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PERSPECTIVE

The force-from-lipid principle and its origin, a ‘what is true for E. coli is true for
the elephant’ refrain

Boris Martinaca,b and Ching Kungc

aMolecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia; bSchool of Clinical Medicine,
UNSW Medicine & Health, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales, Sydney,
Australia; cLaboratory of Molecular Biology and the Department of Genetics, University of Wisconsin–Madison, Madison, WI, USA

ABSTRACT
The force-from-lipid (FFL) principle states that it is the lateral stretch force from the lipid membrane
that ultimately opens mechanosensitive (MS) channels, not the external tether nor the internal cytoskel-
eton. Piezo channels for certain touch or proprioception and the hair-cell channels for hearing or bal-
ance apparently obey this principle, which is based on the idea that the lipid bilayer is an amphipathic
compartment with a distinct internal force-distribution profile. Physical stretch or insertion of chemical
impurities alters this profile, driving channel shape change to conform to the new environment. Thus,
FFL governs all dynamic proteins embedded in membrane, including Kv’s and TRPs. This article retraces
the humble origin of the FFL concept. Paramecium research first created the mind set and the resour-
ces to electrically explore other microbial membranes. Patch clamp revealed MS-channel activities from
yeast and E. coli spheroplasts. Despite formidable obstacles against interdisciplinary research, the E. coli
MS-channel protein, MscL, was purified through fractionation by following its activity, much like
enzyme purification. Reconstituted into a simple lipid bilayer, pure MscL retains mechanosensitivity,
thus firmly establishing the FFL principle in 1994. The relatively simple MscL and its functional cousin
MscS soon became ideal models for detailed analyses. Like the DNA-RNA-protein ‘central dogma’ or
ATP synthesis, FFL is a fundamental principle, which appeared early in evolution, retained in all cellular
life forms, and is expected to contribute to future molecular research on sensations, homeostasis, and
embryonic development.
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The Nobel Prize for Physiology or Medicine 2021 was
awarded for the discovery of the heat-sensing TrpV1 and for
that of the force-sensing Piezo channels (Ernfors, El Manira
& Svenningsson, 2021). While there is currently no consen-
sus on the mechanism of temperature sensing, that of force
sensing is clear: Piezo1 in membrane blebs from expressing
HEK cells devoid of cytoskeleton remains sensitive to ten-
sion under patch clamp (Cox et al., 2016) and purified
Piezo1 in droplet lipid bilayers remains sensitive to tension
(Syeda et al., 2016) leaving no doubt that Piezos receive their
gating force from the lipid bilayer (Figure 1). These experi-
ments echo those on the E. coli channel MscL, performed
over 20 years before (Sukharev, Blount, Martinac, Blattner,
& Kung, 1994) (Figure 2) that established the principle of
force from lipids (FFL). Below is the singular story on the
birth of FFL and tortuous discovery of MscL (mechanosensi-
tive channel of large conductance).

The Zeitgeist of the Late 1960’s

The 1940–60 marks an inflection point of biology, changing
it to a molecular science. The revolution has been chronicled

repeatedly, most thoroughly in the aptly titled The Eighth
Day of Creation (Judson, 1979). Briefly, a group of physicists
led by Max Delbruck considered that biology was difficult

Figure 1. Diagram showing mechanical force is transmitted to piezo channels
by stretching the lipid bilayer. (with permission from nobelforum@nobelprize-
medicine.org, (Ernfors et al., 2021).
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because it tends to study complex phenomena in complex
plants and animals. They chose to focus on the key question
of the origin of biological traits using simpler organisms: the
bacterium E. coli and its enemies, the bacteriophages. At
that time, it was known that traits (phenotypes) are deter-
mined by genotypes, and ‘genes’ are particulate (from
Mendel) and are aligned along chromosome (from the
Morgan school), but the molecular basis of inheritance and
the structure of DNA were unknown prior to 1953. History
vindicated the reductionistic approach of the ‘Phage Group’
with the establishment of DNA-RNA-protein informational
flow (the ‘Central Dogma’). The second author (C. Kung),
in graduate school, experienced the excitement of the final
resolution of the genetic code in 1966 and can still recall
that excitement today. That the Central Dogma covers all
organisms vindicated the aphorism ‘What is true for E. coli
is true for the elephant.’, which celebrates the success of
reductionism.

Buoyed by the success in solving one of the deepest mys-
teries of life, that of heredity (genetic), the key Phage-Group
players then set their aim at another, ‘the mind’ (neurobiol-
ogy). For this pursuit, model organisms were needed, and
there were many to choose from. Near the end of the 1960s,
there was then the ‘model organism diaspora’ with Delbruck
choosing to study Phycomyces; Benzer choosing Drosophila;
Brenner C. elegans; Stent leeches; and Streisinger
the zebrafish.

Paramecium

By late 1960s, Hodgkin and Huxley’s voltage-clamp experi-
ments were already almost 20 years old. The H & H theory
fully explained the feedback between the voltage-sensitive Naþ

and Kþ currents underlying action potential. This aspect of
neurobiology roughly parallels the status of genetics early on,
with known behavior of genes and chromosomes but no DNA.
Behind all the sophisticated biophysical analyses of action cur-
rents, there were no ion-channel proteins.

