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Abstract
We and others have previously demonstrated the potential for circulating exosome microRNAs to aid in disease diagnosis.
In this study, we sought the possible utility of serum exosome microRNAs as biomarkers for disease activity in multiple
sclerosis patients in response to fingolimod therapy. We studied patients with relapsing-remitting multiple sclerosis prior to
and 6 months after treatment with fingolimod. Disease activity was determined using gadolinium-enhanced magnetic
resonance imaging. Serum exosome microRNAs were profiled using next-generation sequencing. Data were analysed
using univariate/multivariate modelling and machine learning to determine microRNA signatures with predictive utility.
Accordingly, we identified 15 individual miRNAs that were differentially expressed in serum exosomes from post-
treatment patients with active versus quiescent disease. The targets of these microRNAs clustered in ontologies related
to the immune and nervous systems and signal transduction. While the power of individual microRNAs to predict disease
status post-fingolimod was modest (average 77%, range 65 to 91%), several combinations of 2 or 3 miRNAs were able to
distinguish active from quiescent disease with greater than 90% accuracy. Further stratification of patients identified
additional microRNAs associated with stable remission, and a positive response to fingolimod in patients with active
disease prior to treatment. Overall, these data underscore the value of serum exosome microRNA signatures as non-
invasive biomarkers of disease in multiple sclerosis and suggest they may be used to predict response to fingolimod in
future clinical practice. Additionally, these data suggest that fingolimod may have mechanisms of action beyond its known
functions.

Keywords Multiple sclerosis . Gene expression . ExosomemicroRNAs . Fingolimod . Biomarker

Molecular Neurobiology (2020) 57:1245–1258
https://doi.org/10.1007/s12035-019-01792-6

Saeideh Ebrahimkhani and Heidi N. Beadnall are equal authorship
contribution.
Michael E. Buckland and Fatemeh Vafaee are equal authorship
contribution.

* Fatemeh Vafaee
f.vafaee@unsw.edu.au

Saeideh Ebrahimkhani
sebr0530@uni.sydney.edu.au

Heidi N. Beadnall
heidi@sydneyneurology.com.au

Chenyu Wang
chenyu.wang@sydney.edu.au

Catherine M. Suter
cathsuter@outlook.com

Michael H. Barnett
michael@sydneyneurology.com.au

Michael E. Buckland
michael.buckland@sydney.edu.au

1 Department of Neuropathology, Royal Prince Alfred Hospital,
Camperdown, NSW, Australia

2 Brain and Mind Centre, University of Sydney, Camperdown, NSW,
Australia

3 Sydney Medical School, University of Sydney, Camperdown, NSW,
Australia

4 Department of Neurology, Royal Prince Alfred Hospital,
Camperdown, NSW, Australia

5 Division of Molecular Structural and Computational Biology, Victor
Chang Cardiac Research Institute, Darlinghurst, NSW, Australia

6 Faculty of Medicine, University of New South Wales (UNSW
Sydney), Kensington, NSW, Australia

7 School of Biotechnology and Biomolecular Sciences, University of
New South Wales (UNSW Sydney), 2106, L2 West, Bioscience
South E26, UNSW, Sydney, NSW 2052, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-019-01792-6&domain=pdf
http://orcid.org/0000-0002-7521-2417
mailto:f.vafaee@unsw.edu.au


Introduction

The majority of patients diagnosed with multiple sclerosis
(MS) will have a relapsing-remitting course of disease
(RRMS) that can vary significantly between individuals [1,
2]. Monitoring of disease activity is largely achieved via
self-reporting, and composite surveillance including clinical
examination and neuroimaging. Assessing the efficacy of
any therapeutic agent in RRMS is similarly complex and cost-
ly. In recent years, a wider range of disease-modifying thera-
pies to treat relapsing MS have become available [3, 4].
Fingolimod (marketed as Gilenya®) is a structural analog of
sphingosine 1-phosphate (S1P) that acts as a S1P receptor
modulator preventing lymphocyte egress from lymph nodes
and was the first oral treatment approved for RRMS in 2010
[5–7]. There is currently no definitive blood test that would
simplify the management of MS, in terms of reliably indicat-
ing disease activity and/or treatment response. However, re-
cent research implicates circulating nanoparticles, called
exosomes, as promising candidates.

Exosomes are small (~ 100 nm) membrane-bound vesicles
that are constitutively released from seemingly all cells in the
body; they contain a complex molecular cargo of proteins and
nucleic acids from the cell of origin. Exosomes are thus com-
ponents of all biological fluids, and exosomes secreted from
many different tissues can be found in the peripheral circula-
tion. Exosome biogenesis and secretion is tightly regulated,
but in pathological states such as inflammation or neoplasia,
exosome release appears upregulated. Remarkably, exosomes
can also traverse the blood-brain barrier, raising the possibility
that exosomes in the peripheral circulation may carry a signa-
ture of CNS pathology.

