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Introduction to magnetic resonance imaging 
(MRI)

The physics behind MRI is complex. MRI utilises proton 
excitation, decay, and net movements within alternating 
magnetic fields to generate images along different planes. 
The images are generated based on the magnetic resonance 
property of hydrogen protons within each tissue type, 
particularly water and fat. Each hydrogen nuclei contain 
an intrinsic magnetic field known as a magnetic moment 
(spin) which exerts an effect on its single proton (1). An 
external magnetic field is applied to align the spin (net 
magnetisation), while an additional magnetic field, known 
as the radiofrequency pulse, redirects the net magnetisation 
and causes the alignment to move away from the first 
magnetic field. The radiofrequency pulse can be altered to 

control both the speed of rotational motion (precession) 
and the degree of rotation. Once the radiofrequency pulse 
is switched off, the net magnetisation quickly returns to 
equilibrium and the rate at which this occurs is known as 
relaxation. T1 and T2 are unique processes of relaxation and 
different tissue components have different relaxation times 
in T1 and T2 sequencing, thus, generating high resolution 
images that can delineate different tissue types. T1 and T2 
signal changes along a gradient and time scale can further 
be represented in an absolute pixelated colour map to 
provide quantitative assessment of myocardial composition, 
known as cardiac mapping. Direct quantification in T1 and 
T2 mapping eliminates the need for reference tissue to 
determine alterations in other myocardial regions, allowing 
for accurate assessment of diffuse myocardial disease (2,3). 
T2* mapping accounts for the inhomogeneities of T2 
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relaxation within tissues, and is useful for detecting iron 
composition in the myocardium. Furthermore, steady-state 
free precession (SSFP) utilises the ratio of T2/T1 relaxation 
rates to delineate tissue types with great spatial resolution. 

MR sequences and techniques

General techniques in CMR

CMR is more complex than solid organ MRI, as it has to 
account for the variable orientation of the heart within 
the chest and the motion artefact involved in cardiac and 
respiratory motion. As such, a high degree of involvement 
from an experienced operator is important to adjust the 
orientation of imaging slices, appropriately choose CMR 
sequences based on clinical suspicion, and review image 
reconstruction. 

The most commonly used technique to eliminate 
respiratory motion is breath-holding; generally asking 
the patient to hold their breath at end-expiration, as this 
position is more reproducible than end-inspiration. Most 
current MRI techniques can be completed within one 
breath hold. Cardiac motion, however, cannot be paused 
to allow adequate time for image acquisition. Continuous 
electrocardiographic (EKG) triggering is used to accurately 
time image acquisition by capturing the same phase within 
each cardiac cycle, during many heart beats, often at mid 
to end diastole when the heart is relatively motionless (4). 
However, EKG signals can be affected by rapidly changing 

radiofrequency fields, and arrhythmias can interfere with 
cardiac motion (5). There are techniques to get around these 
issues, including ultrafast turbo (single-shot) acquisition 
techniques, which obtain images within one cardiac 
cycle at the expense of compromised image quality (6).  
Clinical CMR studies are generally performed at 1.5 Tesla 
(T), which is a measure of magnetic field strength, and has 
less artefact, including less cardiac gating artefact. 

Static imaging for anatomy and tissue characterisation 

Static images in CMR can be obtained using turbo spin-echo 
(where blood appears black: black-blood sequence), gradient 
echo (blood appears white: white-blood sequence, see  
Figure 1) or inversion recovery. The high resolution static 
images are obtained as a “stack” of parallel slices taken over 
several cardiac cycles during patient breath holding. The 
basis of spin-echo relies on the radiofrequency pulse to align 
the net magnetization at 90° (excitation pulse) and then 180° 
(re-focusing pulse), followed by measurements of relaxation 
in T1 and T2 sequencing. The rapidly moving blood within 
the cardiac chambers acquire the initial excitation pulse, but 
moves out of the frame before the subsequent re-focusing 
pulse. This causes a void with no signal detection, thus 
creating the “black-blood” effect of spin-echo. This black-
blood appearance creates high contrast between blood 
and myocardium (see Figure 2). Furthermore, different 
tissue types have different relaxation times in T1 and T2 
sequencing which is particularly useful in highlighting 