To find the relevant proteins or RNAs of a biological
machine, biologists often use an approach referred to as

‘genetic dissection’. (Note 1). Here, this strategy involves find-
ing mutations that block or change the action potential, and
this is where Paramecium came in. Though not one of the great
‘model organisms’, it clearly comported with the zeitgeist of the
late 1960s. Kung did his graduate work on some paramecium
biochemistry but became interested in its behavior. Even as a
single-celled animal, Paramecium generates a Caþþ/Kþ based
action potential when stimulated. The entered Caþþ causes its
cilia to reverse their beat direction and the cell to back away
from trouble (Naitoh & Eckert, 1969). Because of its large size,
this ‘avoiding reaction’ was observed early on and its ionic basis
was later examined with microelectrodes. In his first postdoc,
Kung isolated mutants that ‘misbehave’ and, in his second, he
examined them with intracellular electrodes. They include the
‘pawn’ mutants that cannot swim backward because the muta-
tions erase the Caþþ current as well as the ‘paranoiac’ mutants
that swim backward for long durations because of the loss of
the repolarizing Kþ current (Kung, 1971). The Paramecium
mutations established early the connections between genes and
ion currents, linking genetics with electrophysiology. In the
dearth of such linkages, these mutants became notable, featured
repeatedly in Science and Nature. The novelty of these mutants
also allowed a sizable group of Paramecium enthusiasts to
gather together. The first author, Boris Martinac, joined the
Kung lab in Madison, Wisconsin, during this time, in 1983.
After finding the relevant mutations, genetic dissection requires
tracing of the mutations to the corresponding genes and pro-
teins. Here, Paramecium genetics faltered (Note 2), but the
approach was successful using Drosophila, with the cloning of
Shaker, Eag, etc.

Figure 2. Purified MscL protein is mechanosensitive in lipid bilayer. a. Autoradiogram of an SDS-PAGE gel containing cell-free lysate expressing MscL (left lane) or
control (right) vector. b, Patch-clamp record of MscL activities from liposomes fused with the lysate. (Sukharev et al., 1994)

Note 1. This is exemplified by the dissection of the biological clock: By finding
mutations that specifically wrecked the clock, one can then trace the mutations
to the gene products, which would be the equivalents of the springs, the gears,
the cogs of a mechanical clock. As is well known, this work eventually solved the
puzzle of biological clock and led to the 2017 Nobel prize to three investigators,
including Jeff Hall, the founding editor of this very journal.

Note 2. The chief obstacle in cloning a gene based on its mutant phenotype in
ciliates is not their altered genetic code (Preer, Jr. et al., 1985) but the polyploidy
of the somatic macronuclei, which makes complementation with transgenes very
difficult. On the other hand, it is precisely the large number of chromosomes
(therefore many ends) that made it possible to isolate telomeres and telomerase
in Tetrahymena, a Paramecium cousin, which won the 2009 Nobel prize.
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The Paramecium research made other contributions (Note
3), but most important, it framed the mindset for microbial
electrophysiology. More practically, it made the Kung lab ‘rich’.
The story of MscL below, from its encounter to the erection of
the FFL principle, was funded largely by NIH grants and
grants from other sources meant for Paramecium research.
This research is briefly reviewed here to provide the intellectual
backdrop for the electrophysiology of yeast and E. coli and
finally the establishment of the Force-from-Lipid principle.’

‘Microbial Electrophysiology’

What microbial electrophysiology?? There was no such thing
50 years ago and there is still little of it today. The
Paramecium work might be a bit of historical curiosity, but
microbiology and electrophysiology remain two separate dis-
ciplines with different subject matter, using different meth-
ods, asking different questions. There was also no common
language: One may think that ‘Bordetella’ is an opera and
the other one may think that ‘afterhyperpolarization’ is a
typo. This segregation is regrettable because ion channels are
widely used beyond the nervous system. Today, one finds
recognizable ion-channel genes in the genomes of all plants,
animals, and microbes but we know little the functions these
channels serve. E.g. we learn how ions are filtered from the
crystal structure of KcsA (Doyle et al., 1998) but don’t know
(or care to know) what it does for its owner, the Gram-posi-
tive Streptomyces lividans.

The segregation of micro- and neurobiology has deep
subconscious roots. Children and adults alike may admire
the big elephants, whales, and dinosaurs, but, in fact, most
organisms on earth are microbes, composed of widely differ-
ent algae, fungi, protozoa, bacteria, and archaea. Homo sapi-
ens is not endowed by evolution with microscopic vision
and tend to ignore microbes. If it weren’t for diseases, we
would not care about microbes at all, and even with dis-
eases, the public cannot tell a bacterium from a virus.
Further, even professional biologists historically study com-
plex plants and animals, leading to the original complaint by
Delbruck et al. and their later ‘diaspora’ back to complex
worm, fly, and fish. The other intuition that segregates
micro- and neurobiology is, of course, our self-interest and
hubris. To understand the mind is to understand the brain
and electrophysiology is the study of the nervous system,
using complex animals as proxies for human. Yeasts and
bacteria are no neurons and were categorically ruled out as
subject matter by most electrophysiologists.

Patch Clamp

Beside the intuitive mental barrier, exploring microbes elec-
trically had an added practical hindrance. The three

microbes of concern here differ in size. In length, a parame-
cium is about 100 microns, a yeast cell about 10, and a bac-
terium is only 1 micron. The conventional glass
microelectrodes have a tip diameter of a micron or two.
After inserting into a large cell, such as a paramecium, it
can measure the sum total of all currents through the entire
cell membrane, called the macroscopic current. Yeasts or
bacteria are obviously too small for such conven-
tional recording.

