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Abstract

Gene regulation in humans and other mammalian organisms is complex with many differ-
ent layers. Despite huge advances in biomedical research, our ability to build a comprehen-
sive and predictive model of gene regulation is still limited. There are increasing amounts
of public genome-wide data available, containing a wealth of untapped knowledge about
different aspects of gene regulation from across the tree of life. The main challenge and
bottleneck is integrating and analysing this data to extract insights about gene regulation.

In this thesis, I discuss the challenges pertaining to integrating data of different types,
and from different species, to better understand gene regulation. Furthermore, I present a
series of novel concepts, bioinformatics methods, software tools and case studies to address
and overcome some of these issues.

The key contributions of this thesis are:

1. Investigation and method development for constructing and analysing mammalian
gene regulatory networks

2. Approaches and tools for large scale systems integration of public data and knowledge

3. Investigation of issues and new methods for cross-species gene set analysis.
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Chapter 1

Introduction

1.1 Overview

The key motivation for this study stems from the need for statistically sound and compu-

tationally efficient bioinformatics tools to integrate the growing number of published data

sets and gain insights into gene regulation. This thesis focuses on developing and apply-

ing methods that aid the study of gene regulation in the context of biomedical research.

Specifically, this thesis aims to:

1. Improve our ability to infer and analyse reliable causal gene regulatory networks in

mammals

2. Develop tools to mine and integrate public gene expression data and functional

biological information

3. Investigate and resolve statistical issues encountered during cross-species analyses

The core themes addressed by this thesis include systems biology, integrative bioinformat-

ics analyses, gene regulation and cross-species analyses. These core themes are introduced

in this chapter.
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1. Introduction

1.2 The rise of bioinformatics

1.2.1 From molecular biology to systems medicine

The molecular approach to genetics is built on the premise that physiological and cellular

phenotype can be explained by the action of one or more genes. This rationale leads

to a strong focus on associating genes with a particular phenotype (e.g., hypertension),

biological process (e.g., ageing), or disease (e.g., cardiomyopathy). Commonly, once a can-

didate gene is identified, it is characterised (e.g., sequenced) and perturbed (e.g., through

gene knock-out) to understand its association with the phenotype of interest. Additional

experiments might be performed to assess specific functional properties of the gene and

the results are then interpreted in the context of existing knowledge about the biological

pathways and their relationship with the phenotype of interest.

This idea of associating a disease phenotype to one or several disease genes has dominated

human genetics for many years. Linus Pauling and colleagues published their seminal

paper, Sickle Cell Anemia, a Molecular Disease, over half a century ago (Pauling and

Itano, 1949), in which they identified biophysical differences in haemoglobin molecules

between healthy individuals and those suffering from sickle cell anaemia. This raised the

concept that human disease can be explained by the biophysical properties and action

of individual macromolecules (Strasser, 1999). As a result of this discovery, the focus of

human disease studies shifted towards molecular alterations, an approach that has had an

enormous impact on virtually all specialities in medicine (Trent, 2012).

Such a gene-centric approach has its merits since it allows us to focus our efforts on the

detailed molecular mechanisms involving a small number of genes that may have a direct

functional impact on a biological process or disease. However, this gene-centric view of

biological processes has its limitations and is potentially misleading, especially in studying

complex human diseases where both genes and environmental factors play important roles.

A newspaper headline such as scientists found heart disease gene is potentially misleading,

since it implies that heart disease (which itself is a heterogeneous class of diseases) can

2



1. Introduction

be understood by the actions of a gene or a small number of genes alone. One practical

limitation of focusing on a small number of genes is the restricted range of questions one

can ask about the cellular or organ-level systems properties – such as feedback control,

feedforward amplification, redundancy, robustness, hierarchy, and self-organisation. The

advances in genome-wide omic technologies and computational modelling have enabled us

to interrogate a large portion of the genome, transcriptome, and proteome in a much more

exploratory manner. This has fuelled many interesting biological questions that we could

not previously attempt to answer by reductionist approaches, leading to the emergence of

systems biology (Ehrenberg, 2003; Ideker et al., 2001; Westerhoff and Palsson, 2004).

In a systems biology approach, the first objective is to define the system being studied,

followed by characterisation of the components of the system. The next step is to examine

how these components interact, before inferring the emergent properties of the complex

network. This can uncover hidden relationships and establish global principles (MacLellan

et al., 2012).

1.2.2 Bioinformatics

As Moore’s law has continued unabated, the power of computing has continued to rise and

the associated costs to fall. At the same time, the cost of modern biological experiments

like DNA sequencing has fallen dramatically. We can currently sequence a human genome

for $1000 and in the near future this is expected to fall to $100 (Wire, 2017). This

extremely powerful technology will soon become a part of routine clinical use. This trend

is repeating throughout many modern research technologies probing the world at finer

resolutions, and together they are rapidly transforming cutting edge biomedical research

and clinical practice into very specialised fields of big data analytics. Here is where the

interdisciplinary field of bioinformatics lies, at the intersection of computer science, biology

and statistics.

There are many biological problems to which the power of computers can be applied. Aside

from repeating simple operations millions of times a second, computers allow advanced
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statistical concepts, models and simulations to be brought to bear on biological questions.

The classic bioinformatics application is sequence alignment of biomolecules, which has

been an active field of research since 1970 (Needleman and Wunsch, 1970). This ability

to automatically compare a sequence of amino-acids or nucloetides to vast databases has

facilitated countless breakthroughs, and two bioinformatics algorithms for sequence align-

ment, CLUSTAL W (Thompson et al., 1994) and BLAST (Altschul et al., 1990), are the

10th and 12th most cited scientific papers of all time (Van Noorden et al., 2014).

Combined with the explosion in DNA sequencing technology since the first human genomes

were assembled in 2003, sequence alignment has facilitated the genomics revolution. Mod-

ern DNA sequencing is predominantly performed by high throughput next generation

systems like those from Illumina, that produce gigabytes of short sequence data in a single

experiment. By aligning these millions of sequences to a reference genome, we can seek

out genetic variants and structural changes that might be linked to a disease or phenotype

of interest.

The technological paradigm of DNA sequencing followed by alignment to a reference

genome has been harnessed to measure many other things that are informationally or

spatially linked to the genome, most of which give insight into the regulation of gene ex-

pression. The most direct example is measuring gene expression activity by sequencing

cDNA libraries reversed transcribed from RNA, aligning the data back to the genome and

then quantifying how much RNA was produced from each gene. Other methods measure

how ‘open’ or active the genome is at different places, or the folded super-structure of the

chromosome, linking distal regulatory elements to their target genes. Crosslinking DNA

bound proteins to the genome and selecting only the protein of interest, allows us to pin-

point exactly where transcription factors bind the genome. Modifications to this approach

allow us to describe the chemical state of the chromatin, an important regulatory layer.

Bisulfite treatment modifies the DNA of methylated cytosines, and when combined with

sequencing is a powerful method for measuring DNA methylation, a potent regulator of

gene expression.

While very informative on their own, these assays become extremely powerful tools for
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biological discovery when performed under multiple experimental conditions, where the

results can be contrasted to reveal insights into system dynamics. A classic example

is differential expression analysis of gene expression data. This common bioinformatics

analysis often produces a list of genes that are regulated by the experimental variables,

allowing the elucidation of downstream pathways.

These concepts are based on genomic technologies, but there are other ‘omics’ as well.

Proteomics is the large scale study of proteins, as metabolomics is the study of metabolites.

Apart from the ‘omics’ there are many more areas of bioinformatics, including modelling,

simulations, image analysis and more. Additionally, a large portion of biomedical research

takes place in non-human model organisms. All of these different sources of data present

new challenges and require bioinformatics innovations to process, analyse, integrate and

interpret the data.

1.3 A systems perspective on gene regulation

It is remarkable that all cells in a multi-cellular organism contain the same genome yet

they express different sets of genes, and respond differently to the same genetic or sig-

nalling perturbation, in a highly regulated manner. Indeed it is this dynamic system of

genetic regulation that leads to the complex phenotypes, plants, animals and ecological

environments in the world today. This is very evident in the field of developmental biol-

ogy for example, which is essentially the study of growth, differentiation, patterning and

regeneration of cells, tissues and organs (Davidson, 2006).

There are many mechanisms through which cells interpret the same genome differently.

Transcription of DNA to RNA is controlled by a variety of dynamic biological processes,

including changes in the conformation of the DNA that expose some sections while hid-

ing others, and brings distal elements close together such that they interact. Chemical

modifications to the DNA molecule such as methylation, or to the histone proteins that

bind the DNA also have an effect on transcription, as do the the myriad of ways in which
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a combination of transcription factors (TFs) bind to the genome at TF-specific sequence

motifs in non-coding DNA regulatory elements.

Additional regulation occurs before messenger RNA is translated into proteins, through

alternative splicing, RNA modification and degradation. Finally the translated proteins

undergo post-translational modifications such as phosphorylation, form into complexes

and undergo conformational changes, are transported or shuttled around the cell and

sometimes degraded. The proteins form the bulk of the cellular machinery as well as the

complex signalling pathways that feed environmental information back into the regulatory

systems, allowing the cell to adapt to internal or external stimuli.

1.3.1 Epigenomics

The word ‘epigenetics’ can be literally interpreted as that which is “on top of” the genome.

This term is used to describe the physical changes that occur around the DNA molecule

that can be passed on to the next generation of cells or organisms. These changes are

what defines cellular identity and determines cell-type specific phenotype and function.

The study of these changes using genome wide techniques is called ‘epigenomics’.

Eukaryotic genomes are packaged into chromatin through interactions with histone and

non-histone chromosomal proteins along the entire length of DNA. The structure of chro-

matin is highly dynamic and is regulated through covalent modifications of histones and

other forms of chromatin remodelling during development and disease pathogenesis (Chang

et al., 2004; Han et al., 2011), thus conferring an additional level of control of gene ex-

pression. Chromatin accessibility dictates how available the DNA is to be bound by

transcription factors that can promote or inhibit transcription.

Epigenetic mechanisms are heritable and affected by nutritional and environmental factors

(Udali et al., 2013). It is the ability of epigenetic mechanisms to be stably transmitted

across cell divisions and generations of offspring that creates the diversity of multi-cellular

complex organisms. However, epigenetic inheritance also introduces potential points of

6



1. Introduction

system dysregulation, leading to disease.

Histone modifications involve the addition of chemical groups (e.g., methyl, acetyl, phos-

phate) to the N-terminus of histone proteins. These modifications, individually or in

combination, often correlate with specific genomic features such as promoters, enhancers,

transcribed regions, Polycomb associated domains, and heterochromatin. For example,

active regions such as promoters are typically marked by trimethylation of lysine 4 of

histone H3 (H3K4me3) and acetylation of lysine 27 of histone H3 (H3K27ac), while re-

pressed regions such as hetero-chromatin are marked by H3K9me3. Histone modifications

are catalysed by histone modifying enzymes including methyltransferases and acetyltrans-

ferases, while other groups of proteins read and remove these modifications.

An application of collecting histone modification data is genome-wide chromatin state

annotation, which can be applied to discover candidate regulatory elements such as en-

hancers, especially those associated with a disease. The concept of chromatin states arises

from the observation that of the possible combinations of histone modifications, only a sub-

set is confidently observed within a cell. Each unique combination of histone modifications

becomes a chromatin state, which can then be used to functionally annotate the entire

genome. Computational tools have been developed for this task, such as ChromHMM

(Ernst and Kellis, 2012) and Spectacle (Song and Chen, 2014), which are based on Hidden

Markov Models.

1.3.2 Causal gene regulatory networks

It is increasingly clear that there is a need to fully unravel cell type-specific gene regulatory

networks (GRNs) in order to understand the complex mechanisms underlying many de-

velopmental processes (Davidson, 2010; Ho, 2012; Levine and Davidson, 2005). To achieve

better understanding of complex genetic causes in organ development and diseases, we need

to take a systems approach that interrogates causal genetic regulatory relationships (e.g.,

conditional knockout of Pax9 reduces the expression of Msx1 (Kitano, 2002)). Therefore

in this thesis we will focus on the inference of causal GRNs in which each node represents
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a gene, and each edge represents a causal regulatory relationship between two genes.

The identification of causal gene regulatory relationships has a long history in the study of

mammalian organ development, despite being primarily driven by hypothesis-based candi-

date gene investigations. Over the last half a century, developmental biologists have often

used low throughput in vivo techniques such as in situ hybridisation and immunohisto-

chemistry to accurately detect spatio-temporal changes in gene expression in response to

targeted gene knock-out, knock-down or over-expression experiments. By summarising

the results of many of these experiments, we can incrementally infer reliable causal GRNs.

A classic example of this is Eric Davidson’s work on constructing and analysing GRNs in

sea urchin and other animals (Davidson, 2010; Levine and Davidson, 2005).

With the increasingly widespread availability of genome-wide expression profiling technol-

ogy, such as microarray and next-generation sequencing, we are now able to measure the

expression levels of almost all the genes in the genome simultaneously. This gave rise to

the tantalising prospect that we could infer GRNs from many expression profiles, by mea-

suring the correlation between gene activity (Bansal et al., 2007; Friedman et al., 2000).

Previous studies have shown that although network inference is partially achievable in

prokaryotic organisms, inference in eukaryotic organisms still remains a major challenge

(Marbach et al., 2010, 2012).

This thesis aims to improve our ability to infer and analyse GRNs in the mammalian

context. First it will investigate whether inference of causal GRNs based on the correlation

of expression data is achievable in a mammalian organ, by comparing a large collection

of ’gold standard’ perturbation data to GRNs inferred by applying a variety of popular

approaches to appropriate gene expression profiles. Additionally, it will develop and apply

a method for analysing directed GRNs to identify key regulators of a set of target genes.