Exosomes are typically rich in small non-coding RNA cargo,
in particular the well-studied microRNA (miRNA). Previous
studies of MS have demonstrated miRNA dysregulation in mul-
tiple immune cell types, as well as whole plasma/serum, and
cerebrospinal fluid [8–15]. We have previously found that puri-
fied exosomes from MS patients’ sera also carry aberrant
miRNA profiles, and that these are influenced by MS disease
stage [8]. Whether serum exosome miRNA profiles are altered
with disease activity and in response to successful pharmacolog-
ical treatment of MS is currently unknown. Here, we have ad-
dressed these questions by studying the miRNA profiles of se-
rum exosomes from patients with both active and quiescent
RRMS prior to treatment with fingolimod and 6 months follow-
ing. Machine learning techniques were applied to exosome
miRNA data to identify miRNA signatures that are predictive
of disease activity, and to reveal critical miRNAs involved inMS
response to an immunomodulatory therapy. Integrative bioinfor-
matics were used to uncover the potential functions of the iden-
tified miRNAs, providing a better understanding of MS
immunopathogenesis and the action and metabolism of a suc-
cessful pharmacological treatment.

Patients and Methods

Study Population and Clinical Characterization

RRMS patients naïve to fingolimod were recruited from the
Royal Prince Alfred Hospital MSClinic at the Brain andMind
Centre, University of Sydney, Australia. Criteria for inclusion
were a diagnosis of relapsing-remitting MS (2010 McDonald
criteria)[16], age between 18 and 60 years, and an expanded
disability status scale (EDSS) score [17] of less than 6.5.
Exclusion criteria were previous cladribine, fludarabine, or
alemtuzumab; previous total body irradiation; immunosup-
pressant agents within the last 6 months; steroids, interferon-
beta, glatiramer acetate, or any other concomitant immuno-
modulatory agent in the previous 30 days. Written informed
consent was obtained from each patient. Ethical approval for
the study was obtained from the University of Sydney Human
Research Ethics Committee (2014/054).

All patients were clinically assessed by a neurologist
(HNB, MHB) prior to commencement of fingolimod, and
then at 6 and 12 months following. Demographic and MS
disease-related data was documented at baseline and follow-
up, and included clinical relapse information and EDSS
scores. Brain magnetic resonance imaging (MRI) was per-
formed using the same 3T General Electric MR750 scanner
and the same acquisition protocol at all time points for all
patients. The post-gadolinium T1-weighted sequence (T1)
was used to assess the presence or absence of gadolinium
(Gd) enhancing lesions, and this data was subsequently used
to determine the presence or absence of disease activity
[18–21]. Whole blood was collected from each patient at the
same visit, at baseline and at 6 months. Blood was processed
immediately by centrifugation and serum stored for exosome
purification.

Exosome Purification and MicroRNA Profiling

Serum (1 mL from each individual) was treated with RNaseA
to remove any non-exosomal RNA in the serum prior to
exosome isolation by size exclusion chromatography, as pre-
viously described [8]; exosome purity and quantity were char-
acterized and validated by nanoparticle tracking analysis,
transmission electron microscopy, and western blotting as
per international guidelines [22]; the adopted procedure is
detailed in our former work [8]. RNAwas isolated from puri-
fied and validated exosomes using the Plasma/Serum
Circulating & Exosomal RNA Purification Kit (Norgen
Biotek) and quality controlled for typical exosomal RNA pro-
file with an Agilent 2100 Bioanalyser on a Eukaryote Total
RNA chip. Barcoded sequencing libraries were prepared from
the RNA as previously described [8]. Libraries were pooled
and sequenced on an Illumina HiSeq 2000 System.
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Data Pre-Processing and Differential Expression
Analysis

Data pre-processing was performed using a pipeline compris-
ing of adapter trimming (cutadapt), followed by genome
alignment to human genome hg 19 using Bowtie (18 bp seed,
1 error in seed, quality score sum of mismatches < 70). Where
multiple best strata alignments existed, tags were randomly
assigned to one of those coordinates. Tags were annotated
against mirBase 20 and filtered for at most one base error
within the tag. Counts for each miRNA were tabulated and
adjusted to counts per million miRNAs passing the mismatch
filter. All samples achieved miRNA read counts > 45,000;
miRNAs with low abundance (< 50 rpm across more than
20% of samples) were removed.