Patch clamp was invented in the late 70’s and early 80’s
and soon became popular among electrophysiologists
(Hamill et al., 1981). Instead of measuring macroscopic cur-
rents, the patch-clamp electrode can measure the currents
through individual ion-channel molecules in a small mem-
brane patch, a few microns squared, attached to the inside
of a glass pipet electrode near the tip.

The action potential of Paramecium was discovered in
Japan, where it had a tradition of its study. From that trad-
ition, Yoshiro Saimi of Tokyo University joined the Kung
lab in 1979. In 1983, Yoshiro put together the first patch-
clamp setup in the lab to take patches from ciliary blisters to
scrutinize individual single-channel currents.

Electrophysiology of yeast or E. coli was a flight of fantasy
initially. A priori, there was no reason to think that they
have channels. This is like sailing into new continents not
knowing if there might be native people or not. This is
clearly not the kind of research one can propose to any
granting agency. There is curiosity but no hypothesis, no
preliminary results and no promise of finding anything. Any
study section would just laugh out loud at such an obvious
‘fishing expedition’. (Note 4)

Yeast Channels: Pulled, Pushed, or Stretched?

Zymolyase strips the cell wall and converts yeast cells into
spheroplasts, exposing their plasma membrane for patch-
clamp examination. Yoshiro and Boris started generating
yeast spheroplasts in 1985 and were soon joined by Mike
Gustin to first describe a 20-pS Kþ conductance, showing
that even a walled microbe has channel activities similar to
those found in nerves (Gustin, Martinac, Saimi, Culbertson,
& Kung, 1986). Soon, joined by Xin-Liang Zhou, they also
discovered a 36-pS cation-nonspecific mechanosensitive
(MS) channel activity in yeast spheroplast membrane and
suggested its possible role in osmoregulation (Gustin, Zhou,
Martinac, & Kung, 1988).

To this day, there is a confusion that haunts the MS-
channel field. For many students or even neurobiologists,

Note 3. Besides setting the stage for the electric study of yeast and E. coli,
the Paramecium work showed that calmodulin can be a detachable subunit to
regulate channels (Saimi and Ling, 1990) with a functional bipartition: its N-
terminal lobe and its C lobe have different specific effects (Saimi and Kung,
2002). These findings continue to have great implications in Ca-calmodulin
regulation of numerous ion channels and enzymes.

Note 4. To this day, Kung cannot articulate why he encouraged the lab to put
the patch-clamp electrodes on yeast and E. coli, though encourage he did.
These microbes, usually grown on petri dishes, were never considered subjects
of electric investigation before. Implicit association tests show that humans
have subconscious aversion to anything truly novel. Nonetheless, our merging
microbiology and electrophysiology was probably inevitable. Novelty comes
from “associative memory that works exceptionally well” according to Daniel
Kahneman in Thinking Fast and Slow, and “Chance favors the one with a
prepared mind.” according to Louis Pasteur. Indeed, there must have been
increased chance of “association” in having patch clamps already “prepared”
and having yeast and bacterial laboratories in physical proximity on the
Madison campus.

46 B. MARTINAC & C. KUNG



MS-channel is represented by that in the hair cell of the
inner ear. In the popular diagram, the channel has a lid, like
that on a toilet seat, that is pulled open by an extracellular
gating spring with a give. Even though the gating spring cor-
responds to the visible tip link, this popular diagram was
explicitly stated only as a representation of the physics and
not the molecular reality. (See below for recent information
on that reality.)

Whether MS channels are opened by pull or push (forces
perpendicular to the membrane) or by stretch (forces along
the membrane plane) is thus a crucial question. This ques-
tion was answered with the yeast MS channel. Mike exam-
ined the activation of MS currents in whole spheroplasts of
different sizes and found the activation pressure to be
inversely proportional to the diameter of the spheroplasts
(Gustin, Zhou, Martinac & Kung, 1988). Converting applied
pressure to tension by Laplace’s law, the current-activation
curves from different spheroplasts, big or small, coincided.
Thus, there is no doubt here that the MS channel is gated
by membrane stretch and not directly by pressure.

Signal

The lower limit of the patch-clamp pipet opening is about 1
micron and cannot be used directly on individual E. coli
cells. Fortuitously, the nearby laboratory of Julius Adler of
chemotaxis fame was generating giant E. coli to further their
research in 1986. Cephalexin blocks cell division and thus
makes long ‘snakes’, which can then be treated with lyso-
zyme, converting them to ‘giant spheroplasts’ some 6
microns in diameter. Boris examined these spheroplasts with
the patch clamp. After some experimentation, he was able to
form gigaOhm seals on these spheroplasts and encountered
clear unitary currents (Martinac, Buechner, Delcour, Adler,
& Kung, 1986) in both on-cell or excised-patch mode. The
signal was very large, and very consistent, appearing in
nearly every patch. Both authors were greatly excited by this
astonishing new find from a prokaryotic membrane, as if we
had encountered the first native in a new world. Joined by
Matthew Buechner and Anne Delcour of the Adler lab, they
described that small pipet suctions (tens of mm Hg) cause
channel opening, which can last more than a second. The
unit conductance is very large, about 1 nS, and has little ion
selectivity (Martinac, Buechner, Delcour, Adler, & Kung,
1987). None of these characteristics conform to those of ion
channels commonly studied in nerves, which have conduc-
tances of only 10 to 100 pS, open briefly, and have keen ion
selectivity.