Furthermore, it will present a tool to quickly extract many perturbation data from GEO,

and construct large reliable causal GRNs.
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1.4 Integrative bioinformatics analyses

Most complex phenotypes occur due to an interaction between multiple biological path-

ways. There is no single data type that can fully represent all aspects of these pathways.

Thus one of the ongoing challenges in bioinformatics is to intelligently integrate an in-

creasing volume and variety of data to discover more complex biological insights.

The raw data from published studies are often stored in databases, many of which are pub-

licly available. Examples of these resources include the Gene Expression Omnibus (GEO

– central repository for gene expression data, primarily from microarray studies, Barrett

et al. (2013)) and Sequence Read Archive (SRA – central repository of DNA sequencing

data, Leinonen et al. (2011)). Furthermore, the insights from studies are stored in cu-

rated knowledge-bases, including Online Mendelian Inheritance in Man (OMIM – links

genes and variants to disease phenotypes, Hamosh (2004)), Protein Data Bank (PDB –

protein sequence and structure data base, Berman et al. (2000)) and Gene Ontology (GO

– associations between genes and biological processes, cellular compartments and molec-

ular function, Ashburner et al. (2000)). Additionally, large scale projects compile huge

amounts of related data into one place, like the ENCODE projects and Human Epige-

nomics Roadmap (Bernstein et al., 2010; Dunham et al., 2012; Yue et al., 2014). These

publicly available databases and resources are a key strength of modern bioinformatics re-

search and allow exploratory analyses to reveal huge amounts of information very quickly.

Often gene set analysis (GSA) is the first step in an exploratory analysis of a genome-wide

data set. The ability to represent information from many varied biological assays as sets of

genes makes GSA a popular integrative analysis framework. Typically, a set of genes (i.e.

differentially expressed genes) is first identified by applying some statistical test on the raw

or processed data, then this set of genes is compared against a database of gene sets, such

as those derived from GO annotations or known molecular or signalling pathways. This

generates rapid insights into which previously discovered biological signals are represented

within a data set. Many statistical methods have been adopted or developed to perform

GSA, including the Fisher’s exact test and its variants (Huang et al., 2009; Rivals et al.,
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2007).

1.4.1 Integrative analysis for disease gene variant prioritisation

When searching for the genetic cause of a disease, a whole-exome sequencing experiment

may return hundreds of predicted deleterious variants, and thus there is an urgent need

to intelligently prioritise these variants for functional investigation in the laboratory. In

the past, gene prioritisation was done manually and relied mainly on individual, domain-

specific expertise. This approach is clearly hard to scale up to the genome-wide level.

Most current variant prioritisation pipelines will compare the results to a disease database

such as OMIM, and try to focus the search at the gene level. Unfortunately, this heavily

biases the results towards what is already known about the disease, and many cases remain

unsolved, with no obvious candidates. Systems biology-based variant prioritisation holds a

lot of promise to improve this situation. By harnessing genome-scale biological knowledge,

we can perform unbiased analyses and potentially identify new mechanisms underlying

disease. Emerging forms of systems-level prioritisation are based on a combination of

network analysis, gene or protein expression data, and literature curated databases.

In network models of cellular systems the nodes in the network most often represent genes

or proteins and the edges between the nodes represent a relationship between the genes.

Networks can be built from a variety of biological information, such as protein-protein

interactions (PPI) (Chatr-aryamontri et al., 2012; Franceschini et al., 2012), gene expres-

sion and other functional relationships, and metabolic pathway information (Kanehisa

et al., 2013; Kelder et al., 2011). The majority of network based approaches for gene pri-

oritisation stem from the guilt-by-association principle. This involves ranking candidate

genes by their closeness to a set of seed genes, commonly disease causing genes or disease

modules, using measures such as shortest path (Krauthammer et al., 2004), random-walk

and diffusion kernel (Kohler et al., 2008). Several tool kits are freely available to perform

these topological analyses, including the igraph package (Csardi and Nepusz, 2006) in R

and NetworkPrioritiser (Kacprowski et al., 2013) in Cytoscape.
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Expression-based prioritisation approaches generally rank genes according to differential

gene expression or protein abundance between diseased and non-diseased tissues. Apart

from the standard differential expression (DE) approach, several alternative expression-

based methods exist. Differential variability analysis captures disease-induced changes in

regulatory control that might be missed by DE analysis (Ho et al., 2008), and may yield

important information about the connectivity or other characteristics of the underlying

gene regulatory network (GRN) (Mar et al., 2011; Padovan-Merhar and Raj, 2013). The

exact nature of the relationship between gene expression variability and the dynamics

of the underlying GRN is still being actively investigated, but we expect up-and-coming

single-cell genome wide technologies can further clarify the relationships. Another ap-

proach is to subtract away the baseline gene expression in various tissues in the embryos

and identify those genes that are differentially expressed in a specific tissue compared to

the whole embryo. This approach has been shown to be very useful in prioritising cataract

genes using embryonic ocular lens gene expression data (Lachke et al., 2012).

This thesis aims to further develop and apply tools for integrative analyses. Specifically it

aims to investigate the utility of propagating functional and gene expression data through

a PPI network scaffold in order to improve prediction of disease genes, and to build a tool

for rapid large scale extraction and analysis of gene expression data from GEO.

1.5 Cross-species analyses

An incredible diversity of life has come to exist on this planet. Each unique species is just

one piece of the biological puzzle that makes up the tree of life, the branches of which

contain secrets and adaptations not found anywhere else.

The majority of biomedical research is conducted in Homo sapiens (human) and a hand-

ful of model organisms, namely, Mus musculus (mouse), Danio rerio (zebrafish), Sac-

charomyces cerevisiae (yeast), Rattus norvegicus (rat), Drosophila melanogaster (fly),

Caenorhabditis elegens (worm), Escherria coli (bacteria) and a few others. Different organ-
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isms have evolved strikingly different characteristics and solutions to biological challenges,

and so studying a range of organisms is of course necessary to understand the variety of

biological processes. Working with a particular species brings unique opportunities and

challenges and requires specialised expertise, such that each species become an isolated

field of biological research. Yet much of biology is conserved and consistent across multiple

branches of the tree of life.

There is a huge untapped potential to share information learned from one species to many

other species. This is particularly true for transferring knowledge from the well studied

model organisms to lesser studied non-model organisms, which also have their own unique

biology we can learn from. By investigating and characterising the added variance that

cross-species analyses provide, we can better understand which genomic elements drive

conserved or unique phenotypes in a species.

1.5.1 Evolution and phenotypic variation

The theory of evolution describes how unique species emerge over time via incremental

genetic changes that result in heritable physical characteristics. The classic example of

evolution are Darwin’s finches, 14 closely related bird species with varying beak morpholo-

gies that are suited to the unique food sources on each of the Galapagos islands where

the birds live. The phenotypic changes in Darwin’s finches are driven by several key genes

that regulate beak formation during development (Abzhanov et al., 2006).

While much of evolution is caused by slow genetic drift, there are times when more drastic

changes take place. This can be caused by a sudden environmental pressure such as a dis-

ruption to a food source, which gives some individuals a fitness advantage. Alternatively

drastic genomic changes can occur in a single individual, including whole genome dupli-

cation or more localised chromosomal duplications and deletions, which suddenly provide

the foundation for evolutionary experimentation to take place. Comparative genomics

has allowed us to identify that these events occurred repeatedly throughout evolution, for

example vertebrates have undergone two rounds of whole genome duplication (Cañestro
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et al., 2013), the ray finned fishes underwent a third round (Meyer and Van de Peer, 2005),

as have some African clawed frogs only relatively recently (Uno et al., 2013).

Epigenomic evolution and diversity is less well studied and understood, although it has

been acknowledged for many years (King and Wilson, 1975). We know that there is a high

conservation of transcription factor binding motifs and histone modifications amongst ver-

tebrates (Schmidt et al., 2010), but what about other epigenomic mechanisms in more evo-

lutionarily distant species? Unanswered questions include, to what extent is epigenomic

machinery consistent across the tree of life, how did it evolve and how does it contribute

to phenotypic variation? We often don’t know how the non-coding genomic variations

that drive phenotypic evolution act through regulatory mechanisms. In the case of Dar-

win’s finches it was found that the timing and distribution of certain key transcriptional

regulators during development determines beak morphology, as opposed to changes to the

protein coding gene sequence (Abzhanov et al., 2006). However the molecular mechanisms

that determine those changes in timing remains unclear.

1.5.2 Complex homology

As evolutionary distance increases and more genome altering events occur, our ability to

confidently say that genes in different species are functionally equivalent diminishes. This

is made particularly challenging when a species retains more than one copy of an ancestral

gene after a duplication event, resulting in a complex homology relationship.

Complex homology is a major hurdle to integrating data across multiple species and af-

fects large numbers of genes (almost one quarter of the homology relationships between

zebrafish and human are complex (Djordjevic et al., 2016)). In order to lend support to

functional equivalence, different measures have been proposed, including protein sequence

identity, protein domain equivalence and syntenic block identification, which measures the

conservation of larger regions of the chromosome.

Even with such measurements we can often not trivially determine if genes are function-
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ally equivalent when multiple homologues exist. A group of genes may all have very

similar sequence identity to several homologues in another species, and the epigenomes

may determine which are functionally equivalent. Alternatively the homologues may have

sub-functionalised and hence share the function of the ancestral gene as well as some new

functions. In the case of a gene which has been deleted, dysregulated or mutated, other

genes or pathways may have adapted to fill the gap.

The prevailing techniques used today for dealing with complex homology usually involve

removing it in some way. This can result in the discard of a large fraction of the homol-

ogy relationships between two species, especially if they are evolutionarily distant. This

becomes particularly problematic if the genes and pathways under investigation are those

with complex homology.

This thesis aims to directly address statistical issues in cross-species analyses in order to

integrate data and knowledge from across the tree of life. Specifically, this thesis inves-

tigates the complex homology issue in cross-species gene set analysis and develops and

applies a novel solution that utilises the complete complex homology structure. Further-

more a published method for cross-species joint chromatin state inference is empirically

evaluated and applied to determine whether epigenetic mechanisms are conserved between

very evolutionarily distant species.

1.6 Structure of this thesis

In this chapter I have introduced the bioinformatics concepts required for analysing the

regulation of genetic systems across species. In chapter two I will review in depth the

current approaches for applying some of these systems biology concepts to studying one

family of disease, heart diseases. This includes the construction of the largest mouse heart

specific GRN based on perturbation data, and discussion of many methodologies applied

and built on throughout this thesis, particularly in chapters three, five and six which all

analyse heart data with implications for heart disease studies. Chapter two is a condensed
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Figure 1.1: Outline of thesis sturcture showing major themes.

version of a review article published in Djordjevic et al. (2015).

Chapters three to five continue the theme of mammalian causal GRN construction and

analysis. Chapter three is an investigation into the feasibility of causal GRN construc-

tion in mammals using popular correlation based methods, which has been published in

Djordjevic et al. (2014). In the context of ocular diseases, chapter four develops a GRN

analysis algorithm and applies integrative analyses to prioritising disease genes.

Chapter five introduces a bioinformatics solution to quickly extract large amounts of per-

turbation data from the GEO database, allowing the rapid construction of large gene

regulatory networks, as well as many gene sets.
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Chapters six to eight look at issues and applications of direct cross-species analyses. In

chapter six I investigate the biases caused by complex homology in cross-species gene set

analysis, and propose and validate a statistical solution. I further apply the solution to

gain insights from several case studies in widely divergent species. Most of chapter six has

been published in Djordjevic et al. (2016). In chapter 7 I conduct a cross-species analysis

to identify an unknown cell type in Anolis carolinensis and investigate the properties that

make it unique from the equivalent cell type in mouse.

Chapter 8 describes the empirical evaluation of a new method for cross-species joint chro-

matin state inference and it’s application to investigate the conservation of epigenetic

patterns between evolutionarily distant species. Chapter 8 contains the majority of my

contributions (around 25%) to a published study Sohn et al. (2015).

The final chapter offers my perspective on the outstanding challenges and promise of future

research in integrative cross-species bioinformatics analyses of gene regulation.
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Chapter 2

Decoding the complex genetic

causes of heart diseases using

systems biology

2.1 Introduction

The pace of disease gene discovery is still much slower than expected, even with the use of

cost-effective DNA sequencing and genotyping technologies. It is increasingly clear that

many inherited heart diseases have a more complex polygenic aetiology than previously

thought. Understanding the role of gene–gene interactions, epigenetics, and non-coding

regulatory regions is becoming increasingly critical in predicting the functional conse-

quences of genetic mutations identified by genome-wide association studies and whole

genome or exome sequencing. A systems biology approach is now being widely employed

to systematically discover genes that are involved in heart diseases in humans or relevant

animal models through bioinformatics. The overarching premise is that the integration of

high-quality causal gene regulatory networks (GRNs), genomics, epigenomics, transcrip-

tomics and other genome-wide data will greatly accelerate the discovery of the complex
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2. Decoding the complex genetic causes of heart diseases using systems biology

genetic causes of congenital and complex heart diseases. This review introduces what

is known about the genetics of the most prevalent heart diseases, and summarises how

state-of-the-art genomic and bioinformatics techniques are being used to characterise the

regulatory systems of the heart, accelerating the pace of discovery of heart disease genes.