Normalization and differential expression analysis were
performed using RNA-seq analys is tools in the
Bioconductor “limma” package. Read counts were first con-
verted to log2-counts-per-millions to stabilize variances at
high counts. Themean-variance relationship was then estimat-
ed at the individual observation level [23] to adjust for differ-
ent count sizes across samples and combined with sample-
specific quality weights to down-weight outlier samples
[24]. The transformed read counts were then entered into the
standard limma empirical Bayes method pipeline for differen-
tial expression analysis estimating moderated t-statistics and
the corresponding p values [25]. In any comparison, differen-
tially expressed miRNAs were identified as those whose p
value was < 0.05 with fold change doubled in either direction
(i.e., |log2(fold change)| ≥ 1).

Univariate and Multivariate Modelling

Logistic regression (LR) was used to identify linear predictive
models with each miRNA as the univariate predictor. The
quality of each model was depicted by the corresponding re-
ceiver operator characteristic (ROC) curve, which plots the
true positive rate (i.e., sensitivity) against the false-positive
rate (i.e., 1-specificity). The area under the ROC curve
(AUC) was computed and 95% confidence intervals estimated
using the method of Delong [26]. ROC curves were smoothed
using Tukey’s method for presentation [27]. The predictive
power of combinations of multiple miRNAs as multivariate
signatures of MS activity was assessed using Random Forest
(RF) modelling [28]. We used out-of-bag (OOB) error as an

Table 1 Patient demographics

Characteristic Value

Number of patients 29

Gender, male/female (%) 12/17 (41/59)

Average age at diagnosis, years ± SD 33.7 ± 9.9

Average disease duration, years (range) 4.9 (0.1–26.5)

Average age at study baseline, years ± SD 38.6 ± 10.2

Active disease at baselinea, n (%) 14 (48)

Active disease at 6 monthsa, n (%) 8 (28)

Average EDSS at baseline ± SD 1.7 ± 1.3

Average EDSS at 6 months ± SD 1.4 ± 1.3

SD standard deviation, EDSS expanded disability status scale
a Determined by presence of Gd-enhancing lesions on MRI

Table 2 MicroRNAs with
significant expression differences
between active and quiescent
RRMS patients after 6 months of
fingolimod treatmenta

MicroRNA Log2 FC Average expressionb p value AUC (95% CI)

1246 2.137 4.855 0.00003 0.911 (0.789 1)

379-5p 1.417 8.887 0.00063 0.813 (0.628 0.997)

134-5p 1.28 8.926 0.00084 0.786 (0.594 0.977)

370-3p 1.335 8.347 0.00106 0.786 (0.596 0.976)

382-5p 1.297 9.333 0.00233 0.777 (0.576 0.978)

493-3p 1.205 6.497 0.00234 0.759 (0.55 0.968)

432-5p 1.387 8.777 0.00241 0.768 (0.57 0.966)

375 1.213 5.692 0.00315 0.768 (0.567 0.968)

485-5p 1.044 5.689 0.00453 0.786 (0.589 0.982)

411-5p 1.047 6.577 0.00809 0.723 (0.502 0.944)

323b-3p 1.029 8.126 0.00921 0.741 (0.508 0.974)

889-3p 1.033 6.727 0.01083 0.759 (0.484 1)

19b-3p −1.052 7.464 0.0212 0.768 (0.567 0.969)

122-5p 1.01 12.679 0.0242 0.652 (0.406 0.898)

127-3p 1.017 7.894 0.02438 0.759 (0.558 0.96)

FC fold change, AUC area under the ROC curve, CI confidence interval
a Only miRNAs meeting the log2 FC threshold of > 1 are shown
b Log2 reads per million
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unbiased estimate of the validation set prediction error as im-
plemented by the R “randomForest” package.

Functional Predictions and Enrichment Analysis
of MS-Associated MicroRNAs

Pathway and gene ontology enrichment analysis was per-
formed on targets of the identified exosomal miRNAs.
Molecular Signatures Database (MSigDB) [29], version 6.1,
was used to retrieve KEGG pathways (186 pathways on
12,875 genes), Reactome pathways (674 pathways on
37,601 genes), and gene ontology (GO) biological processes
(4436 GO terms on 506,182 genes). Human miRNA targets
were retrieved from publicly available datasets of experimen-
tally validated and predicted datasets using multiMiR v2.2
[30]. MultiMiR is a miRNA-target interaction R package
and database which compiles nearly 50 million records in
humans and mice from 11 different databases. Targets of
miRNAs under study were included if experimentally validat-
ed or predicted by at least two databases. Pathway enrichment
analysis of targets was achieved using the right-sided Fisher’s
exact test. Nominal p values were adjusted for multiple hy-
pothesis tests using Benjamini and Hochberg (FDR)
correction.