Before the yeast and E. coli MS-channel discoveries,
much of the early research on mechanosensitive channel
currents was carried out with animal cells and the notion
that MS channels are pulled open by the cytoskeleton tended
to prevail (Sachs, 1997). Because E. coli cells are largely
shaped by the peptidoglycan and not by cytoskeletons, Boris
therefore suspected that these MS channels are pulled by the
lipid membrane not by cytoskeleton. Amphipaths such as
chlorpromazine or trinitrophenol can wedge into either the
outer or the inner leaflet of the lipid bilayer, changing its

geometry and internal force distribution (Sheetz and Singer,
1974). These compounds indeed slowly activate the E. coli
MS channel as they infiltrate into the patch membrane and
the activity subsides slowly as the amphipaths are washed
out (Martinac, Adler, & Kung, 1990). This was the first evi-
dence indicating that membrane lipid is the medium that
transmits the gating force.

Spheroplasts are live cells and can grow normally after
the removal from cephalexin and lysozyme. Patch-clamping
E. coli spheroplasts is therefore an exercise in vivo. There
were methods to study ion-channel activities in artificial
lipid bilayer (the ‘black lipid membrane’) even before the
invention of the patch clamp. Modifying existing methods,
Ann and Boris generated E. coli liposomes by mixing mem-
brane fractions with exogenous phospholipids (azolectin).
They then induced blisters from them and sampled patches
from these blisters. There, they encountered at least three
types of channel activities, including that of the MS channels
(Delcour, Martinac, Adler, & Kung, 1989). Such reconstitu-
tions were also successful in the laboratory of Alexandre
Ghazi independently (Berrier, Coulombe, Houssin, & Ghazi,
1989). The fact that these channel activities survive these
treatments in vitro is key to the eventual biochemical identi-
fication of the material behind the activity.

‘Noise’

Guharay and Sachs (1984) first reported a 70-pS MS current in
cultured chick muscle cell. Owen Hamill and coworkers also
reported a 16-pS cationic MS channel current in Xenopus oocytes
(Hamill & McBride Jr., 1992; Lane, McBride, & Hamill, 1991;
Reifarth, Clauss & Weber 1999). To our knowledge, there has
not been attempts to find the genes or proteins that correspond
to these currents. Molecular studies tended to address mostly
voltage-sensitive or neurotransmitter-gated channels. The reports
on bacterial MS currents, nS in size and ion nonspecific, though
first greeted with interest (Kullberg, 1987) were eventually
exposed to a lot of skepticism. Bacteriologists might know about
transporters but never thought of ion channels. They never saw a
patch-clamp setup and terms like megaOhm and gigaOhm,
picoSiemens and nanoSiemens are worse than unfamiliar.
Feeling totally alienated, the attitude of some was essentially that
of disbelief. The dismissal was basically that ‘to a man with a
hammer everything is a nail’. More damaging is the skepticism
from electrophysiologists. Patch clamp is a delicate operation
and is often subjected to noise, especially when the seal between
the patch and the glass is not tight. Morris and Horn (1991;
Morris & Horn, 1991) patch clamped growth cones and neurons
of the snail Lymnaea, where they could observe unitary-like cur-
rents upon patch suctions but could not elicit macroscopic
(whole-cell) currents with a variety of mechanical perturbations.
From the latter negative results, they argued that MS currents are
likely artefacts. Despite rebuttals (Gustin et al., 1991), this well-
publicized paper (in Science) created doubts in the mind of non-
specialists as to the authenticity of MS channels in general.

Even with this ambient ‘noise’ in the scientific commu-
nity, the study of MS-channel activities from E. coli stood
out. While being neither fish nor fowl, they are nonetheless
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prominent (unitary conductance being 10 to 100 times those
of eukaryotic channels), robust (encountered all the time),
and tell a convincing story of osmotic protection (see
below). News on these bacterial MS-channel activities
appeared in prominent journals and attracted curiosity and
some attention (Kullberg, 1987).

Finding MscL

Goaded by the publicized insinuation that MS currents are
artifacts, the two authors decided in 1991 to go beyond the
MS currents to get at the substance behind the activity.
They chalked down on a blackboard the scheme of stocking
starting material, solubilizing the membranes, separating
fractions, reconstituting them into liposomes, following the
activity with the patch clamp and displaying the proteins by
electrophoresis. Knowing that our target is robust and gives
huge signals (nanoSiemens), we believed that we could suc-
ceed. In late 1991, armed with preliminary results showing
that the MS activities survived reconstitution into liposomes
after membrane solubilization and crude column fraction-
ation, we wrote a grant proposal to NIH for the identifica-
tion of the channel protein(s). That proposal was examined
by the Physiology Study Section and was firmly rejected!
Purifying a channel like that of an enzyme had never been
done or even proposed before. This novelty presumably
underlies the general skepticism. Concrete criticisms ques-
tioned whether the channels could survive the fractionations.
Despite the rejection, the two authors were determined to
continue the hunt, using Paramecium money.