Many forms of congenital and acquired cardiovascular diseases show familial aggregation,

indicating that genetic factors play a role in disease aetiology. Advances in genomic

technology have accelerated the transition from single gene assessment in rare Mendelian

disorders, such as different types of congenital heart disease (CHD), to studies of more

common complex disorders such as cardiomyopathies, ischemic heart disease and atrial

fibrillation (AF) (Gelb and Chung, 2014). In the latter group of disorders, many different

additive genetic and environmental risk factors, each of relatively small effect size, are

hypothesised to be contributing to the disease risk. In recent years, there has been a

significant advancement in understanding the genetic contribution to different types of

cardiac disease.

CHD is a large collection of structural and functional deficits that arise during cardiac em-

bryogenesis, and exhibit large genetic heterogeneity (Fahed et al., 2013; Gelb and Chung,

2014). CHDs are the most common form of birth defect, affecting up to 68 in 1,000 live-

born babies (Blue et al., 2012). Familial CHD can be caused by single-gene mutations,

but population prevalence of CHD can also indicate multi-factorial aetiology following

the common disease common variant hypothesis. Currently, many known disease causing

genes affect developmental signalling pathways involved in cardiogenesis. Examples of

such genes include NKX2-5, NKX2-6, GATA4, GATA5, GATA6, IRX4, TBX20, ZIC3,

NOTCH1, NOTCH2 and JAG1 (Fahed et al., 2013; Hershberger et al., 2013). Mutations

in these genes can repress or enhance gene transcription, or affect protein structure and

function, which can lead to disruption of developmental signalling pathways. In addition,

de novo mutations in histone modifying genes were found to contribute to approximately

10% of CHD cases (Zaidi et al., 2013), indicative of a strong epigenetic component. Fol-

lowing multiple gene discoveries based on highly penetrant gene mutations with Mendelian

segregation in CHD, current methods that utilise state-of-the-art genomic techniques aim
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2. Decoding the complex genetic causes of heart diseases using systems biology

to give further insight into the genetic complexity of CHD. On the other hand, a different

set of genes are involved in other inherited cardiovascular pathologies such as hypertrophic

or dilated cardiomyopathy (HCM and DCM respectively), long-QT syndrome (LQTS), or

Marfan syndrome. These mainly arise from mutations in sarcomeric proteins or ion chan-

nel components with specific functions in cardiac biology such as TTN, MYH11, MYH6,

MYH7, SCN5A and KCNH2 among others (Fahed et al., 2013; Hershberger et al., 2013).

Traditional gene discovery methods such as linkage and candidate gene studies were suc-

cessful in identifying causal genes in cardiac diseases such as HCM (Kimura et al., 1997),

idiopathic DCM (Krajinovic et al., 1995; Messina et al., 1997), AF (Chen et al., 2003)

and LQTS (Keating et al., 1991), among others. For more complex cardiac diseases, a

hypothesis-free genome-wide approach was needed to assess their polygenic cause. The ad-

vent of Genome-Wide Association Studies (GWAS) facilitated the high-throughput screen-

ing of single nucleotide polymorphisms (SNPs) for the identification of marker alleles or

genotypes that are more frequent in diseased individuals compared to healthy control

individuals.

In the past 8 years, GWAS have identified multiple genetic variants associated with many

complex diseases including cardiac diseases (Cappola et al., 2010; Gudbjartsson et al.,

2009). Although our understanding of the genetic architecture of many complex diseases

has been improved, the findings so far confer small increments in risk, explaining a small

proportion of familial clustering (Manolio et al., 2009). This has led to scepticism re-

garding the potential clinical applicability of these findings, while the question of what

may contribute to the missing heritability remains open. The current hypothesis is that

this may include contributions of rare inherited or de novo variants and epistatic effects,

among others (Eichler et al., 2010; Manolio et al., 2009).

To explore the impact of GWAS on identifying genetic variants that are associated with

heart diseases or traits, we searched the GWAS catalogue provided by the National Human

Genome Research Institute of the USA (http://www.genome.gov/gwastudies/). As of 6

August 2014, this catalogue contains results from 1,960 publications, and 14,001 reported

SNP associations. Using the keywords heart OR cardiac OR cardio OR fibrillation OR
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2. Decoding the complex genetic causes of heart diseases using systems biology

Figure 2.1: Summary of the 600 SNPs that have been reported to be associated
with a heart disease or trait. These SNPs are associated with about 300 genes. Data
were downloaded from the NHGRI GWAS catalogue

coronary OR arrhythmia, we found 75 publications satisfying this criterion, resulting in

600 reported SNP associations, which map to about 300 genes. These publications were

published from 2007 to 2013. As shown in Fig. 2.1, many SNPs have been reported

to be associated with coronary diseases and heart rate/arrhythmia, but relatively little

is known about cardiomyopathy and other heart muscle conditions (Fig. 2.1a). More

importantly, the majority of the SNPs are located in intronic or intergenic regions (Fig.

2.1b). Currently, many of these SNPs are assigned to their closest genes, yet the mechanis-

tic relationships between the genetic variant and the aetiology are in most cases unknown.

Clearly, a lot more work needs to be performed to further dissect the genetic functions of

these SNPs.

The advent of next-generation sequencing (NGS) has facilitated the identification of causal

genetic variants given its potential to discover the entire spectrum of sequence variation

within a sample. It has revolutionised genomic and genetic analyses and is now becoming

the primary discovery tool in human genetics (Cirulli and Goldstein, 2010). Sequencing

individuals within families, apart from identifying genetic causes of Mendelian disorders,

can improve power to detect rare variants that are associated with common diseases, since

predisposing variants will be present at a much higher frequency in affected relatives of a

proband (Roach et al., 2010). In addition, family-based studies can allow the detection of

de novo mutations, parent-of-origin effects as well as genegene interactions when affected
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relatives share two nearby epistatic loci in linkage disequilibrium.

The discovery of extensive copy number variation in the genomes of normal and diseased

individuals provided new hypotheses to account for the phenotypic variability among in-

herited disorders and new leads for the detection of the molecular basis of common complex

disorders (Beckmann et al., 2007). Moreover, since most of the single nucleotide variants

associated with diseases confer relatively small increments in risk, copy number variation

was thought to account for some of the remaining missing heritability (Manolio et al.,

2009). To address this, the Wellcome Trust Case Control Consortium undertook a large

genome-wide study of association between common copy number variants (CNVs) and

eight common human diseases (Wellcome Trust Case Control Consortium et al., 2010).

CNVs were found to be well tagged by SNPs, while the CNV association analysis was

shown to be susceptible to a range of artefacts, which can lead to false positive associa-

tions. As a conclusion, common CNVs, which are typed using existing technologies, were

found to be unlikely to contribute greatly to the genetic basis of common human diseases.

On the other hand, rare CNVs, detected by either array or sequencing technologies, have

often been found to contribute to the risk of rare or common cardiac diseases such as CHD

(Fakhro et al., 2011; Soemedi et al., 2012), specifically Tetralogy of Fallot (TOF) (Green-

way et al., 2009) and early-onset myocardial infarction (Myocardial Infarction Genetics

Consortium et al., 2009).

Remarkable progress has been made in understanding the genetic basis of many cardiac

diseases, including rare CHD as well as more common complex cardiac diseases. However,

advances in technology have now made it possible to interrogate the genetic causes of these

diseases at a genome-wide level using the concepts of systems biology.

2.2 Systems biology of heart development and disease

The vertebral heart is a complex adaptive biological system, with attributes and organ-

isational features spanning multiple orders of magnitude of space, time and energy re-
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quirements. It undoubtedly has many characteristics of complex adaptive systems, in-

cluding adaptive capacity, inter-component communication, homeostasis, spatiotemporal

self-organisation and specialisation, emergent properties and cascading failures.

At the cellular level, cardiomyocytes are studded with heart specific voltage-gated and

mechano-sensitive ion channels resulting in a unique electrophysiological profile. Car-

diomyocytes are packed full of long chains of myofibrils which provide the fundamental

contractile forces needed for the heart to function. These tubular cardiomyocytes are con-

nected to each other via intercalated disks - porous regions containing electrical and me-

chanical connections that enable the individual cells to communicate. Bundles of aligned

cardiomyocytes constitute the extensive muscular mass of the heart, with altered 3D or-

ganisation and gene expression signatures depending on location and function (Barth,

2005).

The electrical signal that sparks the heartbeat originates at the sinoatrial node, a group

of specialised cardiomyocytes. The impulse propagates through the right and left atria

causing them to contract and leading to activation of the atrioventricular node. The im-

pulse then spreads via specialised cardiomyocytes called the Purkinje fibres, which act

as electrical superhighways, coordinating muscular contraction of the ventricles, the main

blood pumping chambers. It is this highly organised biomechanical and electrically cou-

pled propagation system that generates the coordinated contraction of the billions of

cardiomyocytes that constitute the four human heart chambers robustly over a lifetime.

The vertebral heart is known to be adaptive in response to external stimuli during all

stages of life. During heart development, the formation of a complex multi-chambered 3D

organ from a collection of multi-potent cells is tightly regulated, but is also easily influ-

enced by external factors, as is evident from the vast literature on cardiac developmental

perturbations from multiple species. In the reverse role, the maternal human heart has

been observed to undergo eccentric hypertrophy, changes in sphericity and decreased left

ventricular strain during pregnancy (Savu et al., 2012). Extensive mechanical and electri-

cal remodelling of the heart is also observed in many types of adult onset heart disease,

and indeed reverse remodelling with treatment of disease has been observed (De Jong
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et al., 2011; Glukhov et al., 2012; Merlo et al., 2011).

In terms of system failures, the healthy heart is in general fairly robust to physiological

levels of strain in the short term. However, many pathological environmental factors and

diseases will eventually lead to a cascading set of failures, ultimately resulting in a collapse

of the system. This often results in a class of clinical phenotypes known as heart failure

(HF), characterised by very poor functional output of the heart, shortness of breath and

an inability to adapt to exercise. As such, HF is not necessarily the result of an under-

lying molecular problem, but an inability to maintain homeostasis of the hearts emergent

properties. While risk factors including age, previous myocardial infarcts, smoking, exer-

cise and diet play a strong role in determining the occurrence and severity of HF, clear

genetic links between familial occurrence of cardiomyopathies, AF and HF are emerging

(Hershberger et al., 2013; MacRae, 2010).

Perhaps the strongest example of this is sudden cardiac death, which is believed to be

caused when a transient event, like intense exercise, meets an underlying disease substrate

that may not have previously displayed symptoms. Mendelian inheritance of some cases of

disease aetiologies including HCM, DCM, AF, LQTS and CHD is well known (Hershberger

et al., 2013; Kamisago et al., 2000; MacRae, 2010), and several studies have suggested

similar inheritance patterns for sudden cardiac death (Deo and Albert, 2012; Myerburg,

2001). In a post-mortem screening of 173 cases of sudden unexplained death, 26% showed

novel putatively pathogenic mutations in a targeted screen of 5 LQTS disease genes and

RYR2 (Tester et al., 2012). Considering the high hit rate from such a limited screening of

only 6 genes, this finding suggests that mutations in cardiac electrical genes are potentially

a strong precursor to catastrophic systems failure in the heart.

The final goal of systems biology is often a complete and comprehensive computational

model of the complex biology being studied. Such a complete model theoretically allows

the functional consequences of any perturbation to the system to be simulated, tracked

and characterised. Multi-scale modelling of the heart is an extremely exciting field that

has developed immensely over half a century, from simple mathematical models of blood

flow volume through the heart, to computationally solving millions of equations simulta-
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neously to model the mechanical forces during a ventricular contraction. These nested

models include the contribution of ion channels to the action potential within individual

cardiomyocytes, the subsequent mechanical forces at the sarcomeric, cellular, tissue and

chamber levels, and the propagation of electrical stimuli and contraction throughout the

heart (Smaill and Hunter, 2010). While computational cardiac models can be personalised

from clinical imaging technologies (Wang et al., 2013b), and have been successfully used to

recapitulate the contribution of faulty proteins to heart disease phenotypes (Sadrieh et al.,

2014), they are still far from an exhaustive genome-wide model that could be applied as

a high-throughput variant prioritisation framework.

With these limitations in mind, our review will focus on systems biology approaches for

discovering the genetic causes of CHD and complex heart diseases, from the overwhelm-

ing pool of candidate genetic variants identified through whole-genome sequencing and

whole-exome sequencing of patients. Although complex heart phenotypes with later onset

and milder progression have distinguishably different genetic aetiology compared to rare

congenital heart phenotypes, the difficulties of discovering disease-causing variants can be

very similar. For example, in family-based NGS studies, large lists of coding variants can

be found to be segregating with disease. In such cases, variant prioritisation is necessary to

help us identify the disease-causing genes. Conversely, many families will show incomplete

penetrance or missing heritability, resulting in a lack of obvious pathogenic mutations

after standard filtering. We focus on using systems biology resources and approaches that

exist today and are increasingly based on genome-wide omics data.We discuss how these

methods can be applied for prioritising variants and elucidating the mechanism by which

mutations in both coding and non-coding regions affect the whole system and ultimately

lead to disease.
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2.3 Network approaches to decode the genetic causes of

heart diseases

It is possible that many inherited heart diseases are a result of allelic variants or damaging

mutations, the effects of which are propagated through multiple interconnected molecular

levels, rather than only affecting a single gene. While genes associated with disease can be

identified, the underlying molecular mechanism in cardiac development and pathogenesis

remains largely elusive (He et al., 2011a; Lin et al., 2010). Such situations, which entail

a large number of molecules spanning across several biological pathways that potentially

contribute to pathogenicity, demand a global, system-level view of the functional genetic

architecture (Lage et al., 2010) and how its dysregulation leads to disease. Molecular

networks are a valuable means of assembling this information, in the form of nodes rep-

resenting molecules, connected by edges representing interactions, which can be directed

or undirected. Networks unify what may appear as disparate biological pathways from

single experiments, driving the formulation of novel hypotheses and models to explain the

mechanisms of pathogenesis. They can also be applied in the discovery of novel disease

network biomarkers (Chen and VanBuren, 2014) and inform new therapeutic treatments,

conceptualised by the idea of network medicine (Barabasi et al., 2011).