A B

Figure 1 Normal T2-weighted CMR in long axis. (A) Spin echo (black-blood sequence) and (B) gradient echo (white-blood sequence). 
CMR, cardiovascular magnetic resonance.
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cardiac anatomy, making spin-echo the choice for baseline 
images. In T1 sequencing, fat has fast relaxation time and 
appears bright, while water appears dark. Myocardium has 
intermediate relaxation time and can be separated from 
both fat and water. In addition, fat and water have different 
resonant frequency so using specific radiofrequency pulse to 
“saturate” fat can create a nulling signal where fat appears 
dark. This can confidently highlight fat components when 
compared to baseline images and can be used to separate 
pericardial fat from surrounding structures such as coronary 
vessels, cardiac tumours, and pericardial fluid (7). 

Gadolinium-based agents further clarify cardiac 
structures. Gadolinium shortens T1 relaxation time and 
causes high signal enhancement in areas of increase uptake 

or delayed washout. This is particularly useful in areas of 
inflammation depicted by accumulation of inflammatory 
cells, myocyte necrosis and remodelling with fibrotic 
tissue (8). Since chelated gadolinium is a large molecule, 
it accumulates easily in areas with increase extracellular 
volume fraction, and creates greater T1-shortening and 
high signal (9). Areas of increase gadolinium uptake 
thus appear brighter on T1-weighted imaging while 
low uptake such as thrombus (low signal) appears darker 
(see Figure 3). Increase gadolinium uptake occurs in 
myocardial inflammation which may signify diseases such 
as myocarditis, or infiltrative conditions like amyloidosis 
and sarcoidosis (10,11). In areas of fibrosis, the gadolinium 
takes longer to enter the cells and will have a longer wash-
out period. Using inversion recovery sequence 10–30 
minutes after injection of gadolinium, high signal areas 
of late gadolinium enhancement (LGE) can identify 
regions of fibrosis. T2-weighted imaging can be used 
additionally to confirm areas of active edema (high signal) 
and chronic fibrosis (low signal) when compared to pattern 
of LGE. In patients with hypertrophic cardiomyopathy, 
the extent of fibrosis identified through LGE has been 
significantly associated with sudden cardiac death (12). 
Using CMR, fibrosis has been identified in both ischemic 
and nonischemic cardiomyopathies, and is highly predictive 
of myocardial viability and can be used to guide clinical 
management. 

Cine imaging and phase velocity mapping for assessment 
of cardiac function and flow

Cine imaging provides detailed functional assessment of 

A B

Figure 2 T2-weighted imaging using spin echo black-blood sequencing. (A) Four-chamber view and (B) short-axis view.

Figure 3 T1-weighted imaging at 1.5 T showing apical left 
ventricular aneurysm and associated LV thrombus (star) taken 
immediately after gadolinium administration. 
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the heart by visualising the movement of any part of the 
heart during the cardiac cycle, with clear definition of 
the endocardium and epicardium. Cine imaging captures 
multiple time points (known as cardiac phases) within the 
cardiac cycle. The images are taken over multiple cardiac 
cycles within one breath-hold and the same cardiac phases 
of each cardiac cycle are reconstructed together to create a 
high resolution image corresponding to that cardiac phase 
(1). When these images are replayed chronologically, it 
creates a “movie[cine]” of the functional motion of the 
heart. Cine imaging provides detailed visualisation of global 
and regional myocardial function, and using LV contouring 
of the myocardium at different cardiac phases can provide 
a detailed estimation of ejection fraction (13,14). This has 
been particularly useful in assessing right ventricular volume 
and function using short-axis cine stacks (15,16).