We were fortunate. We were joined in this endeavor by
Sergei Sukharev, a biophysicist from the Frumkin Institute
in Moscow in 1991 and by Paul Blount, a molecular biolo-
gist with extensive experience in acetylcholine-receptor
research in 1992. With Boris, Paul, and others, Sergei led
the arduous work of solubilizing membranes, fractionating
with liquid chromatography, reconstituting by fusing frac-
tions with azolectin liposome, and checking for activities
with the patch clamp. This work sorted out the 3-nS MscL
from the 1-nS MscS (Levina et al., 1999; Sukharev, Martinac,
Arshavsky, & Kung, 1993). Later, by following two series of
fractionations, the MscL activity was traced to a 17-kD pro-
tein, which was then microsequenced automatically, reveal-
ing 37 N-terminal residues. Paul searched the database and
matched this partial sequence with some hint in the litera-
ture (Hamann, Bossemeyer & Bakker 1987). At that time
Frederick Blattner’s lab on the UW Madison campus was
finishing the E. coli genome sequencing. A fragment of a
lambda clone from the Blattner collection contains the cor-
responding gene, which was subcloned and sequenced,
revealing the entire nucleotide and amino-acid sequence of
MscL (Sukharev et al., 1994; Sukharev, Blount, Martinac, &
Kung, 1997). Pure MscL from cell-free expression reconsti-
tuted into liposome patches retains MS activities (Figure 2).
This was the first MS channel ever been cloned, expressed
in vitro, and it incontrovertibly showed the force-from-lipid
(FFL) principle. A bonus in using E. coli is that the starting
material is inexpensive and unlimited, requiring no precious

tissue culturing or tedious animal dissections. We generated
60 liters of culture and kept the bacteria paste in deep
freeze, taking portions for experimentation when needed.
This could be one of the reasons why hunting for channel
proteins by fractionation described here is unique and has
not been reported for any other channels.

Following the discovery of the MscL gene, we carried out
a search for mutations after random mutagenesis that
stopped growth when expressed. These gain-of-function
(GOF) mutations were found to cluster at one facet of the
predicted transmembrane helix 1, which we proposed to be
key to channel gating (Ou, Blount, Hoffman, & Kung,
1998). The MscL discovery also soon stimulated crystallogra-
phers, resulting first in a 15Å -resolution 2D crystal struc-
ture with some information (Saint et al., 1998; Blount et al.,
1996) followed by a 3D X-ray structure of TbMscL from
Mycobacterium tuberculosis at 3.5Å resolution (Chang et al.,
1998). The latter shows that the channel is a homopentamer
with each subunit consisting of two transmemebrane a-heli-
ces (TM1 and TM2) and with both the amphipathic N-ter-
minus and a-helical C-terminus facing the cytoplasm
(Chang, Spencer, Lee, Barclay MT and Rees, 1998). This penta-
mer structure was later confirmed as the correct native struc-
ture of MscL (Dorwart, Wray, Brautigam, Jiang, & Blount,
2010; Iscla, Wray, & Blount, 2011; Reading et al., 2015) and
showed that the facet of TM1 identified by the GOF mutations
indeed forms the channel gate. There are currently about 2,300
members of the MscL channel subfamily listed in the UniProt
database with homologues found in all three domains of life,
Bacteria (Gram-negative and Gram-positive), Archaea (e.g.
Mathanosarcina) and Eucarya (e.g. Neurospora) (Martinac
et al., 2014). Interestingly, MscL is absent from many marine
bacteria, presumably because of lesser challenges in osmotic
fluctuations (Blount & Iscla, 2020).

MscL is half-activated by membrane tension of �12mN/m
and fully activated by close to lytic tension of a pure lipid
bilayer (Sukharev, Sigurdson, Kung, & Sachs, 1999; Nomura
et al., 2012). This makes MscL a MS channel requiring the
highest membrane tension on the physiological spectrum rang-
ing from 1 to 25mN/m, which perfectly fits its role of a osmo-
regulatory emergency nanovalve opening upon extreme
changes in turgor pressure during a hypoosmotic shock experi-
enced by bacterial cells (Bialecka-Fornal, Lee, & Phillips, 2015;
Levina, Totemeyer, Stokes, Louis, Jones & Booth, 1999). Being
relatively simple in structure, MscL has been analyzed exten-
sively on how it opens and closes. Essential in determining its
open structure was the activation of MscL by lipid forces,
including the insertion of the cone-shaped amphipath lyso-
phosphoshatidylcholine (LPC) into a single leaflet of the lipid
bilayer (Perozo, Cortes, et al., 2002). The change from closed
to open structure in MscL entails an iris-like expansion result-
ing in a large pore of 28Å in diameter (Sukharev, Betanzos,
Chiang, & Guy, 2001; Betanzos, Chiang, Guy, & Sukharev,
2002; Perozo, Cortes, et al., 2002; Wang et al., 2014). This
expansion is driven by ‘pulling’ the N-terminal helix and tight
protein–lipid interactions with TM2 (Bavi, Cortes, et al., 2016;
Iscla, Wray, & Blount, 2008).
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MscS

MscS was identified several years after MscL as the product
of yggB of E. coli encoding a 286 amino-acid channel protein
(Levina et al., 1999). 3D-crystal structure of MscS shows that
the channel is assembled as a homoheptamer (Bass, Strop,
Barclay & Rees, 2002). Like MscL, MscS can be reconstituted
into liposomes and gated by mechanical force according to
the FFL principle. It requires about a half the membrane ten-
sion that gates MscL (Nomura, Cranfield, Deplazes, Owen,
Macmillan, Battle, Constantine & Martinac, 2012).