Similarly, miRNA enrichment analysis was performed
using the right-sided Fisher’s exact test whose p value for
the null hypothesis is computed based on the hypergeometric
distribution:

p ¼ 1
N
n

� � ∑
i¼n

i¼k

n
i

� � N−K
n−i

� �
;

where N is the total number of target genes annotated in
multiMiR, n is the number of all up/downregulated genes (in
MS brain lesions, c.f. “Results”), K is the total number of
genes targeted by the miRNA as annotated in multiMiR, and
k is the number of target genes inversely regulated by the

miRNA of interest—i.e., total number of downregulated
genes targeted by an upregulated miRNA or vice versa; in-
verse regulation was considered to capture miRNA primary
function of gene silencing. The nominal p values were adjust-
ed for multiple hypothesis testing using Bonferroni correction.
Enrichment analyses were implemented in R using “stats”
packages.

Results

Patient Characteristics and Data Pre-Processing

Twenty-nine RRMS patients, whose relevant demographics
are shown in Table 1, were included in the study. An unbiased
high-throughput sequencing on serum exosome miRNAs was
performed, capturing the complete profile of miRNAs in pa-
tients’ sera. Size exclusion chromatography was used for
exosome isolation coupled with RNAse treatment of extracts
to interrogate exosomal-associated miRNAs as a source of
biomarkers distinct from free circulating miRNAs [8].
Transmission electron microscopy was adopted to represent
close-up images of single exosomes and nanoparticle tracking
analysis to provide an overview of size distribution and con-
centration of isolated exosomes. These analyses revealed a
population of nanovesicles with a predominant size of
95 nm and cup-shaped morphology typical of exosomes.
Western blotting confirmed that the isolated particles
expressed characteristics of exosome markers. RNA extrac-
tion from each sample yielded the typical RNA profile for
exosomes, with the absence ribosomal RNA and enrichment
of small (< 200 nt) RNA species.

The expression profiles of exosomal miRNAs, as deter-
mined by deep sequencing, were analysed at two distinct time
points, i.e., baseline, when the patients were treatment-naïve,
and 6 months after the commencement of immunomodulatory
therapy with fingolimod. A total of 1924 miRNAs were
screened for each sample; all samples achieved miRNA read
counts > 45,000. For each comparison, miRNAs with low
abundance (< 50 read counts across more than 20% of sam-
ples) were removed, retaining around 11–12% of miRNAs in
any comparison. Read counts were normalized to adjust for
RNA and sample-level biases. There were no significant dif-
ferences in age (using Mann–Whitney U non-parametric test)
and gender (using Fisher’s exact test) between any two groups
compared in this study.

Serum Exosome MicroRNA Signatures in RRMS
Before and After Fingolimod Treatment

We first sought a circulating exosome miRNA signature of
disease activity in patients before they commenced
fingolimod. At this baseline, differential expression analyses

�Fig. 1 Exosomal miRNAs as markers of disease activity. a Box-and-
whisker plots represents expression normalized values (i.e., log2-
transformed reads-per-million) of exosomal miRNAs significantly altered
in post-treatment active versus quiescent patients as determined by Bayes
moderated t test with |log2 (fold change)| > 1 and p value < 0.05. b To
examine the predictive power of each dysregulated miRNA, logistic re-
gression and receiver operator characteristic (ROC) analysis was per-
formed on individual miRNAs. Area under the ROC curve (AUC) was
measured and the corresponding 95% confidence intervals were then
computed for each miRNA. Eleven miRNAs with AUC confidence more
than 0.5 were considered as statistically accurate univariate predictors of
MS disease activity. c Random forest (RF) model was run using all pos-
sible combinations of those 11 miRNAs to assess whether signatures of
multiple miRNAs would improve the predictive power as determined
out-of-bag error rates of the corresponding multivariate RF models. A
combination of two or three miRNAs provided a predictive power of
92% for disease activity
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revealed 12 miRNAs with significant differences (p < 0.05)
between those patients with active (n = 14) versus quiescent
(n = 15) disease. However, only two of these miRNAs, miR-