Gradient echo sequences are used for cine imaging. 
This allows for tracking of proton position because there 
is a unique radiofrequency pulse strength at different 
points along the gradient. Gradient echo uses an excitation 
radiofrequency pulse but not a refocusing pulse so there 
is no spin-out effect from moving blood. As the blood is 
constantly magnetised as it moves along the gradient, it 
creates a high signal “bright blood” contrast. The two main 
types of gradient echo pulse sequence used in cine imaging 
are spoiled gradient echo and balanced steady state free 
precession (SSFP). Spoiled gradient echo such as Fast Low 
Angle SHot (FLASH) uses rapid radiofrequency pulses to 
interfere with the previous radiofrequency pulse, causing 
partial saturation in static structures that remain within the 
imaging frame. Flowing blood, however, is only exposed 
to one radiofrequency pulse as it moves into the imaging 

frame, thus providing high signal (inflow effect) compared 
to surrounding structures. SSFP uses timed successive 
radiofrequency signals to saturate the tissue and then 
measure the T2/T1 relaxation ratios to generate contrast 
images. In valvular disease, regurgitation jets of magnetised 
blood that returns to the previous imaging frame will have 
different radiofrequency exposure and saturation, thus 
appear darker than surrounding forward moving blood (see 
Figure 4). 

Phase velocity mapping can be added to cine imaging 
(phase-encoded) to assess blood flow. In-plane (parallel to 
the tissue movement) and through-plane (perpendicular to 
the tissue movement) can be used to assess volume across 
a cross-sectional area and the velocity of the flow (see 
Figure 4). Moving blood accumulates different strengths 
of radiofrequency pulses as it moves along the gradient. 
Measuring the ultimate strength of the proton signal 
and the time interval between the gradient positions will 
directly correlate with velocity. Faster moving tissue will 
thus accumulate higher signal and move further along the 
gradient. These flow mapping techniques can be used to 
visualise blood flow across a valve including stenosis and 
regurgitation, blood flow velocities through true and false 
vessel lumens, and quantitative flow across shunts. The 
combination of cine imaging and flow mapping can provide 
detailed information about cardiac volumes and function. 

MR angiography (MRA)

MRA has been widely used for the assessment of larger 
vessels, including the thoracic aorta, carotid arteries, 
peripheral vasculature, renal arteries and intracranial vessels. 

Figure 4 Gradient pulse echo cine imaging using SSFP technique at 1.5 T demonstrating aortic regurgitation jet (arrow) in long-axis (A), 
through-plane phase-encoding across the aortic valve (B) and flow velocity mapping (C) where negative flow represents regurgitation.

A B C
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The non-invasive method provides excellent visualisation 
of vessel lumen, vessel trajectory, and origin of branches. 
In particular, 3D SSFP has been shown to be non-inferior 
to gold-standard CT angiogram for characterisation of the 
aorta (13,17). 

Contrast-enhanced (CE) and non-contrast enhanced 
(NCE) sequences have been used in MR angiography. CE 
MRA is preferred as it shortens imaging time and provide 
better delineation of vessel structures. However, it relies 
heavily on precise tracking of the gadolinium-based contrast 
through the vessels. NCE MRA uses the basic principles of 
gradient echo and flow mapping to assess movement of blood 
and other particles within the lumen. These include time-
of-flight, balanced steady-state free precession, and phase-
contrast (PC) techniques which uses selective radiofrequency 
saturation pulse, T2 and T1 relaxation ratios, and bipolar 
velocity gradients respectively, to differentiate stationary 
structures from moving blood pool (18).

MRA of the coronary vessels is limited by cardiac 
and respiratory motion with poor spatial resolution. 
While Kim et al. (19) demonstrated high sensitivity and 
negative predictive value using MRA in assessing left main 
coronary artery disease and triple-vessel disease, MRA of 
the coronary arteries remains challenging and limited to 
clinical research. This is owing to the small size of coronary 
vessels, its proximity to the cardiac chambers, cardiac and 
respiratory motion, and prolonged scan time which all 
add to image quality degradation, ghosting artefact, and 
difficulty delineating the path and lumen characterisation 
of the vessels. As such, MR angiography of the coronary 
vessels is not used commonly in clinical practice and is not 
used diagnostically. 