Many biological networks have been constructed and analysed in the context of heart

diseases (Table 2.1). Protein protein interaction (PPI) networks utilise proteomics data

to model physical interactions between proteins as undirected edges. Gene co-expression

networks are based on the premise that genes that have similar expression profiles across

a number of samples are likely to have similar biological functions. These networks are

generated from transcriptomic data such as microarrays, where it is expected that co-

expressed genes will cluster together. A unifying feature of bioinformatics analysis of

these networks is the identification of sub-networks of molecules, commonly referred to

as modules. Investigations of various biological networks have demonstrated that hub

molecules (i.e., those that have many incoming or outgoing networks connections) are

often the most critical for normal cellular function, are closely related to disease, and
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perturbing them often results in embryonic lethality or pathogenic phenotypes (Dickerson

et al., 2011). Further studies have shown that common disease causing genes often cluster

together, representing important protein complexes or biological pathways, where the

failure of any single component can lead to a similar disease phenotype (Goh et al., 2007).

These findings validate the general approach of disease module identification (Barabasi

et al., 2011).

Systems biology approaches have previously been used in the study of cardiac development

and diseases, although not as prevalently as one might expect (Sperling, 2011). Berger

et al. (2010) used PPI data to investigate the functional neighbourhood of 13 known LQTS

genes. By building and analysing the PPI network around known disease genes, they were

able to rank molecules, diseases and drugs in relation to LQTS. They found that the LQTS

neighbourhood represented the convergence of cardiac channelopathies in the diseasome.

They also found that the gene targets of drugs designed as QT prolonging and drugs

that have an undesired QT-related side effect were enriched in the LQTS neighbourhood.

Furthermore, they were able to use the ranked LQTS neighbourhood proteins to classify

drugs with adverse QT-related side effects with reasonable accuracy, based on the FDA

Adverse Event Reporting System database.

Lage et al. (2010) used phenotype annotations from gene knock-out mouse models to

annotate 255 genes into 19 spatio-temporal cardiac developmental phenotype modules.

Based on PPI data, they identified 49 statistically significant novel heart development

candidate genes linked to one or more modules. Using immunohistochemistry, they were

able to validate that 11 of 12 tested novel candidates were in fact expressed in the specific

heart tissue and at the developmental time predicted by their assigned phenotype module.

Modules form the basic functional unit of most networks; however, the methods used to

derive these differ substantially (Table 2.1). These methods generally restrict a gene to be

part of one module only, which may not be a true reflection of its activity if it performs

multiple functions in multiple pathways. A novel clustering algorithm, recently developed

to construct a transcriptional regulatory network of mouse heart development, permits

genes to participate in multiple modules (Chen and VanBuren, 2014). Other limitations of

26



2. Decoding the complex genetic causes of heart diseases using systems biology

Table 2.1: A summary of published heart disease studies that involve construction and
analyses of protein-protein interaction networks and gene co-expression networks

Disease Data used to con-
struct network

Network Construc-
tion Method

Network Analyses Reference

19 heart
phenotypes
/ diseases

PPI, cardiac devel-
opmental genes

Phenotype specific net-
works, literature based
module annotation

Complexity measure,
temporal phenotype
ordering, experimental
validation of novel
candidate genes

(Lage et al.,
2010)

CHD PPI, gene sets for
CHD genetic and en-
vironmental risk fac-
tors and responses

Networks for separate
anatomical structures
as described in Lage et
al. (2010)

Network permutation
tests

(Lage et al.,
2012)

DCM PPI, DCM gene ex-
pression profiles, GO
annotations

Pearsons correlation
between co-expressions
and GO annotations
to identify DCM and
non-DCM modules

Identification of hub
genes, topological
measures, functional
enrichment of modules,
performance as disease
classifier

(Lin et al.,
2010)

AF Human microarray
profiles grouped by
disease state

Weighted gene co-
expression network
analysis and connec-
tivity of to derive
modules

Module preservation,
PCA of modules to
identify eigengenes,

(Tan et al.,
2013)

Identification of hub
genes, functional en-
richment using IPA

Cardiac
Hypertro-
phy, Heart
Failure

Microarrays of
mouse myocardium

Weighted gene co-
expression network
analysis and topolog-
ical overlap to derive
modules

Identification of hub
genes, topology, PCA
of modules to iden-
tify eigengenes, GO
annotation, module
preservation

(Dewey
et al., 2011)

MI Microarrays from
mice with MI

Coexpression and topo-
logical modules

GO annotation, hub
gene (Col5a2) as disease
classifier

(Azuaje
et al., 2013)

LQTS PPI, disease genes Immediate neighbours Ranking genes, diseases
and drugs based on
LQTS neighbourhood

(Berger
et al., 2010)

CHD = Congenital Heart Disease, ASD = Atrial Septal Defect, DORV = Double Outlet
Right Ventricle, AV = Atrioventricular, DCM = Dilated Cardiomyopathy, AF = Atrial

Fibrillation, MVD = Mitral Valve Disease, CAD = Coronary Artery Disease, MI =
Myocardial Infarction, LQTS = Long QT Syndrome, PPI = Protein-Protein Interaction
Network, DE = Differentially expressed, GO = Gene Ontology, IPA = Ingenuity Pathway

Analysis, IHC = Immunohistochemistry, qRT-PCR = Quantitative Real-Time PCR
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network-based approaches include heterogeneity of available data sets and indeed changes

in the underlying biology across different tissues and organisms, and the generalisability of

animal models to humans (Dewey et al., 2011; Tan et al., 2013). Furthermore, predictions

of novel disease genes are made through computational analysis of networks, and thus

need to be experimentally validated in animal models.

Whilst networks based on PPI and gene co-expression data are useful for identifying genes

associated with diseases (Fig. 2.2c), to understand the underlying mechanism we need to

model causality using directed networks such as gene regulatory networks (GRNs). Causal

relationships can be robustly inferred through perturbation of molecules, allowing nodes

to assume roles of regulator and target depending on the direction of the interaction. This

type of data can come from large-scale omic studies, but they could also come from the vast

collection of previously published molecular biology data probing the effect of perturbing

individual genes and proteins. In fact, one effective way to gain an understanding of a

causal GRN is by piecing together many previously experimentally identified molecular

interactions. In other words, we want to discover the truth based on many previous

discoveries, as epitomised by Sir Isaac Newton’s famous quote - “If I have seen further, it

is by standing on the shoulders of giants”.

2.4 CardiacCode: a manually-curated resource for cardiac-

specific GRN analysis

There is a vast amount of high quality genetic or molecular perturbation data in the

published literature that largely remains computationally inaccessiblemostly hidden in

figures, tables or text in developmental biology papers. We manually collected over

700 pieces of genetic perturbation evidence from 43 published primary research papers

on in vivo mouse cardiac development, from embryonic day E6.5 – E13.5 heart tis-

sues. We integrated this data into a causal GRN using a statistical model (see Chap-

ter 3). The network consisted of 280 unique edges between 33 regulators and 129 target

molecules. The majority (59%) of these edges represent activating regulatory relation-
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Gene Prioritisation.png

Figure 2.2: Common approaches for integrating biological information in the
study of disease. a A screenshot of a cardiac-specific GRN from the CardiacCode web-
site. Nodes are coloured based on differential expression of mouse E10.5 heart against
whole embryo body (WB). Node shape is related to whether a gene is known to cause
congenital heart disease. b Gene set enrichment of the 200 most highly specific (or ex-
pressed) genes at E10.5 and E11.5 for whole heart and at E12.5E18.5 for ventricles and
atrial chambers,with (or without) normalisation against WB. The gene set enrichment re-
sults demonstrate that the normalisation of cardiac-specific gene expression patterns from
WB can increase the enrichment of cardiac-specific gene sets, and decrease the enrichment
of housekeeping gene sets. This suggests that WB normalisation may be a simple method
for enriching for potential cardiac disease genes. c A PPI network showing the differential
clustering of AF GWAS genes and known CHD genes in the human protein interactome.
Candidate disease genes were prioritised based on proximity to all known disease genes
for each of the two diseases. The sub-network containing the connections between the
combined top 100 ranked candidates from each disease is shown

ships, 13% are inhibitory and 28% appear to have no-causal effect. We complemented

this with 86 microarray expression profiles from the GEO database. The curated per-
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turbation data set, the assembled microarray data, and the inferred cardiac development

network can be accessed through our newly developed interactive web resource, Cardiac-

Code (http://CardiacCode.victorchang.edu.au/; Fig. 2.2a). The resource is built

on an SQL database and interfaces with Javascript and HTML5 through PHP. The net-

work visualisation and analysis tools are supported by the cytoscape.js plugin and Python

scripts running on the server. One limitation of the current CardiacCode network repre-

sentation is that it does not include information from many of the ‘no-effect’ relationships.

It would be useful to differentiate these relationships from those for which we simply have

no data, perhaps by using negative distances or a different edge type. This is an important

area for future research in GRN representation and analysis.

The CardiacCode network represents the core knowledge about the causal gene regula-

tory interactions that drive mammalian cardiac development. Key cardiac markers and

transcription factors (TFs), including Nkx2-5, Gata4/6, Tbx1/5/20, Isl1 and Mef2c, are

the hub genes in the network, potentially reflecting their important roles in the network

or the widespread studies of these genes. Interactions between many of these key TFs

have been shown to be critical for cardiac development and fetal viability. Nkx2-5 is a

key regulator of heart morphogenesis (Lyons et al., 1995) and differentiation of cardiomy-

ocytes (Tanaka et al., 1999). Gata TFs are required for the formation of the primitive

heart tube (Molkentin et al., 1997) and myocardium maturation (Peterkin et al., 2003).

Tbx TFs are crucial for morphogenesis of the outflow tract and aorto-pulmonary septum

(Xu et al., 2004) and chamber differentiation (Stennard et al., 2005). Isl1 is required for

outflow tract and right ventricle formation (Cai et al., 2003), and Mef2c plays a role in

heart tube looping (Lin et al., 1997). It is therefore not surprising that the breakdown

of any link in this core regulatory network has been shown to cause CHD (McCulley and

Black, 2012; Schlesinger et al., 2011).

Many critical signalling pathways are also represented as molecules from the WNT, BMP,

SHH, NOTCH, FGF, TGF-beta and other growth factor families that have been linked

to CHD, as well as their receptors (Li et al., 2014a). CardiacCode also encodes regulatory

knowledge about known CHD genes, including the key TFs and markers mentioned before,
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as well as Myocd, Foxh1, Myh6, Actc1, Nodal and Notch1.

The CardiacCode website has a growing suite of inbuilt analysis options. Apart from

node position, three node attributes can be customised using uploaded data sets: node

colour, node border colour and node shape. By default, the known CHD genes are coloured

red. These colour and shape features allow the user to simultaneously visualise continuous

values such as gene expression levels and rankings, or discrete values such as module mem-

bership, gene ontology (GO) annotation, disease association and candidate disease gene

status. Therefore, CardiacCode can be very useful in facilitating disease gene prioritisation

in NGS studies where a large number of candidate genes are found.

2.5 Integrative analysis for heart disease gene prioritisation

A new resource for murine heart development gene expression data from E7.5 all the

way to adult tissues has recently been published (Li et al., 2014a), which in combination

with other published data will provide a foundation for expression-based prioritisation for

human heart disease genes in the future.

More recently, several groups have developed gene prioritisation tools that combine mul-

tiple data types and analysis approaches in order to better rank candidate genes. Barriot

et al. (2010) created an online collaborative wiki-based resource for studying CHD that

implements a mixed data gene prioritisation analysis. They implement the ENDEAVOUR

algorithm (Tranchevent et al., 2008) and allow the user to specify data sources including

GO annotations, PPIs, cisregulatory information, gene expression data sets, sequence in-

formation and text-mining data. ENDEAVOUR was applied to prioritise genes located

in an 850-kb locus associated with CHD, using gene expression microarrays and gene ho-

mology data (Thienpont et al., 2010). Seven training sets of genes representing different

cardiac developmental and genetic phenotypes were used as input to the algorithm, which

identified TAB2 as the top-ranking gene from all 105 gene candidates. The role of this gene

in heart development was experimentally verified using knock-downs in zebrafish which
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led to heart defects, and mutation analysis in 402 patients with CHD revealed a translo-

cation disrupting TAB2 that co-segregated with familial CHD (Thienpont et al., 2010).

ENDEAVOUR was also applied to study two patients with CHD, identifying CRKL and

MAPK1 as the most likely causal genes out of those lost in a large deleted region of the

genome (Breckpot et al., 2012).

Another tool, Gentrepid, applies two algorithms to prioritise candidate disease genes (Bal-

louz et al., 2013). Common Pathway Scanning (CPS) utilises PPI and pathway data to

determine relationships between candidate and disease genes based on membership in the

same protein complex or pathway. Common Module Profiling (CMP) performs sequence

comparisons of Pfam domains to assess functional similarity of candidates with disease

genes. Gentrepid was applied to GWAS data on hypertension (Ballouz et al., 2013) and

coronary artery disease (Ballouz et al., 2014), identifying disease genes that were consistent

with those previously reported as well as several novel candidates.