One can now determine the structural dynamics at near-
atomic resolution, such as the movement of alpha helices
and the displacement of individual lipids upon opening
(Zhang et al., 2021). MscS proteins can be embedded in
nanodiscs mimicking membranes under tension and exam-
ined with cryo-EM (Reddy et al., 2019). One trick is to use
b-cyclodextrin (bCD), which, by removing lipids from the
nanodiscs, generates membrane tension without directly
applying negative pressure. The changes in fine structure
observed were then correlated functionally with patch-clamp
recordings from liposome-reconstituted MscS exposed to
bCD or other cyclodextrins (Cox, Zhang, Zhou, Walz, &
Martinac, 2021). These findings are in accordance with other
studies showing that MscS structure contains grooves and
pockets allowing lipid molecules to fill them and become
interlocked with the channel (Pliotas et al., 2015; Pliotas &
Naismith, 2017; Pliotas et al., 2012). Thus, the dynamic
structure/function relationship at the finest detail can now
be understood for various channels operating under the FFL
principle using this bCD approach, combining cryo-EM,
patch clamp and molecular dynamics simulations (Zhang,
Daday, Gu, Cox, Martinac, de Groot & Walz, 2021).

Piezos

In contrast to the MscL pentamer, which is a small protein of
�80 kDa m.w., Piezo1, discovered in 2010, is a vastly different
protein (Coste et al., 2010; Coste et al., 2012). Piezo1 forms
Ca2þ-permeable trimeric channels of �1.2 MDa m.w., and is
thus one of the largest channel proteins known (Wang &
Xiao, 2018). It is gated according to the FFL paradigm (Teng,
Loukin, Anishkin, & Kung, 2015) (Figure 1) meaning that it is
inherently mechanosensitive like MscL (Cox, Bae, Ziegler,
Hartley, Nikolova-Krstevski, Rohde, Ng, Sachs, Gottlieb &
Martinac, 2016; Syeda et al., 2016). While Piezo1 obeys FFL as
the fundamental gating principle of the lipid bilayer (Buyan
et al., 2020; Ridone et al., 2020), cell-membrane tension in vivo
can be modulated by cytoskeletal proteins (Poole, Herget,
Lapatsina, Ngo, & Lewin, 2014; Qi et al., 2015; Cox, Bavi, &
Martinac, 2019; Young, Lewis, & Grandl, 2022) and interaction
with the extracellular matrix (Gaub & Muller, 2017; Li et al.,
2021). In its closed state, Piezo1 curves the membrane by
adopting a dome-like structure based on its unique propeller
blade region resembling a triskelion (Guo & MacKinnon,
2017). When activated by membrane stretch, Piezo1 flattens
due to expansion of its tension-sensing blade region as initially
indicated by molecular dynamics simulations (De Vecchis,
Beech & Kalli, 2021). Single-particle cryo-EM of Piezo1 in

liposome confirmed the overall gating mechanism (Yang et al.,
2022). The curved or flattened Piezo1 structure could be
obtained in the cap-inside or the cap-outside configuration,
respectively, in accordance with the FFL activation principle
(Cox, Bae, Ziegler, Hartley, Nikolova-Krstevski, Rohde, Ng,
Sachs, Gottlieb & Martinac, 2016; Syeda et al., 2016). Either
mode can result from curvature mismatch between the Piezo1
protein and surrounding liposome membrane resulting in
bilayer tension and bending force that cause the shape change
of the channel (Yang, Lin, Chen, Li, Li & Xiao, 2022)

The Force-from-Lipid (FFL) Principle

Besides MscL, MscS, and Piezo1, described above, the two-
pore-domain Kþ channels, and TREK (Berrier et al., 2013;
Brohawn, Su, & MacKinnon, 2014) as well as OSCA/
TMEM63 (Murthy et al., 2018) have also been purified and
shown to be mechanosensitive in lipid bilayers. Less rigor-
ously tested are also MS currents observed in various mem-
brane blebs, largely devoid of cytoskeleton. In addition,
there are MS channels functionally expressed heterologously,
where the channels are alien to the host cytoskeletons and
do not likely interact. For example, TRPV4 from rat can be
functionally expressed in Xenopus oocyte as well as in yeast
cells and remains mechanosensitive (Loukin, Su, & Kung,
2009). That MS channels of very different structures, coming
from bacteria to human, all draw their gating force from the
lipid bilayer indicates that FFL is a general evolutionary con-
served principle. In simplest terms, the bilayer is an amphi-
pathic structure with set internal forces. (See below). An
embedded channel protein in its closed state has its own
amphipathic structure fitting this force environment.
Stretching the bilayer generates a mismatch, which drives
the protein to a new (open) structure.

As stated above, the hair-cell trapdoor model holds sway
among some non-specialists. Most recent findings, however,
show that even the hair-cell transduction complex likely also
obeys the FFL principle (Jeong et al., 2022). Because mam-
malian inner ears cannot supply enough material, these
authors examined the homologous touch-transduction com-
plex from the nematode C. elegans, consisting of two copies
of the pore-forming TMC-1 and two additional proteins
(CALM-1, TMIE). Single particle cryo-EM of this complex
and molecular dynamics simulation show how the complex
deforms the bilayer and ‘suggest crucial roles for lipid-pro-
tein interaction in the mechanism by which mechanical
force is transduced to ion-channel gating’. These authors
also stated that ‘…TMIE subunits poised like ‘handles’ per-
pendicular to the membrane, and amphipathic TMC-1 H3
helices inserted and parallel to the membrane plane, each
providing possible mechanisms for direct or indirect trans-
duction of force to ion channel gating, respectively.’ The
TMC-1 H3 lateral movement is just like that of the N-ter-
minal helix of MscL upon lateral stretch (Iscla et al., 2012;
Bavi, Cortes, et al., 2016). The ‘handles’ could be analogous
to those attached to the cadherin tip link in the hair cell to
transmit the vertical pull leading to bilayer stretch that
opens the pores (Anishkin & Kung, 2013).
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The Bilayer as a Medium