Perfusion imaging

Early myocardial ischemia is reflected by subendocardial 
hypoperfusion deficits, while late changes include 
transmural ischemia, EKG changes, and clinical symptoms 
of chest pain. Traditionally, single-photon emission 
computed tomography (SPECT) have been used to 
assess perfusion abnormalities but the disadvantage lies in 
radiation exposure, and lack of specificity to subendocardial 
regions. Increasingly, CMR have been used to assess 
myocardial perfusion, especially when it has multiparametric 
properties to assess tissue characterisation and cardiac 
function in one scan (20,21). 

Following the administration of intravenous gadolinium, 

imaging is performed during the first-pass (perfusion of the 
myocardium) of gadolinium over 40–50 heart beats. Images 
are obtained both at rest, and after pharmacological stress, 
usually with adenosine or dipyridamole (22). Comparison 
between rest and stress images can identify any reduction 
in peak signal intensity or a delay to reach peak intensity, 
suggestive of myocardial hypoperfusion. Particularly, 
myocardial perfusion reserve (MPR) defined as the ratio 
of myocardial blood flow between rest and stress is an 
important indicator of ischemia (23). CMR perfusion 
techniques can undergo both visual and quantitative 
analysis. Epicardial and endocardial borders are outlined 
and divided into multiple segments. Signal intensity is 
calculated using software algorithms and quantitative 
measure of perfusion is obtained for every segment of 
myocardium (24). Cardiac synchronisation and ultra-fast 
T1-weighted gradient echo are used to obtain images of 
2–3 mm2 resolution, which can differentiate epicardial 
from endocardial perfusion. More advanced techniques 
such as Broad-use Linear Acquisition Speed-up Technique 
(k-t BLAST) and sensitivity encoding (k-t SENSE) uses 
parallel imaging techniques with multiple receiver coils 
simultaneously to improve spatial and temporal resolution 
to <2 mm2 (25).

Multiple large scale studies have demonstrated superiority 
of CMR perfusion compared to SPECT for detection 
of myocardial ischemia, and reduction in unnecessary 
angiography (26-28). Additionally, cardiac ischemia can be 
further assessed by measuring global longitudinal strain 
whereby Romano et al. (29) demonstrated a significant 
relationship between global longitudinal strain > −19% and 
major adverse cardiovascular events in patients undergoing 
stress CMR.

CMR in clinical practice 

The assessment of cardiac mass, volumes and function for 
structural heart disease

CMR provides accurate measurements of cardiac volumes 
and systolic function using cine imaging and myocardial 
contouring. Steady-state free precession imaging along the 
horizontal long axis, vertical long axis, and left ventricular 
outflow tract provide detailed anatomy of the heart. Short 
axis cine images are planned from these three planes 
and used for functional assessment (30). Using advanced 
software and manual contouring of the epicardium and 
endocardium at end diastole and end systole, assessment 
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of end diastolic volume, end systolic volume, myocardial 
mass, and ejection fraction can be performed with high 
accuracy (Figure 5) (16). This provides valuable structural 
information to assist clinical diagnosis and management. 
Furthermore, flow velocity mapping is commonly used to 
qualitatively and quantitatively assess blood flow across 
valves and shunts to provide further information. 

Cardiomyopathies

CMR is useful in assessing patients with heart failure or at 
risk of heart failure. Various CMR modalities are useful in 
diagnosing non-ischaemic causes of heart failure, as well 
as differentiating these causes. These CMR modalities 
include cine images to assess cardiac structure and function 
and tissue characterisation techniques. Late gadolinium 
enhancement, T1-mapping, T2-mapping, and T2*-mapping 
have been used for tissue characterisation and are useful in 
determining the presence of non-ischaemic cardiomyopathy, 
the type of non-ischaemic cardiomyopathy, the extent and 
severity of disease, prognosis, and risk stratification (31).  
CMR is of particular utility in several non-ischaemic 
cardiomyopathies, including genetic cardiomyopathies 
(some forms of dilated cardiomyopathy, hypertrophic 
cardiomyopathy, and arrhythmogenic cardiomyopathy), 
autoimmune/inflammatory cardiomyopathies,  and 
infiltrative cardiomyopathies (such as cardiac sarcoidosis, 
Fabry’s disease, and cardiomyopathy associated with iron 
deposition) (31).