194-5p (p = 0.0065, log fold change = 1.12) and miR-374a-5p
(p = 0.0131, log fold change = 1.18), had changes in abun-
dance that met the stringent thresholds (log2 fold change >
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1). Six months after fingolimod treatment, the number of
miRNAs with significant differences in abundance (log2 fold
change > 1 and p < 0.05) increased to 15 (Table 2). Most of
these miRNAs (14/15) were “positive” biomarkers of active
RRMS: that is, their abundance was greater in patients with
active disease (Fig. 1a). The increase in the number of differ-
entially expressed miRNAs after treatment is reminiscent of a
previous report of the effects of interferon-β on miRNA [9],
where administration of medication elicited a reduction in
within-group variation. We thus measured the variance in ex-
pression of each miRNA across samples within active and
quiescent cohorts, both before and after treatment. The mean
variance was reduced significantly in both quiescent and ac-
tive patients after fingolimod compared to baseline (p =
1.571e−05 for quiescent, p = 0.0207 for active; Mann–
Whitney U test). Accordingly, the heteroscedasticity of
miRNA expression values was reduced with fingolimod ther-
apy, improving statistical hypothesis testing (reducing type II
error). Hence, further analyses were focused on the 15
miRNAs that differed between active and quiescent RRMS
post-fingolimod treatment.

The predictive power of each miRNA was assessed using
univariate logistic regression. Receiver operator characteristic
(ROC) curves (generated by plotting the true positive rate
against the false-positive rate; Fig. 1b) and subsequent mea-
surement of the area under the ROC curve (AUC) revealed
that four of the 15 miRNAs had 95% confidence intervals that
overlapped that of a random prediction (Fig. 1c). The remain-
ing 11 miRNAs (miR-1246, -127-3p, -19b-3p, -134-5p, -370-
3p, -375, -379-5p, -382-5p, -432-5p, -485-5p and -493-3p)
were considered as statistically accurate univariate predictors
of MS activity, with ROC AUC ranging from 0.65 to 0.91.
These miRNAs were considered suitable for assessment in
multivariate analyses to ask whether combinations of
miRNAs could improve accuracy.

Random forest (RF) modelling on all possible combina-
tions of 11 miRNAs was performed, trialling a total of 2037

signatures comprising 2 to 11 miRNAs. Remarkably, the out-
of-bag error rates indicated three combinations of only two
miRNAs (miR-432-5p and miR-485-5p) or three miRNAs
(miR-432-5p, -485-5p, -375 and miR-432-5p, −485-5p,
−134-5p) assigned individuals as having active or quiescent
RRMS with > 90% accuracy (Fig. 1d). Including more than
three miRNAs in the signature did not improve accuracy be-
yond 92%.

Functional Characterization of MicroRNAs Associated
with MS Activity

Gene targets of miRNAs altered in active versus quiescent
RRMS were retrieved from multiple miRNA-target interac-
tion databases, and 4650 targets that are either experimentally
validated or computationally predicted in at least two datasets
were selected. To enhance the specificity of targets and sub-
sequent functional analysis, a gene expression profile of post-
mortem MS brain tissues derived from histopathologically
defined active and inactive lesions [10] was obtained from
NCBI GEO. Genes differentially expressed in chronic active
versus inactiveMS lesions were identified (i.e., p < 0.05 using
limma moderated t test on normalized gene expression data
retrieved from GSE108000) and overlapped on miRNA tar-
gets resulting in 153 upregulated and 102 downregulated tar-
get genes. These genes were considered asMS-specific targets
of the identified exosomal miRNAs and underwent functional
enrichment analysis for gene ontology biological processes.
Overrepresented biological processes (FDR < 0.01) were
summarized and stratified under four relevant categories of
immune system, nervous system, signal transduction and bio-
logical regulation by consulting gene ontology hierarchy re-
vealing multiple biological processes implicated in MS path-
ogenesis (c.f. “Discussion”). Networks of dysregulated
miRNAs interacting with the target genes down- or upregu-
lated in MS lesions are shown in Fig. 2a; targets were anno-
tated with the biological processes detailed in Fig. 2b.

Tissue Specificity and Enrichment Analysis
of MicroRNAs Associated with MS Activity

To investigate whether the altered regulations of the targets in
brain lesions were likely triggered by the identified exosomal
miRNAs, we sought to demonstrate if any of the miRNAs are
predominantly regulated and thus packaged in brain, assum-
ing that brain-specificmiRNAs are more likely to target genes
altered in MS brain lesions.

Accordingly, we used human miRNA tissue atlas [31]
which reports the abundance of 1997 miRNAs in 61 tissue
biopsies of different organs collected post-mortem from two
male bodies. The database utilized a tissue specificity index
(TSI), a quantitative, graded scalar measure for the specificity
of expression of a miRNA with respect to different organs.

