Ballouz, Sara and Liu, Jason Y and George, Richard A and Bains, Naresh and Liu, Arthur and Oti, Martin and Gaeta, Bruno and Fatkin, Diane and Wouters, Merridee A (2013) Gentrepid V2.0: a web server for candidate disease gene prediction. BMC bioinformatics, 14. p. 249. ISSN 1471-2105 (PMC OA)
Ballouz, Sara and Liu, Jason Y and George, Richard A and Bains, Naresh and Liu, Arthur and Oti, Martin and Gaeta, Bruno and Fatkin, Diane and Wouters, Merridee A (2013) Gentrepid V2.0: a web server for candidate disease gene prediction. BMC bioinformatics, 14. p. 249. ISSN 1471-2105 (PMC OA)
Ballouz, Sara and Liu, Jason Y and George, Richard A and Bains, Naresh and Liu, Arthur and Oti, Martin and Gaeta, Bruno and Fatkin, Diane and Wouters, Merridee A (2013) Gentrepid V2.0: a web server for candidate disease gene prediction. BMC bioinformatics, 14. p. 249. ISSN 1471-2105 (PMC OA)
Abstract
BACKGROUND Candidate disease gene prediction is a rapidly developing area of bioinformatics research with the potential to deliver great benefits to human health. As experimental studies detecting associations between genetic intervals and disease proliferate, better bioinformatic techniques that can expand and exploit the data are required. DESCRIPTION Gentrepid is a web resource which predicts and prioritizes candidate disease genes for both Mendelian and complex diseases. The system can take input from linkage analysis of single genetic intervals or multiple marker loci from genome-wide association studies. The underlying database of the Gentrepid tool sources data from numerous gene and protein resources, taking advantage of the wealth of biological information available. Using known disease gene information from OMIM, the system predicts and prioritizes disease gene candidates that participate in the same protein pathways or share similar protein domains. Alternatively, using an ab initio approach, the system can detect enrichment of these protein annotations without prior knowledge of the phenotype. CONCLUSIONS The system aims to integrate the wealth of protein information currently available with known and novel phenotype/genotype information to acquire knowledge of biological mechanisms underpinning disease. We have updated the system to facilitate analysis of GWAS data and the study of complex diseases. Application of the system to GWAS data on hypertension using the ICBP data is provided as an example. An interesting prediction is a ZIP transporter additional to the one found by the ICBP analysis. The webserver URL is https: //www.gentrepid.org/. (No funders listed)
Metadata
Subjects: | R Medicine > R Medicine (General) |
---|---|
Depositing User: | Ms Britt Granath |
Date Deposited: | 05 Jan 2016 03:34 |
Last Modified: | 26 Jan 2016 23:27 |