CMR is a useful modality in the diagnosis of dilated 
cardiomyopathy (DCM) which is a non-ischaemic 
cardiomyopathy that may be genetic or non-genetic in 
origin. It may be a final common pathway for a variety of 
pathological processes, such as drug/toxin exposure, acute 
myocarditis, and peripartum cardiomyopathy (32). DCM is 
characterised by left ventricular or biventricular dilatation 
and systolic impairment in the absence of abnormal loading 
conditions or significant coronary artery disease (32). 
Tissue characterisation modalities can assist in the diagnosis 
of DCM, for example, if mid-mural LGE is present, as 
opposed to the subendocardial enhancement typical of 
ischaemic cardiomyopathy. CMR can also determine 
the acuity of DCM by assessing for edema and fibrosis 
using T2-weighted and LGE sequences. The burden and 
distribution of fibrosis, if present, can consequently stratify 
patients of the risk of life-threatening arrhythmias (31).

Hypertrophic cardiomyopathy (HCM) is the most 
common cardiomyopathy with a genetic aetiology (33). 
CMR is of benefit in assessing patients with suspected 
or proven HCM by assessing morphology including 
quantification of maximal wall thickness, asymmetry of wall 
thickness, location of maximal wall thickness, and evidence 
of obstruction (Figure 6). Cine imaging along multiple 
planes can further assess biventricular systolic function, 
strain, and left ventricular outflow tract obstruction. The 
presence and extent of fibrosis, maximal wall thickness, and/
or presence of left ventricular outflow tract obstruction 
are valuable information for risk stratification and guide 

LV

EDV (mL) ESV (mL) SV (mL) EF (%) Mass (g)

126 (96-174) 54 (28-68) 72 (62-110) 57 (54-74) 66 (66-114)

RV 116 (83-178) 55 (42-62) 61 (44-112) 53 (50-70)

A B

Figure 5 Gradient pulse echo cine imaging with SSFP at 1.5 T and LV contouring in end diastole (A) and end systole (B) to assess left and 
right ventricular function with calculated end diastolic volume (EDV), end systolic volume (ESV), and ejection fraction (table).
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clinical management. CMR can further characterise the 
composition of the myocardium to provide diagnostic 
information for potential differential diagnoses including 
athlete’s heart, hypertensive heart disease, valvular heart 
disease, and infiltrative cardiomyopathies (33).

CMR is an important alternative to cardiac biopsy in the 
diagnosis of cardiac amyloidosis. It has been reported to 
have approximately 100% sensitivity and 80% specificity for 
diagnosis of cardiac amyloidosis (34). LGE patterns on CMR 
in patients with cardiac amyloidosis are variable, and inversion 
times to null the myocardium are also variable in these 
patients. A global subendocardial circumferential pattern (that 
is generally arc shaped or annular and does not correspond 
to a particular coronary artery territory) of LGE has been 
reported as being the most frequent pattern observed 
in patients with biopsy-proven cardiac amyloidosis (35).  
Other patterns of LGE in cardiac amyloidosis include a zebra 
pattern of subendocardial and subepicardial fibrosis and a 
diffuse homogeneous enhancement (T1-mapping may assist 
in detection of this pattern) (35).