�Fig. 2 Predicted functional role of miRNAs associated with MS disease
activity. a The networks represent MS-associated miRNA-target interac-
tions including miRNAs differentially expressed in active versus quies-
cent phases of MS and gene targets specific to disease activity in MS
brain lesions; a public dataset (GSE108000) was used to identify genes
significantly altered in chronic active versus inactive MS lesions of post-
mortem brain tissues. Accordingly, 153 and 102 target genes identified to
be upregulated (red, right) and downregulated (blue, left) whose interac-
tions with miRNAs were visualized in separate networks to improve the
readability. Target genes were used to perform functional enrichment
analysis of biological processes. Enriched functions were categorized into
four MS-relevant categories of biological processes, i.e., immune system,
nervous system, signal transduction, and biological regulation. Targets
were annotated with biological process categories if the gene had been
annotated by at least one GO term within the associated category. bA list
of overrepresented gene ontology biological processes is shown with the
corresponding FDR values in parentheses
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Fig. 3 Tissue specificity and enrichment analysis of miRNAs associated
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expression values of the identified exosomal miRNAs across all tissues,
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and z-transformed; the profile of miR-323b-3p was not available in the
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shown next to the miRNA identifiers. c Enrichment analysis of 15
exosomal miRNAs identified to be associated with MS activity; dashed
line shows the significant cut-off of p value = 0.01; grey bars indicate
insignificance based on the selected cut-off
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The values range from 0 to 1, with scores close to 0
representing miRNAs expressed in many or all tissues (i.e.,
housekeepers) and scores close to 1 implying that miRNAs
expressed in only one specific tissue. Quantile-normalized
miRNA expression profiles across all tissues were
downloaded from the online repository (https://ccb-web.cs.
uni-saarland.de/tissueatlas); expression values on similar
tissues were averaged across two bodies. Similarly, mean
normalized TSI scores for each miRNA were obtained from
the same repository. Figure 3a shows the distribution of TSI
values across all profiled miRNAs; ~ 10% of miRNAs have
TSI ≥ 0.85 defined to be highly tissue-specific.

Of 15 exosomal miRNAs markers identified in this study,
miR-323b-3p was not profiled in the repository and thus ex-
cluded. Among the remaining miRNAs, miR-127-3p, -375, -
379-5p and -411-5p were predominantly expressed in central
nervous system, brain in particular—i.e. TSI > 0.86;miR-382-
5p, -485-5p, and -889-3p were also shown relatively high
brain-specificity—i.e. TSI > 0.77 (Fig. 3b).

Additionally, we performed miRNA enrichment analysis
on target genes inversely regulated in MS brain lesions to
tease out exosomal miRNAs that are likely to be functionally
active in brain. We performed right-sided Fisher’s exact test
on differentially expressed targets and identified statistically
enriched miRNAs (adjusted p value < 0.01). Interestingly, we
have observed that all brain-specific miRNAs were also high-
ly enriched using an independent statistical analysis (Fig. 3c)
which further corroborate their active function and reveal their
potential targets.

Serum Exosome MiRNA Alterations in Response
to Fingolimod Therapy

At baseline, 48% (14 of 29) of RRMS patients had objective
evidence of active disease (defined by the presence of Gd
enhancing lesions on MRI); 6 months post-treatment with
fingolimod, the proportion of patients with active disease fell
to 28% (8 of 29; Fig. 4a). To explore longitudinal alterations
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of exosomal miRNAs in response to fingolimod therapy,
miRNA profiles of treatment responders were compared at
baseline versus 6-month follow-up; stable responders (i.e.,
patients with no evidence of Gd-enhancing lesions at both
baseline and 6-month follow-up) and positive responders
(i.e., patients showing active Gd-enhancing lesions at baseline
and no enhancing lesions after 6 months of treatment) were
separately considered for differential expression comparison
to improve within-group homogeneity. The latter comparison
revealed that the expression levels of two miRNAs (miR-150-
5p and -548e-3p) decreased with treatment, while the expres-
sion of miR-130b-3p, -654-5p, -487b-3p increased after treat-
ment. Additionally, 11 miRNAs (miR-203a, -193a-5p, -379-
5p, -370-3p, -382-5p, -493-3p, -432-5p, -485-5p, -2110, -
1307-3p, -1908-5p) were significantly upregulated in stable
responders after 6 months of treatment (Table 3; Fig. 4b).