Li et al. (2013) built three cardiomyopathy subtype-specific networks [DCM, Arrhythmo-

genic Right Ventricular Cardiomyopathy (ARVC), HCM] based on the PPI neighbours

of known disease proteins from the OMIM database. They used the STRING PPI or

functional link database which provides a confidence of interaction score, and combined

this with gene ontology similarity between proteins to weight each edge of the network.

Based on the weights of a proteins immediate neighbourhood, along with the number

of disease genes it neighboured, each protein in the network received a disease relevance

score and hence a rank. From the top 50 DCM candidate proteins, 9 have been previously

linked to DCM in the literature; 7 additional candidates were directly associated with

other cardiomyopathies such as HCM, and 4 additional proteins were related to cardiac

arrhythmias, cardiac dysfunction and cardiac cell damage. Similar results were achieved

for the HCM and ARVC candidates.

A web resource (http://www.esat.kuleuven.be/gpp) developed by Tranchevent et al.

(2011) contains detailed information about a large selection of gene prioritisation tools to

help researchers decide which tool is most appropriate for their analysis. While existing

tools are very useful in disease gene discovery, they are predominately gene-centric. Inter-
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actions between genes, microRNAs (miRNAs), non-coding RNA (ncRNAs), disruption of

transcription factor binding sites and epigenomic modifications have all been found to play

a role in heart development and disease, and emerging knowledge about these processes

needs to be incorporated into future gene prioritisation efforts (Klattenhoff et al., 2013;

Matkovich et al., 2011; Schlesinger et al., 2011; Smemo et al., 2012; Zaidi et al., 2013).

2.6 Epigenomics of heart diseases

Heart development involves intricate programs of gene expression that differ across differ-

ent cell types and stages. This necessitates looking deeper into chromatin structure and

regulatory elements such as enhancers to elucidate the regulatory mechanisms in cardiac

development and disease. This urgency is exemplified by the discovery that heart diseases

can arise from mutations in non-coding, regulatory regions (Fig. 2.3 Smemo et al. (2012)).

Figure 2.3: Analysis of human genome-wide chromatin landscape of cardiac cells
can be used to identify cardiac-specific enhancers that are associated with
congenital heart disease. ChIP-seq of histone modifications in human left ventricu-
lar heart tissue (GEO Accession: GSE16256) shows the presence of enhancer-associated
marks H3K27ac and H3K4me1 surrounding a SNP that is associated with a congenital
heart disease. This SNP may exert its function through affecting this enhancer, which is
approximately 90 kb downstream of the TBX5 gene (Smemo et al. 2012). This example
illustrates how disease-associated enhancers can be identified using ChIP-seq
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Zaidi et al. (2013) performed exome sequencing of children with severe CHD and their

parents, identifying de novo missense, frameshift and truncation mutations in genes that

deposit, read and remove H3K4 methylation. These mutations were located in the MLL2

methyltransferase, KDM5A and KDM5B demethylases, the H2BK120 ubiquitination com-

plex and the CHD7 helicase. Mutations were also found in SMAD2, which encodes a pro-

tein that binds chromatin and leads to downstream demethylation of H3K27, facilitating

increased activation of normally repressed genes (Zaidi et al., 2013).

Several studies have implicated the Ezh2 subunit of the methyltransferase PRC2, which

trimethylates H3K27, in heart development and disease. In mouse E12.5 ventricles, ChIP-

qPCR revealed enrichment of Ezh2 and H3K27me3 at the promoters of the transcription

factors Six1, Pax6 and Isl1 (He et al., 2012). This was concordant with de-repression of

these genes when Ezh2 was conditionally knocked-out in mouse embryonic hearts. The

inactivation of Ezh2 also resulted in lethal congenital heart defects including myocar-

dial hypoplasia and ventricular septal defect (He et al., 2012). In a similar study, Ezh2

knock-out in adult mice hearts revealed a decrease in H3K27me3 at the promoter of the

transcription factor Six1, which was accompanied by an increase in PolII binding (Delgado-

Olguin et al., 2012). This de-repression of Six1 was associated with activation of skeletal

muscle genes and hypertrophy of cardiomyocytes. Thus, epigenetic repression by Ezh2

is established during embryonic development and persists in late development (He et al.,

2012) and postnatally to maintain the normal phenotype in adult hearts (Delgado-Olguin

et al., 2012).

In mouse postnatal hearts with pathologically induced cardiac hypertrophy, over-expression

of the JMJD2A demethylase resulted in increased expression of fetal cardiac genes such

as Myh7 and the disruption of cardiac function (Zhang et al., 2011). The re-occurrence of

these results in human patients with cardiac hypertrophy, who also displayed increased lev-

els of JMJD2A, is suggestive of its role in aggravating cardiac hypertrophy in pathological

conditions (Zhang et al., 2011).

Histone acetyltransferases (HATs) and deacetylases (HDACs) have been shown to play

critical roles in cardiac development and disease. Through the addition of acetyl groups
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to histone molecules, HATs mark regions associated with active transcriptional activity.

The HAT activity of CBP/ p300 leads to a hypertrophic phenotype when over-expressed

in cultured ventricular myocytes taken from neonatal rats (Gusterson et al., 2003). In

transgenic adult mice subjected to myocardial infarction, over-expression of a mutant form

of p300 lacking the HAT domain prevented extensive left ventricular remodelling, a process

leading to heart failure, when compared to over-expression of the normal p300 (Miyamoto

et al., 2006). HDACs remove acetyl groups, and are therefore associated with repression of

genes. Mice with deletion of Hdac3 specifically in the heart displayed extensive and lethal

cardiac hypertrophy (Montgomery et al., 2008). Single deletions of Hdac5 and Hdac9 led

to an exacerbated hypertrophic response in mouse models, while double deletion of these

genes increased susceptibility to lethal ventricular septal defects (Chang et al., 2004).

Chromatin remodelling involves reorganisation of nucleosomes and affects DNA accessibil-

ity, particularly the ability of transcriptional activators and repressors, and other proteins

such as RNA polymerase II, to bind to DNA during transcription (Han et al., 2011).

Deletion of Brg1, the major ATPase subunit of the BAF chromatin remodelling complex,

in mouse myocardium, reduced the incidence of cardiac hypertrophy, thus making Brg1

an attractive therapeutic target (Hang et al., 2010). Allelic imbalance between Brg1 and

cardiac transcription factors (Nkx2-5, Tbx20, Tbx5 ) also results in heart defects (Takeuchi

et al., 2011).

Working in synergy with histone modifications and chromatin remodelling, DNA methy-

lation also acts as a key epigenetic regulator of gene expression during development and

disease. During cardiogenesis, differential DNA methylation is believed to regulate the

expression of specific cardiac developmental genes (Chamberlain et al., 2014). In par-

ticular, the expression of Has2, required for proper heart valve formation, is predicted

to be controlled by methylation of its enhancer by DNA methyltransferase 3b (Cham-

berlain et al., 2014). In patients with TOF, DNA methylation profiling revealed greater

methylation of the promoters of genes associated with CHD, which corresponded to de-

creased mRNA expression levels (Sheng et al., 2014). Another key player believed to

contribute to the pathogenesis of TOF is retinoid X receptor a (RXRA), a member of the
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retinoic acid signalling pathway (Zhang et al., 2014). Patients with TOF exhibited signif-

icantly less RXRA mRNA in their right ventricular outflow tract myocardium, which was

likely due to an observed increase in methylation of the RXRA promoter (Zhang et al.,

2014). Similarly, in paediatric patients with CHD, attenuated transcriptional activity was

hypothesised to be caused by hypermethylation of the promoter of the CITED2 gene,

which encodes the transcriptional co-activators CBP/p300 (Xu et al., 2014). Regions of

methylated DNA are read by proteins such as MeCP2, whose over-expression in mice

was associated with hypertrophy of the septum in embryonic hearts, resulting in lethality

around E14.5 (Alvarez-Saavedra et al., 2010).

Differential methylation of heart development genes EGFR and GATA4 inmothers can re-

sult in CHD in their offspring (Chowdhury et al., 2011). Furthermore, chronic treatment

of pregnant rats with hypoxia directly resulted in methylation and subsequent repres-

sion of the PKC-epsilon gene promoter (Patterson et al., 2010). This was associated

with greater susceptibility to cardiac ischemia and injury in adult offspring. Evidence for

trans-generational epigenetic inheritance has also been demonstrated in mice, where muta-

tions in the Mtrr (methionine synthase reductase) enzyme in maternal grandparents led to

detrimental uterine environmental conditions in their wild-type daughters (Padmanabhan

et al., 2013). This in turn resulted in growth deficiencies and congenital defects of various

organs, including the heart, in grand-progeny, that was independent of the maternal geno-

type. Together, this alludes to the idea that heart diseases can occur as a result of both

genetic and environmental risk factors that have been inherited from previous generations.

Thus, a complete understanding of all potential pathogenic mechanisms is warranted to

develop therapeutic strategies and reduce the incidence of heart disease in current and

future generations.

We have compiled a summary of published epigenomic data sets related to heart devel-

opment and disease which is available at http://cardiaccode.victorchang.edu.au/

download.php.
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2.7 Future direction

The advancement of microarray and NGS technologies underlies the widespread adoption

of GWAS and whole- genome sequencing for disease gene discovery. These technologies

have fundamentally changed the way we do research and have enabled us to address

systems-level biological questions at a genome-wide scale. More recently, two innovative

technologies are promising to transform the landscape of biomedical research: single cell

genomic analysis, and CRISPR-Cas9-based genomic editing.

Single-cell genomic technology was named the Method of the Year in 2013 by the journal

Nature Methods. This innovation means that we can now perform genome-wide genomic

and transcriptomic sequencing at the level of individual cells, instead of averaging the sig-

nals from a heterogeneous cell population. This has facilitated the fine-scale identification

of gene expression status during cellular differentiation (Trapnell et al., 2014). Highly

parallel single-cell qPCR has found that there is greater variability in gene expression be-

tween individual B lymphocyte cells than between different human donors, and that this

variation has been largely masked by lower experimental resolution in previous studies

(Wills et al., 2013).

Existing microarray and NGS profiling techniques are applicable to millions of cells. There-

fore, it is important to recognise the potential effect of averaging molecular profiles from

heterogeneous cells, which is potentially a problem in analysing primary heart tissues. It

has been suggested that a single-cell approach would be beneficial for the study of heart

development and pathology (Sperling, 2011). The human heart consists of a mixture of

cell types; the most prominent including fibroblasts, myocytes, endothelial cells, and epi-

cardial cells. These cells interact with one another during development, and each play a

key role in cardiac development, repair, and pathogenesis (de la Pompa and Epstein, 2012;

Deb, 2014; Runyan and Markwald, 1983). Although the application of this technology to

the heart is in its infancy, in an organ where defects in a single cell can trigger a life

threatening arrhythmia, the ability to investigate cardiac cells at this resolution might

prove to be the driver of the next major breakthrough.
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Clustered regularly inter-spaced short palindromic repeats (CRISPR)-associated (Cas)

(CRISPR-Cas) is an exciting new technology that exploits a bacterial defence mechanism

against viruses and plasmids to perform genome editing with unprecedented precision

and efficiency (Ran et al., 2013). The CRISPR-Cas mechanism relies on small RNAs

to act as sequence-specific templates and recognition factors to cleave and silence unde-

sired nucleotides. Recently, the CRISPR mechanism has been demonstrated as a viable

alternative to siRNA to knock-down expression of almost any gene in many model or-

ganisms important in heart disease research, including zebrafish, mouse, goat and human

(Wu et al., 2013). Jinek et al. (2012) discovered that a single chimeric short-guide RNA

(sgRNA) molecule can program the Cas9 protein to cleave double-stranded DNA with

single base-pair accuracy. Because it directly modifies the DNA of the cell, the effect

of the gene knock-out persists through cell division, unlike siRNA interventions. Since

then, CRISPR-Cas9 has also been used to knock-in an inducible protein knock-down, by

inserting a Shield1 conditional destabilisation domain into a target protein (Park et al.,

2014).

The ability to edit DNA with single base pair accuracy means that CRISPR-Cas9 can be

used to systematically investigate functional effects of mutations anywhere in the genome,

including non-coding regulatory regions, in a much more efficient workflow than cloning

and breeding approaches (Dickel et al., 2014). This should greatly improve the pace

of discovery of functionally active cell-type-specific regulatory elements in mammalian

systems. By creating libraries of the sgRNAs that direct the Cas9 protein, genome-scale

knock-down screenings in human cell lines have systematically perturbed thousands of

genes in a robust and lasting way with minimal off-target effects (Shalem et al., 2014;

Wang et al., 2014a). The recently demonstrated ability to introduce multiple mutations

in vivo in a single step will further facilitate research into complex polygenic diseases

including heart diseases (Wang et al., 2013a). This possibility opens up new avenues for

large-scale genetic perturbation experiments that will greatly enable inference of tissue

specific causal GRNs.

Perhaps the most exciting application of CRISPR-Cas9 is its ability to edit germline DNA
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and remove disease-causing mutations from future generations (Lokody, 2014; Wu et al.,

2013). Wu et al. (2013) injected the CRISPR-Cas9-sgRNA complex into the zygote of

a cataract mouse model, designing the sgRNA such that the site of the cataract-causing

1-bp deletion in the Crygc gene was precisely cut. 6 of 22 of the resulting pups did not

display a cataract phenotype and were healthy. This tantalising result demonstrates the

potential to use genome editing as a remediation of congenital diseases, such as CHD.