Arrhythmogenic cardiomyopathy (previously known 
as arrhythmogenic right ventricular cardiomyopathy) is a 
genetic cardiomyopathy that may involve both ventricles, 
but generally has its predominant effect on the right 
ventricle (36). A commonly used set of diagnostic criteria for 
this condition (37) includes several CMR features as major 
criteria for diagnosis. These criteria include regional right 
ventricular akinesia, dyskinesia, or dyssynchronous right 
ventricular contraction and one of the following criteria (end 
diastole): right ventricular end-diastolic volume/BSA >110 
mL/m2 (male) or ≥100 mL/m2 (female), or right ventricular 

ejection fraction ≤40%. Tissue characterisation modalities 
are often not sensitive or specific enough to guide diagnosis 
of arrhythmogenic cardiomyopathy, because the fibrofatty 
infiltration present in this condition may not result in a 
readily seen area of LGE and because the presence of right 
ventricular LGE may be seen in other conditions (36).

CMR is also of benefit in the diagnosis of various 
inflammatory and infiltrative cardiomyopathies, such as 
cardiac sarcoidosis, cardiomyopathies related to other 
systemic autoimmune conditions, Fabry’s disease, and 
iron deposition cardiomyopathy. Tissue characterisation 
modalities are of particularly utility in diagnosing 
these conditions, for example, unique distribution of 
LGE in cardiac sarcoidosis and other autoimmune 
cardiomyopathies, T1 mapping in Fabry’s disease, and T2* 
relaxation times in iron deposition cardiomyopathy (31).

Ischemic heart disease

CMR allows accurate identification of cardiac anatomy, bi-
ventricular function, viability, and myocardial perfusion, 
so has been broadly applied to the assessment of ischemic 
heart disease (38). Moreover, it can differentiate acute and 
chronic infarction from other causes of chest pain, including 
peri-myocarditis and aortic dissection (39). 

In acute myocardial infarction (MI), a short tau inversion 
recovery sequence (T2-weighted) is performed to assess 
edema secondary to myocardial injury (38). Edematous 
myocardium displays increased signal intensity (bright), 
which can be detected as early as 30 minutes from symptom 
onset. It represents the ischemic area at risk (AAR), which 
is a significant determinant of infarct size and clinical 
outcome. This tissue response has been shown to increase 
the risk of adverse cardiovascular events, irrespective 
of revascularization (40). Early coronary reperfusion 
strategies reduce mortality by increasing the size of salvaged 
myocardium, defined as the proportion of AAR that does 
not become necrotic which is shown as late gadolinium 
enhancement (41,42).

Despite successful reperfusion of patients with ST-
segment elevation myocardial infarction (STEMI), there 
may be a ¨no-reflow¨ phenomenon with absent or inadequate 
distal myocardial flow on coronary angiography. On CMR 
it is identified as microvascular obstruction (MVO) or intra-
myocardial haemorrhage (IMH). The former is shown with 
LGE as a region of hypo-enhancement within the hyper-
enhanced area infarct zone (Figure 7) (43,44). The latter can 
easily be detected as a dark core on T2-weighted images. 

Figure 6 Gradient echo with SSFP at 1.5 T showing hypertrophic 
cardiomyopathy with asymmetrical wall thickening (white line) and 
left ventricular outflow tract obstruction (arrow).
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Figure 7 Evolutionary changes of myocardial infarction. (A) Short-axis T2-weighted short tau inversion spin echo imaging show edema of 
the inflamed myocardium in the anteroseptal wall (white arrow). (B) Short-axis phase-sensitive inversion recovery (PSIR) sequence reveals 
presence of myocardial infarction (MI, upper arrow) with large area of late microvascular obstruction (LMVO, lower arrow); (C) short-
axis T2-weighted sequence 5 months after MI, with no evidence of edema; (D) short-axis PSIR illustrating the MI scar (arrows), without 
evidence of LMVO.

Both are associated with poor prognosis (40).
In chronic ischemic heart disease, CMR has become the 

gold standard method for detecting myocardial scar (45). 
LGE with hyperintense signals are prominent in infarcted 
myocardium, and this can extend from the subendocardium 
to epicardium with transmural fibrosis (Figure 8). While 
CMR provide prognostic information, it also offers an 
assessment of myocardial viability (40). The likelihood of 
functional recovery post-revascularization becomes evident 
when at least 50% of the myocardium thickness is viable 
(46,47).