All patients remained on fingolimod and were clinically
assessed at 12 months following treatment initiation. While
72% of patients had no evidence of Gd-enhancing lesions on
MRI at 6 months post-treatment, this proportion increased to
90% after 12 months of treatment. Overall, the anti-
inflammatory effect of fingolimod therapy was evident after
6 months of treatment and was persistent to the 12-month time
point in patients with treatment response, except for patient 13
who demonstrated Gd-enhancing lesions on brain MRI after

12 months of fingolimod treatment. Of the eight patients who
had not responded to treatment at the 6-month follow-up, five
demonstrated a response to fingolimod after 12 months of
treatment. Subsequently, while an increased treatment course
improved the outcome as defined by fewer MS cases demon-
strating Gd-enhancing lesions on MRI, 6 months of therapy
was considered sufficient to reflect the effect of fingolimod
and the miRNA regulatory changes associated with treatment
efficacy. This observation is further corroborated by a prior
study on the effect of fingolimod on circulating miRNAs in-
dicating that the miRNA expression profile significantly
changes after 6 months of therapy [11], and by the results of
a pivotal placebo-controlled trial of fingolimod in RRMS,
which showed a beneficial effect on MRI-related outcomes
by 6 months [32].

Functional Roles of MiRNAs Altered in Response
to Fingolimod Treatment

Next, pathways associated with identified miRNAs were de-
termined to further explore how these pharmacogenomic
miRNAs are potentially involved in fingolimod action and
metabolism. Accordingly, for each differentially expressed
miRNA, target genes from multiple miRNA-target interaction
databases were retrieved if experimentally validated or com-
putationally predicted by two or more datasets (Fig. 5a).
Pathway enrichment analysis was then performed using
KEGG [33] and Reactome [34] databases comprising 860
pathways in total, to identify pathways overrepresented by
targets of each miRNA (Fig. 5b). Pathways enriched by mul-
tiple miRNAs are more robustly associated with drug-induced
perturbations. Subsequently, pathways were sorted by total
number of associated miRNAs and the top 10% of pathways
were chosen (Fig. 5c). Selected pathways were then sorted
under six general categories: immune system, nervous system,
signal transduction, lipid metabolism and signal transduction,
by consulting Reactome and KEGG pathway hierarchies (Fig.
5d).Multiple pathways relevant to the pathophysiology ofMS
and therapeutic targets were frequently enriched by miRNAs
whose expression levels were altered in response to therapy,
suggesting additional mechanisms of fingolimod action (c.f.
“Discussion”). Moreover, miR-130b-3p, -150-5p, and -2110,
directly target sphingosine 1-phosphate (S1P), enriching
known fingolimod-induced pathways such as sphingolipid
metabolism [35] and sphingolipid de novo biosynthesis [36].

Discussion

There is a growing body of evidence that highlights the regu-
latory role of miRNAs in the pathogenesis of MS and their
potential therapeutic implications [8, 11–13, 15, 37–43].
Small RNA sequencing, unlike microarray or other targeted

Table 3 MicroRNAs with significant longitudinal alterations (p value
< 0.05 and |log2 fold change| > 1) in patients stably or positively
responded to fingolimod therapy as defined by Gd enhancing lesions on
MRI

MicroRNAa Log2 FC Average
expressionb

p value

150-5p − 1.48 7.98 0.0012

130b-3p 1.53 4.57 0.0043

548e-3p − 1.14 5.14 0.0059

487b-3p 1.11 5.24 0.0275

654-5p 1.11 5.79 0.0475

432-5p 1.26 8.04 0.004

485-5p 1.17 5.35 0.006

2110 1.07 7.53 0.0071

1307-3p 1.00 10.43 0.0081

382-5p 1.09 8.79 0.0116

370-3p 1.06 7.72 0.0121

379-5p 1.01 8.18 0.0125

493-3p 1.01 6.08 0.0135

1908-5p 1.32 7.15 0.0174

193a-5p 1.05 5.73 0.0422

203a 2.02 6.5 0.0445

FC fold change
a The line separates miRNAs differentially expressed in positive (top) and
stable responders (bottom)
b Log2 reads per million
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technologies, allows an unbiased assessment of the total
miRNA pool in any given sample. Here, we used this tech-
nique to profile the miRNAs encapsulated within circulating
exosomes of RRMS patients in a search for biomarkers of
response to a common therapy. Such an approach is arguably
superior to profiling miRNAs in whole serum, particularly for
MS, as exosomes are shed from affected cells in the CNS, and
readily cross the blood-brain barrier into the circulation.

MS-associated miRNA biomarkers were identified as those
differentially expressed in Gd-MRI-based active versus quies-
cent RRMS patients. Machine learning approaches on differ-
entially expressed miRNAs were used to examine their indi-
vidual and collective predictive powers in discriminating dis-
ease activity. While some differentially expressed miRNAs
have been previously identified as circulating markers in MS
or other immunological or nervous system diseases—e.g.,
miR-375 in primary progressive MS[44], miR-1246 in an ac-
tive phase of systemic lupus erythematosus[45] and miR-19b-
3p in Alzheimer’s disease[46]—the majority of them are nov-
el. This likely reflects the unique expression profile of
miRNAs within exosomes versus free circulating miRNAs.