The highly specific and programmable binding of CRISPR-Cas9 has been further trans-

formed into a general purpose platform for modifying the epigenome of living cells in a

highly controlled way (Lopes et al., 2016). This is achieved through two main approaches:

editing the genome at non-coding regulatory regions such as enhancers (Canver et al.,

2015; Li et al., 2014b); directing a nuclease-deactivated Cas9 protein (dCas9) fused with

transcription factors or epigenetic modifiers, to bind specific regulatory regions, thereby

interfering with or activating gene transcription (Dominguez et al., 2015; Thakore et al.,

2015). The fusion between dCas9 and KRAB is often used for targeted transcriptional re-

pression, as KRAB recruits a heterochromatin-forming complex that causes histone methy-

lation and deacetylation, whereas the VP64 transactivation domain cam be fused to dCas9

for targeted transcriptional activation.

This approach can be extended to target several genes simultaneously by using multiple

guide RNAs, facilitating the study of regulatory networks and genetic interactions, as

well as genome wide activation screens (Konermann et al., 2014). By incorporating RNA

aptamers onto the guide RNAs, multiple transcriptional co-factors can be recruited to

the dCas9 complex, allowing increasingly complex experiments in genetic regulation to be

designed (Thakore et al., 2015).

The playing field of cardiac disease gene discovery has improved substantially in the last

few years thanks to the rapid advancement of experimental genomic technologies. Gen-

eration of genomic data is no longer a bottleneck for decoding the genetic cause of heart

disease. We can sequence a patients entire genome with roughly $1,000 in 1-2 weeks. The

real bottleneck is our ability to unravel how changes in one gene can propagate through the

entire system, and how genetic variation in coding and non-coding regions can contribute
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to a cardiac phenotype. When this wealth of genomic data is integrated with other omic

and clinical information through state-of-the-art analytical and modelling techniques, we

can begin to truly decode the complex genetic causes of heart disease. In this article,

we have reviewed many recent developments in cardiac systems biology in the context of

decoding the genetic causes of heart diseases. We are sure to see new advancements in the

coming few years as new technologies and resources are applied to heart disease research.
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Chapter 3

How difficult is inference of

mammalian causal gene regulatory

networks?

3.1 Inferring gene regulatory networks

Large-scale community challenges, such as the Dialogue for Reverse Engineering Assess-

ments and Methods (DREAM), have been conducted to evaluate gene regulatory network

(GRN) inference methods using in silico simulated data or a number of known GRNs in

bacteria or yeast. Many approaches perform better than random when comparing to ‘gold

standard’ perturbation experiments, although distinguishing true from false positives in

even the most confident predictions from the best performing algorithms is infeasible given

the total search space, usually several orders of magnitude larger(Maathuis et al., 2010).

Ongoing evaluations of the DREAM challenge have shown that although network infer-

ence is partially achievable in prokaryotic organisms, inference in eukaryotic organisms

still remains a major challenge (Marbach et al., 2010, 2012).

Several methods have been designed to infer causal networks based on perturbation data
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and have been applied to study mammalian development. Wagner showed that theoret-

ically, if there is no noise and missing value in the data, it is possible to infer a causal

GRN of n genes in O(n2) steps (Wagner, 2001). Nonetheless, real data contains noise and

missing values. More sophisticated methods must be used. Nested effects models (Fröhlich

et al., 2009b; Markowetz et al., 2005) and methods based on deterministic effects propa-

gation networks (Fröhlich et al., 2009a; Pinna et al., 2010) are effective at reconstructing

the causal network between genes for which systematic (genome-wide) perturbation ex-

periments exist. These algorithms are not the main focus of this study as these data sets

are not yet widely available in mammalian contexts.

Recently other types of data have also been used to infer tissue-specific GRNs. Connect-

ing DNA binding transcription factors (TF) to their consensus binding sequence motifs

throughout the genome can provide a putative regulatory scaffold, but many predicted

binding sites are not consistently bound across dynamic cellular contexts. Integrating

experimental data on chromatin accessibility or regulatory activity can drastically reduce

false positive rates of predicted binding sites (Marbach et al., 2016; Pique-Regi et al.,

2011). However such prediction based networks remain incomplete largely due to gaps in

our understanding of dynamic TF binding, including variable binding affinity, TFs hav-

ing multiple non-canonical binding sequences (Wong et al., 2011), incomplete databases

and the complexity introduced by transcriptional co-factors. Even if this information was

known, there are multiple classes of molecular interactions that can causally modify gene

regulation independent of TF binding, including RNA binding, modification or degrada-

tion, and protein interaction, modification, complex formation and transport. These types

of effects would be missed in TF based networks.

With these limitations in mind, the appeal of reverse-engineering networks from mea-

surements of the causal end-points of gene regulation becomes evident. Transcriptome

wide measurements provide a high confidence representation of the output of the cells

regulatory network, and can be generated relatively cheaply and simply. This is likely

what drives the ongoing desire to use gene-expression based methods in experimentally

challenging mammalian contexts, where these approaches are least likely to work (Mar-
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bach et al., 2012). Although correlation between two genes does not imply causation,

the converse is commonly implicitly assumed by many GRN inference algorithms — that

causal gene regulation leads to observable gene co-expression. This assumption implies

that if one can properly remove non-causal edges from a network constructed on measures

of gene co-expression, the remaining edges are likely causal (Barzel and Barabási, 2013;

Wang et al., 2014b). In other words, many people attempted to infer a GRN from gene

co-expression data alone without explicitly making use of gene perturbation experimental

data (Glass et al., 2013). Even though the developers of these methods were likely aware

of the underlying assumptions and limitation on interpreting a GRN inferred from gene

co-expression data, it is quite possible that the end-users might treat each edge in the

inferred GRN as having a causal regulatory role.

In this study we mainly focus on assessing the underlying assumption behind the algo-

rithms that make use of gene co-expression data alone. Two such popular expression-based

GRN inference algorithms that we will assess are GENIE3 (Huynh-Thu et al., 2010) and

ARACNE (Margolin et al., 2006a), the latter being specifically targeted at mammalian

systems with over 100 citations in the year 2016 alone. A fundamental question arises,

‘Can we reverse engineer mammalian developmental causal GRNs from a collection of

gene expression profiles?’. To fully address this question, we will need high quality causal

GRNs for comparison, but there is currently no gold standard for mammalian GRNs.

Nonetheless, we have observed that there is a vast amount of experimentally validated

genetic or molecular perturbation data in the published literature, but these data remain

largely computationally inaccessible — mostly buried in figures, tables or text in devel-

opmental biology papers. Indeed it is exactly this type of data that is most often used

as a gold standard for validation of predicted regulatory relationships and construction of

high quality causal GRNs (Buckingham et al., 2005; Maathuis et al., 2010; Marbach et al.,

2012; Olsen et al., 2014).

There have been significant efforts in the field of automated mining of biomedical texts and

images for knowledge discovery, some of which could be applied to the problem of mining

perturbation data. In biomedical texts work has been done linking gene perturbations to
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disease phenotypes (Rodriguez-Esteban et al., 2009). The same ideas could be applied to

linking regulator genes to target genes, but this approach has not been as widely pursued.

The TRRUST database has collected 8,015 perturbation data from text-mining of journal

abstracts (Han et al., 2015). Unfortunately TRRUST is not fully automated, requiring

manual verification of the predicted relationships, of which 66% were false positives. Fur-

thermore this method has not been applied to full texts where the majority of the results

reside, and these data do not come with cellular context information such as the tissue of

origin or developmental time.

Several promising studies have focused on analysing biomedical figures which could the-

oretically be used for the automatic extraction of perturbation data. Of particularly

relevance are the analyses of gels (Kuhn et al., 2014) and bar charts (Al-Zaidy and Giles,

2015) the most common formats used to report perturbation data. Unfortunately these

approaches are incomplete and not at a functional stage where automated tools exist

without significant human intervention.

Considering the limitations of current approaches for automated mining of perturbation

data from the literature, targeted reading of the literature in the tissue of interest is still

the only way to get reliable tissue-specific ‘gold standard’ perturbation data.

3.2 Methods

3.2.1 Data summary

In this study, we assembled two manually-curated mouse GRN data sets (embryonic devel-

opment of tooth and heart), summarising experimental evidence for causal regulation (or

lack of causal regulation) between 1,177 regulator-target gene pairs, and a compendium

of matching microarray expression profiles, to systematically investigate the difficulties of

GRN inference in mammalian cells, especially in the context of organ development. The

tooth GRN and microarray data set was downloaded from ToothCODE, and the data were
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generated to study epithelial-mesenchymal interactions during early tooth organogenesis

(O’Connell et al., 2012). It contains over 1,500 pieces of genetic perturbation evidence

from 120 primary research papers, and 105 matching microarray profiles. Using a similar

curation approach, we specifically assembled the heart dataset for this study. We manu-

ally collected over 700 pieces of genetic perturbation evidence from 43 published primary

research papers on in vivo mouse cardiac development. We complemented this with 86

microarray expression profiles from the GEO database. The curated perturbation data

set representing information for 137 regulators and 371 targets, the assembled microarray

data, and the inferred cardiac development network (see below for more details on infer-

ence of mode of regulation) can be accessed through our newly developed interactive web

resource, CardiacCode (Figure 3.1). It was built on an SQL database and interfacing with

javascript and HTML5 through PHP. The network visualisation was supported by the cy-

toscape.js plugin (Figure 3.1). The tooth and heart GRN and microarray gene expression

data sets are available via ToothCode (http://compbio.med.harvard.edu/ToothCODE/)

and CardiacCode (http://CardiacCode.victorchang.edu.au/).

3.2.2 Manual curation of genetic perturbation evidence from the liter-

ature

We recorded genetic perturbation experimental evidence from primary research papers.

Each piece of evidence consists of 11 crucial pieces of information: regulator gene; target

gene; perturbation performed on the regulator (+ or -); effect on the expression of the tar-

get gene (up-regulated, no change, down-regulated); species; developmental stage; tissue

in which the perturbation was performed; tissue in which the expression of the target gene

was measured; measurement technique; type of molecule measured (mRNA or protein);

citation. If we were not confident about any of these pieces of information, the evidence

was discarded. We further recorded the experimental context and additional information

where it was available, including the genotype and phenotype of the perturbed mouse

embryo.
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Figure 3.1: CardiacCode is a public online resource allowing interactive visual-
isation of the heart GRN, and download of the heart data collected and used
in this study.
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3.2.3 Inferring mode of regulation of a regulator-target pair

In this study, we only consider experimental evidence that comes from an in vivo embry-

onic mouse model (i.e., not in cultured cells, or not in adult tissues), and was measured

by in situ hybridisation, qRT-PCR, or similar well-established expression measurement

techniques.

The regulator and target genes in each piece of experimental evidence form a regulator-

target-pair (RTP). We define three possible modes of regulations for each RTP: activating,

no interaction, and inhibiting. An edge is placed between two nodes in a GRN if its mode

of regulation of the corresponding RTP is activating or inhibiting. We do not distinguish

between direct and indirect interactions in this study, instead focusing solely on observable

functional regulatory relationship between a regulator and a target gene. Since each RTP

may be supported by multiple pieces of evidence, and they may not always be in total

agreement, it is important to infer the mode of regulation of each RTP using a principled

means.

First, we removed all RTPs that have opposite regulatory evidence in any tissues or time

points — i.e., observing both ’activating’ and ’inhibiting’. Afterwards, we used a prob-

abilistic model to integrate the occasionally noisy data D = {d1, d2, ..., dk} and estimate

the mode of regulation M = {act, no, inh} for each RTP. This method was first proposed

by (O’Connell et al., 2012). We specified a likelihood model L(M ;D) for each RTP,

L(M ;D) =
k∏
i=1

P (di|M)

We then specified the likelihood model of observing each piece of evidence given the mode

of regulation, P (di|M = mj) = pij , as a conditional probability matrix that describes the

likelihood of observed experimental evidence for i = {positive,no, negative} (rows of the

matrix) given the true mode of interaction j = {activating,no, inhibiting} (columns of the

matrix),
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pij =


α 1

2(1− α) (1− α)(1− β)

(1− α)β α (1− α)β

(1− α)(1− β) 1
2(1− α) α


where k is the number of pieces of evidence corresponding to a RTP, α represents the

probability of a correct experimental observation and β represents the probability of a

missing observation due to insensitivity of the detection technology given that the correct

experimental observation is not obtained. Here we used α = 0.9 and β = 0.9, but our

results are not sensitive to reasonable changes in these parameters (O’Connell et al., 2012).

The inferred mode of regulation is the mode M that maximises the likelihood function

L(D;M).

3.2.4 Microarray preprocessing

The tooth (Illumina MouseWG-6 v2.0) microarray gene expression data were downloaded

from GEO (GSE32321) (O’Connell et al., 2012). The heart (Affymetrix Mouse Genome

430 2.0) microarray data were assembled from multiple studies from GEO (Table 3.2). The

assembled heart microarray profiles were quality checked, RMA normalized and log2 trans-

formed (Figure 3.3, 3.4). In both data sets, low signal probes were removed (mean probe

expression < 7.14 (Illumina) and < 5.6 (Affymetrix) respectively). For differential gene

expression analysis, we use the limma package (Smyth, 2005) to determine statistically

significantly up- or down-regulated genes (Benjamini-Hochberg adjusted p−value < 0.01).

For inference of GRNs from microarray data, we use the 5000 most variable probes and

all of the probes that matched regulator or target genes in our corresponding literature

data sets were retained for further analysis.
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3.2.5 Network inference based on gene expression

Correlation

Correlation coefficients (Pearson and Spearman) were calculated on the subset of probes

that matched the RTPs in the corresponding dataset. A representative correlation cut-off

of 0.5 was used to define co-expression of the two genes represented by the two probes.