Evolution being opportunistic, FFL does not exclude the
possibility that some MS channels, such as the DEG/ENaC
family channels, make use of the extracellular tethers or
intracellular cytoskeleton, at least as handles, anchors, or
modifiers of the membrane properties (Arnadottir & Chalfie,
2010; Chalfie, 2009). Even in these cases, however, the
mechanics and energetics of the lipid bilayer cannot be
ignored. Early on, the membrane was often seen only as a
passive physical barrier or an electric insulator, but the lipid
bilayer is in fact a second type of medium besides the cyto-
plasm, providing an amphipathic compartment with physical
and chemical properties entirely different from the cytoplas-
mic aqueous compartment. The continuum model of the lat-
eral pressure across the membrane bilayer indicates that at
the level of the neck of the phospholipids where the hydro-
philic heads meet the hydrophobic tails, there is a large ten-
sion, akin to surface at the water-oil interphase (Cantor,
1999; Gullingsrud & Schulten, 2004). Because the bilayer is a
self-assembled structure at equilibrium, this sharp tension is
largely balanced by repulsion among the fatty-acid tails in
the interior of the bilayer. This internal force profile is
dynamic and can adjust to chemical perturbations such as
the monolayer insertion of amphipaths (Martinac, Adler &
Kung, 1990), physical perturbations, such as thinning or
bending by external forces (Perozo, Kloda, Cortes, &
Martinac, 2002) or insertion of membrane proteins (Bavi,
Cortes, et al., 2016). The transbilayer pressure profile deter-
mined experimentally by NMR spectroscopy confirmed the
theoretical and computational models and demonstrated that
the internal bilayer pressure varies with the level of satur-
ation of phospholipids that the bilayer is made of (Ridone
et al., 2018).

20–30% of all genes in most genomes encode for mem-
brane proteins. At equilibrium, integral membrane proteins
embedded in the bilayer have to be themselves amphipathic
to fit the hydrophobicity and force profiles. Alteration of the
force profile due to stretch-induced thinning leads to lateral
pulling forces at the polar/nonpolar membrane interface and
a hydrophobic mismatch at the interfaces and can drive the
conformational changes of the embedded proteins (Martinac
& Hamill, 2002; Perozo, Kloda, et al., 2002). Thus, any
dynamic embedded proteins that need to change their foot-
prints inside the membrane to perform protein’s function
are sensitive to applied stretch force. In other words, FFL is
not just about MS channels.

FFL’s broad implication is best illustrated by the well-
known voltage-dependent Kþ channel, Kv. Kv’s opening ten-
dency is much higher in the tensed membrane than it is in
membrane constrained by cytoskeleton (Morris, Prikryl, &
Joos, 2015; Schmidt, del Marmol, & MacKinnon, 2012).
Channel opening by depolarization not only entails work
done to move the S1-S4 peripheral domain, detaching it
from the S5-S6 core, but also the work done to move the
surrounding annular lipids, which is subjected to the innate
as well as applied tension. The free-energy change associated
with the bilayer deformation is comparable to that of the
voltage-dependent part of the total gating energy (Reeves

et al., 2008). Thus, Kv is as much a mechanosensitive as a
voltage-sensitive channel (Schmidt et al., 2012). Nav, Cav,
and TRPs, having the same design as Kv, should behave
similarly (Anishkin, Loukin, Teng, & Kung, 2014). The lig-
and gated NMDA receptor channel also exhibits mechano-
sensitivity upon reconstitution into liposomes and activation
either by membrane tension or arachidonic acid acting as an
amphipath (Johnson, Battle, & Martinac, 2019; Kloda, Lua,
Hall, Adams, & Martinac, 2007; Maneshi et al., 2017).

In short, the FFL principle should be viewed broadly,
addressing not only the externally applied stretch force but
also the internal forces that are constitutive to the bilayer,
and it governs all embedded material and not just
MS channels.

Reductionism Redux

MscL and Piezo both follow the FFL principle (Cox et al.,
2019; Young et al., 2022). Once again, ‘What is true for E.
coli is true for the elephant.’ Historically, the molecular biol-
ogy revolution succeeded because of the choice in using sim-
ple organisms: bacteria and phages, as reviewed above. The
establishment of the FFL principle likewise emphasizes the
advantage of using simpler organisms: yeast, bacteria.
However, in philosophy, reductionism means to analyze a
problem not only at a simpler level, but also at a more fun-
damental level.

Not everything that is true for E. coli is necessarily true
for the elephant. Elephants don’t have cell walls; they don’t
divide; they don’t make you sick. On the other hand, the
entire catabolic chemistry that entails glycolysis, Krebs cycle,
and oxidative phosphorylation, including electron transport
and ATP synthesis, is the same in plants, animals, or
microbes. Photosynthesis, which converts sunlight to sustain
nearly all life forms, is basically the same in plants as in pur-
ple- or green-sulphur bacteria and cyanobacteria. It is the
basic and fundamental mechanisms that are held constant
through evolution, not the details that are outfitted for dif-
ferent environments or lifestyles, even though the details
may be more eye-catching.