Compared to other non-invasive functional tests such 
as exercise stress echocardiography or nuclear imaging, 
CMR provides a substantially better temporal and spatial 
resolution which translates in better sensitivity, specificity, 
positive and negative predictive values for assessing 

myocardial ischemia, without the limitations associated with 
poor echo windows (28,48,49). 

Valvular heart disease

CMR techniques provide information on valvular pathology, 
with recent developments in this area. Assessment of valve 
structure and function is possible using CMR, including 
valve leaflets, valve tumours, and, less so, endocarditis (50).  
Cine images using bright-blood SSFP can be used, as 
can T1 and T2 weighted turbo-spin echo (black-blood 
technique) (51). Valvular areas by planimetry can also be 
assessed using CMR (50). Quantitative measures of aortic 
and pulmonary valvular functions can be assessed using flow 
velocity mapping with cine SSFP. However, the less rigid 
tricuspid and mitral valves are prone to motion artefact and 
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their quantitative function is assessed indirectly through 
volume changes in the corresponding ventricular inflow 
and outflow (Figure 9). Ventricular volumes, atrial size, and 
ventricular wall thickness can be indicators of severity of 
valvular pathology (51).

2D phase contrast flow imaging can provide useful 
information relevant to valve function and pathology (52). 
Assessment of peak velocity, peak pressure gradient, and 
regurgitant volume are possible with 2D phase contrast 
flow imaging, assisting in the evaluation of valvular 
stenosis and regurgitation (50). Flow visualisation of venae 
contracta and regurgitant jets is also feasible with CMR (51). 
Accurate placement of the 2D acquisition near the level 

of the aortic valve in the assessment of the aortic stenosis 
remains difficult, and the peak velocity in aortic stenosis 
is often underestimated on CMR (52). 4D flow MRI is a 
more recent technique and can provide comprehensive 
information on blood flow dynamics. Difficulties with 
assessing aberrant jets in aortic stenosis are more likely to 
be overcome with 4D flow MRI than 2D phase contrast 
flow imaging (52).

However, as the cine images are taken over multiple 
cardiac cycles, spatial resolution is reduced and accurate 
assessment of small, highly mobile structures can be 
difficult. Echocardiography in real-time remains useful for 
assessing valvular anatomy and function in clinical practice. 

Pericardial disease

CMR is globally the most appropriate technique to 
evaluate the pericardium. It provides information about 
pericardium morphology and surrounding structures; tissue 
characterization, evaluation of pericardial mobility and 
fusion of pericardial layers (53).

To visualize the hearts anatomy, the pericardium, and 
mediastinal structures, black-blood T1-weighted spin-
echo sequence and bright-blood cine SSFP imaging are 
often used (Figure 10) (54,55). A normal pericardium 
appears as a smooth and curvilinear structure with an 
intermediate-to-low signal, which is surrounded by high-
signal epicardial and mediastinal fat. Normal pericardial 
thickness is less than 2 mm while greater than 4 mm of 
thickening is considered abnormal (56). T2 weighted spin-
echo imaging, preferably performed by using a short-tau 
inversion recovery sequence provides better visualisation of 
pericardial fluid and/or adjacent myocardial inflammation 
in patients with inflammatory pericarditis (Figure 11) 
(57,58). LGE can diagnose the extent of myo-pericardial 
inflammation/necrosis (59). The sensitivity of pericardial 
LGE for detection of pericardial inflammation is high with 
reported values of 95% (60). 

Other pericardial diseases,  such as constrictive 
pericarditis, can be assessed using real-time, free breathing 
sequences to evaluate constrictive physiology. During 
pericardial constriction, right and left ventricular pressures 
are equalized leading to diastolic interventricular septal 
displacement towards the left ventricle during inspiration 
when venous blood inflow to the right ventricle is increased 
(see Figure 12) (61). There is tethering and restricted 
ventricular expansion adjacent to thickened areas, which 
can be assessed with MR tagging techniques. Nonetheless, 

Figure 8 Vertical long axis late gadolinium image at 1.5 T, acquired 
10 minutes post-gadolinium administration demonstrating wall 
thinning and 50% to 75% transmural LGE in the mid to apical left 
ventricle (arrow) consistent with previous left anterior descending 
infarction.