Mutual information

We use the minet R package (Meyer et al., 2008) to calculate mutual information between

the probes for all the RTPs.

Figure 3.2: Summary of cardiac microarray data set.
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Figure 3.3: Correlation matrix of cardiac microarray data downloaded from
GEO.

ARACNE

We use the ARACNE algorithm (Margolin et al., 2006a,b) as implemented in minet.

Default settings were used, including ‘eps=0’ for ARACNE to avoid prematurely throwing

edges away.
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Figure 3.4: Boxplots showing RMA normalised cardiac microarray data down-
loaded from GEO.

GENIE3

The GENIE3 (Huynh-Thu et al., 2010) algorithm was run using the R code provided by the

authors. The random forest training step was parallelised using the foreach and doParallel

libraries to improve efficiency on multi-core processors. In an attempt to standardise the

network sizes between methods, the number of edges retrieved by the most unrestricted

ARACNE adjacency matrix in each analysis was used to determine how many edges to

retrieve from the GENIE3 weight matrix.

3.2.6 Network inference based on other molecular networks

Protein-protein interactions

Protein-protein binding data was collected using the ‘iRefR’ R package (Mora and Don-

aldson, 2011). Both human and mouse interaction data were used. Human data were

converted to mouse gene symbols and combined with mouse data, resulting in a network
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of 448147 edges.

Pathway Commons data

Pathway information was downloaded from Pathway Commons (http://www.pathwaycommons.

org/). Mouse and human specific edges were downloaded in .SIF format, giving 35088

and 392309 unique RTPs respectively.

3.2.7 Calculating sensitivity and specificity of edge inference in GRNs

All of the networks, including those generated from the curated literature data and those

inferred from other data sources, were encoded into graph structures using the ‘igraph’ R

package (Csardi and Nepusz, 2006). Overlap of edges between two networks was calculated

using the functions in the ’igraph’ package. Area under the receiver operator characteristic

curve was calculated using the ROCR R package (Sing et al., 2005).

3.3 Results

3.3.1 Causal gene regulation does not necessarily result in observable

gene co-expression

The assumption that a causal gene regulatory interaction should lead to an observable

correlation of gene expression between the regulator and target is an attractive hypothesis

that underlies many GRN reverse engineering approaches. If this assumption is true then

we would expect certain trends, including an activating or inhibiting relationship having

a positive or negative co-expression, respectively; and gene pairs that have been shown

to have no regulatory relationship should have correlation coefficient close to zero. For

each literature RTP, we calculated the Pearson and Spearman correlation, as well as the
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Figure 3.5: Spearman correlation of different classes of RTP in the tooth data (A)
and the heart data (B). RTP classes are activating (Act.), no effect (No.) and inhibitory
(Inhib.).

mutual information between the two genes across all of the matched microarray profiles

(Figure 3.5).

In the tooth data, all RTPs, regardless of activating, inhibiting and no effect, have no or

very weak Spearman correlation coefficients (Figure 3.5A). Neither do we observe a differ-

ence in Pearson correlation (data not shown) or mutual information values (Figure 3.7).

This agrees with previous findings based on the S. cerevisiae GRN in the DREAM chal-

lenge (Marbach et al., 2012). In the heart data, there is a weak shift of the activating

and inhibiting RTP towards higher and lower correlation values respectively (Figure 3.5B,

3.6A,). Nonetheless, the gene co-expression patterns of the no-effect RTPs seem to be

similar to that of the activating RTPs, suggesting in practice it would have been hard to

distinguish true from false positive edges in a GRN if it was constructed based on gene

co-expression.
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Figure 3.6: Pearson correlation kernel density plots for each class of RTP in
heart, based on the complete microarray set (A), only the perturbation arrays (B) and
only the time series (C). The tooth data showed no shift and was omitted.

Figure 3.7: Mutual information kernel density plots for each class of RTP in
heart (A) and tooth (B).

3.3.2 Common expression-based inference methods cannot reliably re-

cover mammalian causal GRNs

In order to investigate the usefulness of current GRN reverse engineering approaches

applied to mammalian developmental gene expression data, we ran the GENIE3 and

54



3. How difficult is inference of mammalian causal gene regulatory networks?

Figure 3.8: Evaluation of sensitivity (true positive rate) and specificity (1-false
positive rate) of edge discovery by GENIE3 (A-C) and ARANCE (D-F) using the
tooth and heart microarray data sets. To account for the possibility that our literature-
curated RTP may represent indirect regulatory interactions, we allow matching of a RTP
with a linear path of multiple edges (x-axis). The bar chart above each plot shows the
size of the network. Dotted lines shows control background of 1,000 node-label-permuted
randomised networks

ARACNE algorithms on the tooth and heart microarray data sets and compared the

resulting networks to our literature curated GRNs. These two algorithms were chosen

because GENIE3 was shown to perform well in the recent DREAM challenge (Marbach

et al., 2012), and ARACNE was developed for inferring human GRNs. In general, we

found that the algorithms did not offer a tangible improvement over random background

in terms of detection sensitivity or specificity (Figure 3.8), i.e., the area under the receiver

operator characteristic curve (AUROC) is close to 0.5.

First we observed that at the first-neighbour level, neither algorithm returned more than
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one or two true positives on any data set. Because ARACNE and GENIE3 both work

by pruning supposedly indirect edges and we do not assume that our RTPs are all direct

regulatory relationships, we also considered matching each literature-based RTP with the

terminal genes of each 2- to 7-edge path. Although the true positive rate increased as

expected, it was accompanied by an almost equivalent increase in the false positive rate.

Furthermore, we found that the algorithms trained on the tooth data set did not perform

better than the randomly permuted networks of the same structure, and only performed

slightly better than random in the heart data set. This slight improvement might be due

to the slightly stronger discriminatory gene co-expression signals between activating and

inhibitory RTPs (Figure 3.5). Nonetheless, reliable GRN inference in both data sets is

virtual impossible in practice based on these two algorithms.

We found that using an absolute Pearson correlation threshold of 0.5 identified 2871 unique

RTPs from the heart data and 3528 unique RTPs from the tooth data once self loops have

been removed. From these RTPs we could reproduce 24% of our activating and inhibitory

edges from the tooth literature (true positives), however 26% of our no-effect edges (false

positives) were also identified. In heart we observed a 42% true positive rate, coupled

with a 49% false positive rate. The overall result is the same even if we use a different

Pearson correlation cut-off, and the overall AUROC is close to 0.5 (Figure 3.14). The size

of the inferred networks that must be analysed in order to retrieve the same true positive

rate as Pearson correlation was often an order of magnitude larger than the correlation

based networks. This indicates that in practice, interpretation of the results of GENIE3

and ARACNE may be more challenging, less beneficial and less intuitive than analysing

a Pearson correlation based network, although neither will consistently return more true

positives than false positives.
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3.3.3 Microarray perturbation results are consistent with the literature-

curated RTPs

To examine whether the microarray data actually contain any information for identifying

causal regulatory interactions, we investigated whether the set of differentially expressed

genes from perturbation experiments can be used to infer causal regulatory relationships.

The tooth microarray data set contains 6 perturbation experiments, including transgenic

knockdowns of Msx1 and Pax9, and exogenous stimulation of the BMP, Wnt, sonic hedge-

hog and FGF pathways. Based on the pathway information provided by (O’Connell et al.,

2012), we identified 39 RTPs from the literature at stage E13 that corresponded to the

microarray perturbation experiments. Encouragingly, the observed directions and fold

changes of differential expression as determined by the microarray experiments were con-

sistent with the regulatory relationships predicted by the literature (Figure 3.9). We found

that using a fairly conservative absolute log2 fold change cut-off of 1 (i.e., 2-fold change)

would result in a edge detection sensitivity (true positive rate) of 30%, increasing up to

> 70% as the cut-off is relaxed. The false positive rate (=1-specificity) is consistently

much lower than the true positive rate, suggesting that it is possible to distinguish causal

gene regulation from non-regulatory ones with a reasonable sensitivity and specificity. We

repeated the analysis considering all developmental stages, which increased the number of

RTPs to 144. The trends are still visible although with increased noise (Figure 3.10).

3.3.4 Tissue and temporal specificity is a confounding factor in network

reconstruction

We sought to investigate the extent to which different tissues display different genetic

responses to the same stimulus. Using the ToothCODE microarray profiles on genetic

perturbation experiments, we found that the magnitude of tissue specific responses varies

considerably between different perturbations. First we examined epithelial and mesenchy-

mal tissue microarray profiles from Pax9−/− and Msx1−/− mice (Figure 3.11A,B). We

identified hundreds of genes are significantly differentially expression in only one tissue
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Figure 3.9: Fold changes (log2) from tooth microarray perturbation experiments
that matched the perturbation evidence in the literature show consistency with
expected trends. RTPs that are inhibiting (A), have no effect (B), or are activating (C)
trend to have negative, close to zero and positive fold changes respectively. (D) shows the
consistency of the literature based RTP type (Lit.) and microarray data (M.A.) as fold
change cut-off varies between 0 and 3 (both up- or down-regulation).

type and not the other, even in the same genetic mouse model (FDR< 0.01). Similarly,

we observed that distinct sets of genes are differentially expressed in response to the same

signalling pathway stimulation (BMP and Wnt) in dental epithelium versus dental mes-

enchyme (Figure 3.11C,D; see also Figure 3.12). In addition, we also observed many tissue

and/or temporal specific causal gene regulation in our tooth and heart literature data sets

(Table 3.13). These results suggest that the causal gene regulatory network structure may

be specific to individual cell or tissue types. Therefore, it is important to consider cell-

type specificity when constructing GRNs in multicellular organisms (Li and White, 2003;
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Figure 3.10: Fold changes (log2) from tooth microarray perturbation experi-
ments that matched the perturbation evidence in the literature (all stages)
show consistency with expected trends. Regulatory relationships that are inhibitory (A),
have no effect (B), or are activating (C) trend to have negative, close to zero and positive
fold changes respectively. (D) shows the consistency of the literature based predictions
and microarray data as fold change cutoff is increased.

Odom, 2004).
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Figure 3.11: Scatter plots show the extent of tissue-specific differential expres-
sion in dental epithelium (y-axis) and dental mesenchyme (x-axis) as a result
of Pax9 knockout (A), Msx1 knockout (B), Bmp4 stimulation (C) and Wnt stimulation
(D). Coloured points represent probes of differentially responsive genes between the two
tissues. Pearson correlation is also shown.
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Figure 3.12: Negative (blue) and positive (green) control distributions for
analysing tissue-specific genetic responses to the same perturbation. Positive
control is generated by correlation of fold change of biological replicates. Negative control
is correlation of independent experiments.

3.3.5 The value of using perturbation data for GRN inference

It has been commonly believed that it is best to infer GRNs using expression profiles

from a broad range of diverse conditions. To achieve such a diversity, we might collect

samples from multiple cell types, multiple genetic perturbation, or developmental time

series. To investigate the relative value of using perturbation vs. time series data, we

split the heart microarray data set into: 1) arrays from wild-type time-series experiments;

2) arrays from perturbation experiments. To see if the correlation shift trends arose we

plotted the Pearson correlation for each type of RTP (Figure 3.6). We observed that the
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correlation of activating RTPs in the perturbation subset is generally higher than that

observed in the time-series subset. The combined set seems to yield the best result.

We have shown that there can be a slight shift in the overall distribution of correlation

values between activating and inhibiting causal relationships, but not to the extent where

a cutoff can accurately differentiate these two classes from false positives (Figure 3.5,

3.6). How much information can be gained by exploiting perturbation experiments? We

calculated the AUROC for Pearson correlation of all our activating or inhibiting RTPs

compared to our no-effect RTPs, and similarly for the fold change values observed in

matching perturbation microarray experiments (Figure 3.14). We clearly see that fold

change from direct perturbation experiments is a much better predictor of causal gene

regulation than Pearson correlation, with AUROCs of 0.63 - 0.87 compared to 0.55 based

on gene co-expression alone.

Figure 3.13: Summary of tissue and time specific regulatory actions. Full refer-
ences can be found at ToothCode (http://compbio.med.harvard.edu/ToothCODE/) and
CardiacCode (http://cardiacCode.victorchang.edu.au) websites.
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Figure 3.14: ROC curves showing the ability of perturbation experiments (A)
and gene expression correlation (B) to differentiate regulatory from non-
regulatory edges.

3.3.6 GRN inference based on protein interaction network and other

molecular pathways

Using co-expression (as determined by Pearson correlation), we could achieve a true pos-

itive rate of 25%, but with almost a 30% false positive rate. We found that only 3-6% of

the edges in Pathway Commons pathways or protein-protein interaction networks overlap

with activating or inhibiting RTPs, however in all cases a similar proportion of false pos-

itives was also retrieved (Figure 3.15, Figure 3.16). By explicitly taking into account the

perturbation design (as in Figure 3.9), we can significantly increase the true positive rate

while keeping the false positive rate low (Figure 3.15, Figure 3.16).

