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Background: The transient receptor potential (TRP) ion channel family is a 

diverse group of channels gated by various physical and chemical stimuli. One 

of the members, TRPC6, is a Ca2+ permeable cation channel, which is expressed 

in ventricular cardiomyocytes (CMs). TRPC6 is gated via the G-protein-coupled 

receptor pathway leading to generation of diacylglycerol (DAG), which ulti-

mately activates the ion channel. TRPC6 can also be activated by mechanical 

force, which for example plays a significant role in mechanotransduction of the 

heart. However, it is still unclear whether TRPC6 is activated directly by mem-

brane tension (the bilayer mechanism) or its activation is mediated via other 

mechanosensitive membrane structures, such as the cytoskeleton and/or the 

extracellular matrix (the tether mechanism).  

The aim of the study:  To determine whether TRPC6 is an inherently mech-

anosensitive (MS) ion channel. 

Methods and Results: First, mechanosensitivity of TRPC6 was evaluated in 

HEK293 cells by stretching the membrane via application of negative pressure 

(suction) to a patch pipette. Spontaneously active TRPC6 channel did not re-

spond to the force. The entire-cell TRPC6 currents were revealed in the whole 

cell configuration and the channels were activated by DAG analogue. Second, 
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using a stretch device, 15% isotropic stretch was applied to the intact cells at-

tached to the bottom of stretchable PDMS chambers and Ca2+ entry via TRPC6 

ion channels was demonstrated. The effect, suggested mechanosensitive nature 

of TRPC6 channel in HEK293 cells, however, it remained unclear whether 

mechanosensitivity is inherent or promoted via other membrane components. 

To answer this question, using the purified TRPC6 protein, liposome reconsti-

tution was carried out. Spontaneous activity of the TRPC6 single channel was 

demonstrated in the liposome by the patch clamp. The channel was activated 

according to “force-from-lipids” principle; however, application of stretch did 

not change the open probability of the channel. Therefore, it has been con-

cluded that TRPC6 is not stretch activated upon application. 

Furthermore, the role of TRPC6 in cardiac hypertrophy was investigated. Im-

munostaining of TRPC6 in hypertrophic CMs revealed that the channel mi-

grates from the intracellular t-tubules to the sarcolemma. Furthermore, the im-

pact of MS channels on the Ca2+ homeostasis in the CMs was investigated. A 

new method was developed, which allowed stretching of hydrogel embedded 

CM in multiaxial (isotropic) directions and simultaneous measurement of Ca2+ 

fluorescence. Both normal and hypertrophic CMs showed a late mechanical re-

sponse 300s after the stretch. MS channels were only activated after long-term 

induced stretch, which suggests their mechanoprotective role in the heart. 

The main finding of the thesis is that the TRPC6 ion channel is not inherently 

mechanosensitive since it is unresponsive to membrane stretch; instead it is ac-

tivated by “force-from-lipids” principle without involvement of any other 

membrane components. Since abnormal TRPC6 activity is implicated in cardiac 

hypertrophy, our findings contribute to a better understanding of pathophysi-

ological mechanisms of hypertrophy and may open up new directions for ther-

apeutic strategy. 
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