Figure 9 1.5 T gradient pulse echo with SSFP showing mitral 
regurgitation (small arrow) into a dilated left atrium. A small 
pericardial effusion (large arrow) also noted. 
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A B C

Figure 10 SSFP imaging of a severe-sized pericardial effusion that is homogenously high in signal (white arrows). (A) Vertical long-axis; (B) 
short-axis through the mid-cavity level of the left ventricle; (C) horizontal long-axis shows collapse of the right atrium during diastole. 

Figure 11 Acute pericarditis. (A) Short-axis, (B) vertical long-axis, (C) horizontal long-axis T2-weighted short tau inversion-recovery spin-
echo MR imaging show edema of the inflamed pericardial layers (arrows), (D) short-axis, (E) vertical long-axis, (F) horizontal long-axis late 
gadolinium-enhanced MR images show myocardial enhancement (arrowheads).

A B C

D E F

calcium within the pericardium is difficult to appreciate 
on CMR due to the signal loss in an already hypointense 
structure. Pericardial calcifications can also be visualised on 
CMR but CT imaging is preferred (53). 
Future direction

Long acquisition times, ghosting artefacts, and irregular 
cardiac and respiratory motion limits the utility of CMR. 
Numerous technological advances are underway to 
overcome these barriers. The 3 and 7 T magnets provide 
better signal-to-noise ratio with improved spatial and 
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temporal resolution, resulting in clearer images, but 
interferes more with EKG gating (62) and adjustments to 
radiofrequency pulses are required to reduce artefacts (16). 
Acoustic (phonocardiogram) gating has been previously 
proposed to improve image quality in patients with 
arrhythmias, but have not made promising results with 1.5 
T magnets. With increasing EKG interference in 3 T and 
7 T magnets, acoustic gating may provide an alternative in 
higher magnetic fields. 

Cardiac motion gating is promising and its development 
is targeted at overcoming challenges in coronary MRA. 
Free-breathing respiratory-gated diaphragmatic navigation 
has been used to track the displacement of the right 
hemidiaphragm to indirectly predict the respiratory 
motion of the heart in a one-dimensional superior-inferior 
direction (63). This generates a narrow gating window at 
end expiration for image acquisition. This method reduces 
ghosting artefact but at the expense of prolong scanning time 
(64,65). Multiple advanced motion correction techniques 
using 2-, 3-dimensional self-navigation gating systems have 
been developed for image reconstruction (66-72). These 
techniques use low resolution 2D or 3D localizing images 
immediately before each image sequence to correct for beat-
to-beat translational motion (73). Using 3D localization, 
compressed sensing and 3D SSFP, MRA can achieve 
resolution of 1.2 mm3 with shortened scanning time (69). 
Although these studies are small, they provide promising 
foundation for further developments in coronary MRA. 

Hybrid PET/MR imaging have been explored in 
the research domain for its potential in providing both 
biochemical and anatomical assessment of coronary 
atherosclerosis, myocardial inflammation, infiltrative 

diseases, and cardiac masses (74,75). Novel tracers including 
18F-sodium fluoride and 18F-fluoro-deoxyglucose (18F 
FDG) have been studied but further validations are 
required. Interventional CMR have been proposed but 
preliminary barriers include configuring the interventional 
suite with MR-conditional and MR-safe equipment (76). 

Conclusions 

CMR has many advantages over conventional cardiac 
investigations, as a non-invasive measure of cardiac 
structure, function, tissue characterisation and metabolism, 
so great potential for expanding diagnostic and research 
indications in cardiology. CMR has become an instrumental 
tool for the evaluation and management of patients with 
structural heart disease, permitting an accurate diagnosis 
and reducing the need for invasive investigations. 
Challenges remain, including reducing the time of scan 
acquisitions and costs, to permit this technique to be 
routinely available worldwide.
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