Tiny bacteria in their low Reynolds number world cannot
feel any external physical impacts. The mechanical force
relevant to their lives (as well as to all lives) is the osmotic
force. Osmotic pressure was already thought to be the nat-
ural force that opens the yeast and E. coli MS channels at
their first encounters (Martinac et al., 1987). Previously,
diluting the culture medium had long been known to cause
the bacteria to release solutes indiscriminately through
unknown pathways (Britten & McClure, 1962). E. coli has
several types of MS channels for this release and when the
two major ones, MscL and MscS, were deleted, the bacteria
died by cell lysis when the medium was diluted (Levina,
Totemeyer, Stokes, Louis, Jones & Booth, 1999). Thus, bac-
terial MS channels were selected to survive Mother Nature’s
caprice of rain or shine. In rain, water rushes into the cell,
producing a large physical pressure on the cell envelope. MS
channels are therefore safety valves, releasing solutes, lower-
ing turgor, preventing rupture.
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Elephants did not evolve from E. coli. However, mammals
are late comers, being only 2� 108 yr old in the 4� 109 yr
long history of life on Earth. Much of early lives were
microbial and the earliest were bacteria-like prokaryotes, in
which the ‘Central Dogma’ and basic metabolism were laid
down. Early life forms also had to face the rain-and-shine
challenge. It is therefore not difficult to imagine that some
primitive devices, not unlike the modern bacterial MS chan-
nels, would appear making use of the FFL principle. Thus,
like the ‘Central Dogma’, FFL deals with a fundamental
issue, that of water. Life is largely aqueous chemistry with
water as the solvent. Water, 55.5 Molar in concentration,
should not be confused with eye-catching signalers (odor-
ants, tastants, hormones, allergens, etc.) or other ligands,
which are solutes working at micro- to miniMolar concen-
trations. In the long history of evolution, various devices
could put FFL to other uses. We speculate that various types
of modern force sensing (hearing, proprioception, sensing
touch, blood pressure, bone load etc.) could come from
mechanism that originally gauge the concentration of water,
the solvent of Life’s aqueous chemistry. We call these the
‘Solvent Senses’ to distinguish them from the ligand-detect-
ing ‘Solute Senses’ (smell, taste, hormone, etc.) (Kung, 2005).

FFL at Large

The FFL story begins with MscL but will not end with
Piezos. Even selfishly considering only the physiology and
pathology of humans, many force-driven channels need to
be investigated. E.g. TRPV4 apparently measures weight
load on developing and mature bones. Mutations results in
heritable bone-developmental and other diseases.
Heterologously expressed TRPV4 has been shown to
respond directly to patch-clamp pipet suctions (Loukin
et al., 2009). More sensing mechanisms awaits further inves-
tigation; even more force-sensing molecules await discovery.
What is the molecule in the arterial baroreceptor that meas-
ures blood pressure? What is the molecule in the circumven-
tricular organ of the hypothalamus that measures blood
osmolarity? What molecules tell us that our stomachs or our
bladders are full? What other molecules underlie the large
varieties of tactile sensations, from the first kiss to
love-making?

TRPs, TMC1, NOMPC and Kv all have the same top-
ology. All are tetramers of subunits, each comprising a S5-
S6 core surrounded by four S1-S4 peripheral domains.
Recall that even ‘Kv channel is as much a mechanosensitive
channel as it is a voltage-dependent channel’ (Schmidt, del
Marmol & MacKinnon, 2012). It would be inconceivable
that TRPs are not the same. Although there is no consensus
on the detail, it would be difficult to imagine that gating of
the heat-sensing TRPV1, which won the other half of the
2021 Nobel, does not involve the lipids that surround it.

As emphasized above, FFL governs all membrane proteins
that need to change shape in the bilayer, not just the ion
channels. There are enzymes such as phospholipase A2
(Lehtonen & Kinnunen, 1992) and G-protein coupled recep-
tors such as angiotensin II type 1 (Marullo et al., 2020) that

are shown to be sensitive to membrane tension. Moreover,
the structural dynamics of prestin, the voltage-dependent
motor protein responsible for the electromotive behavior of
outer-hair cells (OHCs) has been suggested to follow the
changes in deformation of the plasma membrane occurring
upon membrane expansion given that prestin conformations
in contracted and expanded state changed the membrane
bilayer footprint resembling membrane tension (Bavi et al.,
2021a, 2021b; Ge et al., 2021). This is analogous to MS
channels, which are characterized by occupying larger mem-
brane area in the open state compared to the closed state
due to the activation by membrane tension (Hamill &
Martinac, 2001) as observed upon activation of the MscL
(Perozo, Cortes, et al., 2002) and Piezo1 channels (Yang
et al., 2022).

Morphogenesis is also a deep problem. How is it that a
lump of amorphous stem cells can develop into an intri-
cately shaped scapula or a different intricately shaped verte-
bra? It seems intuitive that changing vectoral forces can
direct development (Yim & Sheetz, 2012). Marrow-derived
mesenchymal stem cells in uniform serum condition develop
into neurons on soft gel, into myoblasts on stiffer gel, and
into osteoblast on rigid gel (Engler, Sen, Sweeney, &
Discher, 2006). Stem-cell MS channels might be involved
since substrate rigidity apparently regulates their Caþþ oscil-
lation. (Kim et al., 2009). A recent example is TMEM87a/
Elkin1, which functions to regulate melanoma cell migration
and cell-cell interactions by supporting a Piezo1-independent
mechanoelectrical transduction pathway (Patkunarajah
et al., 2020).

Force is basic: 4 pN (4� 10�12 N) breaks a hydrogen
bond; 1,600 pN breaks a C-C covalent bond. Chemistry,
including biochemistry, can be viewed as mechanics by
extension and examined by molecular dynamics/quantum
mechanical simulations. Consider that the bilayer not only
can be stretched by external forces, but is a compartment
with internal forces, in which all membrane proteins oper-
ate, many more force-related mechanisms will be revealed in
future research. Stay tuned.
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