. RESULTS: Over a median follow-up interval of 1.3 years, change in GLS (</= or >median change) could be predicted with accuracy rates of 95% in training and 93% in testing using ANN with inputs from baseline echocardiogram data alone (AUC: 0.997). The four most important predictive baseline features (reported as normalized % importance relative to most important feature) were peak gradient (100%), energy loss (93%), GLS (80%), and DI < 0.25 (50%). When a further model was run including inputs from both baseline and serial echocardiography (AUC 0.844), the top four features of importance were change in dimensionless index between index and follow-up studies (100%), baseline peak gradient (79%), baseline energy loss (72%), and baseline GLS (63%). CONCLUSIONS: Artificial neural networks can predict progressive subclinical myocardial dysfunction with high accuracy in moderate AS and identify features of importance. Key features associated with classifying progression in subclinical myocardial dysfunction included peak gradient, dimensionless index, GLS, and hydraulic load (energy loss), suggesting that these features should be closely evaluated and monitored in AS.

Item Type: Article
Subjects: R Medicine > R Medicine (General)
Depositing User: Repository Administrator
Date Deposited: 10 Jul 2023 04:08
Last Modified: 10 Jul 2023 05:03

Actions (login required)

View Item View Item