An integrative bioinformatics pipeline was developed to
investigate the functional role of identified miRNA markers
by constructing a network of miRNA-target gene interactions
and improving prediction specificity by considering target
genes associated with MS disease activity. Within the over-
represented biological processes, we found canonical
immune-associated pathways such as positive regulation of
interleukin 1 Beta production, which plays a role in MS-
associated neurodegenerative damage and clinical progression
[47]. Two other conspicuous enriched immune-associated
pathways were leukocyte activation and regulation of type I
interferon production. In a healthy CNS, leukocytes have lim-
ited access to the brain and spinal cord, whereas in several
neurological diseases, including MS, leukocytes infiltrate
from the periphery into the CNS resulting in inflammation
[48]. Conversely, type 1 interferon is an immunomodulatory
cytokine with anti-inflammatory effects via controlling inter-
leukin I[49]. Tissue specificity of the signature miRNAs was
investigated to discern those originated from brain as potential
direct suppressors of targets downregulated in MS brain le-
sions. SeveralMS-associated miRNA biomarkers identified in
this study were predominantly expressed in brain and spinal
cord, among them miR-375 holds the highest specificity
(TSI = 0.96) which corroborates previous observations (e.g.,
[50]).

Investigating the role of miRNAs in the pathogenesis of
MS and identifying miRNA-based pharmacogenomic
markers of treatment response is an active field of research
[11, 12, 15, 37, 38, 43]. Hence, identified exosomal
miRNAs associated with fingolimod treatment efficacy as
those miRNAs longitudinally changed in treatment re-
sponders, i.e., patients whose disease remained inactive

or become inactive after 6 months of treatment. Altered
expression and the function of some of the predicted
miRNAs have been previously reported in studies of the
peripheral blood of MS patients. The expression of miR-
130b and miR-203 was shown to be altered in B cells from
peripheral blood samples of RRMS patients [51]. In the
current study, these two miRNAs target the highest number
of genes over-representing multiple pathways involved in
immune system, nervous system, lipid metabolism as well
as critical signal transduction. The dysregulation of miR-
150 in the B cells of peripheral blood samples of MS pa-
tients following treatment with natalizumab has also been
reported [51]. Additionally, the expression of miR-150 was
downregulated in T cell [52] and peripheral blood mono-
nuclear cells (PBMC) of MS patients compared to healthy
controls [53]. The altered expression of miR-193a-5p has
been previously reported in PBMC of RRMS patients after
6 months of interferon-beta therapy [14].

Next, pathways consistently overrepresented by targets of
multiple miRNAs associated with treatment response were
identified. Multiple pathways pivotal in MS pathogenesis
and relevant to fingolimod mechanisms have been enriched.
For instance, T cell development and function critically influ-
ence disease pathogenesis and treatment response [54].
Additionally, the TGFβ signalling pathway regulates the dif-
ferentiation of naïve CD4 T cells into regulatory T cells, and a
reduction in this signalling pathway results in a fewer number
of regulatory T cells being observed in MS patients [55, 56].
Our results indicate that upregulated miRNAs in response to
fingolimod perturb the TGFβ signalling pathway, which in
turn may result in a reduced susceptibility to MS disease ac-
tivity. Another predicted pathway, the JAK-STAT pathway, has
an indirect effect on interleukin-7 expression (IL-7) which is
an important cytokine for the regulation of B cell and T cell
development and is overexpressed in MS brain lesions [57].
Another interesting and important pathway is the Wnt signal-
ling pathway, enriched by targets of seven miRNAs in this
current study. The Wnt pathway modulates the immune re-
sponse and is involved in the process of remyelination by
controlling the balance between immune tolerance/
inflammation and neuronal survival/neurodegeneration in
MS [58].

In summary, our results demonstrate that serum exosomal
miRNAs are altered by disease activity and after treatment
with fingolimod. We identified miRNAs specifically altered
in treatment responders and predicted their impact on a variety
of pivotal regulatory pathways, furthering our understanding
of MS immunopathogenesis and the action and metabolism of
fingolimod. Importantly, this work suggests that exosomal
miRNA profiles have the potential to be utilized inMS clinical
practice as biomarkers of disease activity and treatment re-
sponse to drive personalized therapeutic choices.
Longitudinal analysis of larger cohorts of RRMS patients with
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diverse patterns of response to fingolimod therapy are re-
quired to confirm our findings.
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