3.4 Discussion

This study aims to evaluate the practical utility of genome-wide expression profiles to

infer causal gene regulatory networks in mammalian organ development. In particular,
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Figure 3.15: Comparison of the true positive and false positive rates as deter-
mined by different network inference approaches on the tooth data set: Pearson
correlation, Pathway Commons database, protein-protein interactions (PPI), the union of
the previous three methods and direct effect on genetic perturbation (log2 fold change
cut-off or 0.5 and 1). Note: the TP and FP rates for the first 4 methods were calculated
based on the subset of 686 RTPs that were represented in the microarray, PPI and path-
way data. The TP and FP rates for perturbation data were based on the subset of 39
RTPs with a regulator matching the pathway being perturbed.

we assessed whether it is possible to observe gene co-expression in experimentally verified

causal gene regulatory relationships — a common assumption in most GRN inference

algorithms (Bansal et al., 2007; Marbach et al., 2012). One of the major results from the

DREAM5 challenge is that many inference methods performed well when analysing in

silico data sets and prokaryotic (E. coli) data sets, but inference of eukaryotic GRNs (in

S. cerevisiae) is very poor regardless of which method was used (Marbach et al., 2012).

Marbach et al. (2012) attributed the reduced inference accuracy to an increased regulatory

complexity and prevalence of post-transcriptional regulation in eukaryotes. Ensemble-

based approaches that combine multiple inference methods have been shown to slightly

improve the inference accuracy (Marbach et al., 2012).
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Figure 3.16: Comparison of the true positive and false positive rates as de-
termined by different network inference approaches on the heart data set:
Pearson correlation threshold on 82 microarray profiles, Pathway Commons database,
protein-protein interactions (P.P.I.), and the union of the previous three methods.

We have gathered two well validated literature-curated data sets and matching microarray

gene expression data sets to systematically evaluate the challenges of causal GRN infer-

ence. Our data sets are unique because they contain thorough annotation of tissue types

and embryonic stages, as well as the type of regulation observed (activation, repression

and no effect), which importantly allows us to estimate both sensitivity and specificity of

inference of GRN edges. To our knowledge this study contains the most extensive evalu-

ation of commonly applied GRN inference paradigms to mammalian embryogenesis and
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the first quantification of the difficulty of their application to this context. Our results

show that inference of causal GRNs for mammalian developmental systems by consider-

ing gene co-expression alone is likely not an effective approach. Nonetheless, perhaps not

too surprisingly, it is possible to infer causal regulatory relationships with good sensitiv-

ity and specificity if perturbation data are used. This result supports the importance of

considering these data when reconstructing causal regulatory networks.

Our study place a strong emphasis on embryonic organ development. From a practical

point of view, we chose this emphasis because of the wealth of data we have already col-

lected (e.g., the published ToothCode data), the availability of a large amount of matching

published microarray gene expression data from GEO, and the many reported successful

applications of GRN to study developmental biology problems, such as Eric Davidsons

work (Davidson, 2006, 2010; Levine and Davidson, 2005). In this sense, the process of

GRN inference should be easier than other non-developmental GRNs. From a conceptual

point of view, the inference of developmental GRN is at least as difficult as, if not more

difficult than, the inference of other GRNs since a useful developmental GRN will need

to deal with regulatory relationships between multiple cell types, and the regulatory re-

lationship between two genes may change dramatically during successive developmental

stages. Therefore, we expect the lessons learned from our study will be informative to the

inference of other non-developmental GRNs.

Our tooth and heart microarray data sets each have about 100 microarray samples, con-

taining about 30 conditions. It is conceivable that better performance can be achieved

by profiling more samples in additional conditions. Nonetheless, we noticed that it is

practically not easy to obtain such data when studying in vivo gene expression patterns

in embryonic animal models. Embryonic dissection, tissue collection and processing all

require time, money and labour.

One potential limitation of our study is the imbalance in classes of our gold-standard

perturbation based edges. The negative classes (no regulatory effect) represented 25%

and 36% of our heart and tooth data respectively. For a more confident interpretation of

our measured true / false positive / negative rates and the AUROC, the negative class
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should represent 50% of the total samples, however considering we were not using these

data to train any models, only to evaluate the inferred networks, we do not expect the

results would have differed significantly. Also due to our manual curation of gold-standard

data from the literature it is likely that this data does not represent an unbiased sample

of regulatory edges, but those genes that are most interesting to researchers and play

some role in the cell type being profiled. The inference algorithms are however agnostic

to this type of information, which may reduce the expected overlap of the gold-standard

and inferred edges.

Another potential limitation of this study is that our network inference model is based on

the conclusions of O’Connell et al. (2012), particularly in the robustness of their results to

various fixed model parameters. As the data we collected for this study has very similar

characteristics as their data, including distribution of effect types and high sparsity for

most RTPs, we assume that their chioce of parameters will be suitable for our models. In

the future we should collect larger and less sparse data sets to investigate estimating the

parameters directly from the data.

We did not extensively test the effect of microarray probe normalisation procedure. We

simply follow common practices in microarray analysis, and ask whether this is quanti-

tatively sufficient to recover information for GRN construction. It is conceivable that a

more extensive enumeration of microarray processing procedure may yield higher corre-

spondence with the literature network, but considering the high false positive rate observed

in our current data set, we do not expect the major results to change.

There are always new methods for correlation-based GRN inference being released with

differeing sets of assumptions and strategies, for example by explicitly modelling time

delays in time-series data. With this in mind, this study should be repeated in the future

to determine if the conclusions still hold.
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3.4.1 Lessons for mammalian causal GRN inference

During the course of manually curating the literature data, we observed that there is a vast

amount of genetic or molecular perturbation data in the published literature that largely

remains computationally inaccessible. Unlike microarray or high throughput sequencing

data, most people do not deposit the results of their perturbation results into a centralised

database such as EBI ArrayExpress (Rustici et al., 2013) or NCBI GEO (Edgar, 2002).

Based on our experience, an undergraduate-level biology student can read 2-3 papers a

day, and each paper contains on average 12 useful pieces of perturbation data. In one

month, a single person can curate up to 700 pieces of perturbation data. Ultimately we

would like to see a similar centralised repository where authors and researchers submit

their own spatio-temporally annotated perturbation results at the time of publication, but

there is currently no standard for reporting and annotating these data set. Our experience

on manual curation has been generally very positive and rewarding.

Considering the amount of gene perturbation data that one can obtain from simply com-

puterising existing records, we believe this suggests that the community of computational

systems biologist investigating mammalian disease and development should perhaps re-

prioritise their research effort, e.g., instead of focusing on inferring causal GRNs from

high throughput genome-wide data sets, committing resources to systematic generation

and curation of relevant genetic perturbation data, and developing algorithms to construct

cell type and developmental stage specific GRNs from these potentially sparse and noisy

perturbation data.
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Chapter 4

An integrative systems biology

approach to discover cataract

disease genes

4.1 Introduction

Cataracts are an opacification of the ocular lens that are the leading cause of blindness,

affecting tens of millions of people worldwide. Most cataracts develop through natu-

ral ageing, however around 25% of cataracts are inherited and congenital cataracts can

also present at birth. While some congenital cataracts present as just one defect in a

developmental syndrome, many appear to be spontaneous without any other disease phe-

notypes. Previous studies have identified multiple genes and loci responsible for congenital

cataracts, and these are recorded in a database called CatMap (Shiels et al., 2010).

A computational tool called iSyTE was recently constructed to help prioritise potential

cataract causing genes by analysing gene expression during early lens development in the

mouse (Lachke et al., 2012). The rationale was that genes that are uniquely expressed

in the lens during development are more likely to be congenital cataract causing genes.

69



4. An integrative systems biology approach to discover cataract disease genes

In order to discover lens specific genes, Lachke et al. (2012) computed differential gene

expression between the micro-dissected lenses and the remainder of the embryo with ocular

tissues removed, during several stages of mouse development. Using this approach, iSyTE

could successfully prioritise many human congenital cataract causing genes within a given

genomic interval, but not all of the cataract disease genes were differentially expressed

in lens during murine development. There is a wealth of additional biological knowledge

that could be applied to this problem, including regulatory relationships between genes

during eye development, relevant protein complexes and qualitative gene lists that have

been annotated as important to lens development. While it is not clear which of these data

sources will prove most useful for the cataract context, this type of integrative systems

level analysis has previously been useful for prioritising disease causing genes and pathways

in neurodegenerative diseases (Zhang et al., 2013).

In this study we build on the foundation of iSyTE by investigating the utility of integrating

additional types of biological data for predicting human congenital cataract genes through

systems-biology inspired approaches. We construct a lens development specific GRN,

and develop an algorithm to prioritise upstream regulators of sets of phenotype specific

genes in the network. We also use machine learning approaches to identify patterns in a

combination of gene expression data sets during mouse lens development and after genetic

perturbations, protein interaction data and gene ontology information, to improve our

ability to prioritise congenital cataract causing genes.

4.2 Method

4.2.1 Integrative cataract gene analysis workflow

This chapter implements the dual methodology approach shown in figure Fig. 4.1.
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Figure 4.1: Integrative cataract gene analysis workflow. A) Integrating mutiple
data sources through a machine learning approach to predict cataract disease genes B)
Identifying likely regulators of specific cataract phenotypes by constructing and analysing
a lens-specific gene regulatory network

4.2.2 Predicting cataract genes through integrative analysis of lens gene

expression

Microarray data processing

Microarrays representing the breadth of available experimental data in developing mouse

lens were collected. These data contain normal mouse lens development as well as multiple

perturbation experiments (e.g. knock down of Pax6 and Notch2 ) and are derived from 4

different microarray platforms: Affymetrix 430 2; Affymetrix 430A 2; Illumina MouseWG-
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6 v1.0; Illumina MouseWG-6 v2.0. 127 arrays passed quality controls including separation

of phenotypic classes in PCA and clustering (several other arrays and experiments were

omitted at this stage). The remaining 127 arrays were jointly processed from the raw data

within each platform.

Within each Affymetrix platform all arrays were jointly normalised using the robust multi-

array average (RMA) method from the oligo R package. Within each Illumina platform,

RMA equivalent normalisation was performed using the lumi R package, including back-

ground subtraction, quantile normalisation and transformation to Log2 scale.

Differential expression (DE) analysis was conducted using the limma method (Smyth,

2005). The control samples used for the lens developmental time points consisted of whole

mouse embryos with the lens removed from E11-13. Log2 fold change, t-statistics, t-

statistic ranks, p-values, average expression, and f-statistics were generated. All of this

data is available for download from our website: http://iSyTE.victorchang.edu.au.

Probe presence / absence calls were determined by comparison to 351 data points from the

published lens developmental literature, primarily measured by immuno-fluorescence and

in-situ hybridisation techniques. Each gene expression measurement from the literature

was paired with the closest matching microarray, and an ROC analysis was performed to

identify the optimal cutoff value for each platform.

Data sources

The combined human and mouse protein-protein interaction (PPI) network was con-

structed using the iRefR (Mora and Donaldson, 2011) and igraph (Csardi and Nepusz,

2006) packages in R. The final PPI was converted to mouse gene symbols using homology

data from MGI and the Ubc node was removed, resulting in 170,872 interactions between

14,433 protein nodes.

The gene ontology (GO) annotations for human and mouse were downloaded from http:

//geneontology.org/page/download-annotations on the 6/9/2014 and the 19/9/2014
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respectively. 37 GO terms specifically related to lens or cataract were identified as the

target set.

Genic variation intolerance scores were downloaded from Petrovski et al. (2013). CatMap

genes were downloaded from http://CatMap.wustl.edu/ on 29/8/2014. Three classes of

CatMap genes were defined; classic cataract genes as identified by (Lachke et al., 2012);

all non-syndromic CatMap genes; and all CatMap genes.

Feature construction

All microarray DE results from lens developmental and perturbation experiments were

used as features. The fold changes from each developmental microarray DE analysis

were propagated through the PPI network to calculate neighbourhood enrichment of lens

specific gene expression. The average lens enrichment fold change value of a protein’s first

degree interaction partners (excluding itself) was calculated for each developmental time

point.

A combined GO score was defined as the sum of the number of target GO terms annotated

to each gene in mouse or human. The combined GO score was propagated throughout

the PPI network in order to score neighbourhood enrichment of GO terms. The average

and sum of the combined GO scores of 1st degree interaction partners (excluding itself)

were calculated. The sum was also normalised by the degree, and separately the log2 of

the degree, of interactions of each protein node, producing three features in total.

Machine learning

Support vector machine (SVM) learning was implemented using the e1071 package. Area

under the receiver operator characteristics curve (AUC) was calculated based on leave-

one-out cross-validation (LOOCV), alleviating the need to separate the training and test

sets. As such, the positive class of genes consisted of all those genes in the CatMap group

of interest for each analysis. The negative class was twice the size of the positive class,
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and was randomly sampled from all genes that were not in the CatMap lists or associated

with the terms eye, lens, cataract, or ocular, in the Online Mendelian Inheritance in Man

(OMIM) knowledge-base (Hamosh, 2004). AUC distributions were calculated from 100

separate LOOCV runs, each run re-sampling the negative class.

Feature selection

Feature selection was performed using the SVM-recursive feature extraction (RFE) method,

provided by: http://www.uccor.edu.ar/paginas/seminarios/Software/SVM_RFE_R_

implementation.pdf. Feature selection was performed 1000 times using a randomly sam-

pled negative class as described above. Each run produced a list ranking all 55 features.

For each feature, the mean rank across 1000 runs was taken as the final value, and the

features with the lowest 10 values were selected.

4.2.3 Analysing lens-specific gene regulatory networks

Manual curation of genetic perturbation evidence from the literature

Dr. Deepti Anand at the University of Delaware recorded genetic perturbation exper-

imental evidence from primary research papers. Each piece of evidence consists of 11

crucial pieces of information: regulator gene; target gene; perturbation performed on the

regulator (+ or -); effect on the expression of the target gene (up-regulated, no change,

down-regulated); species; developmental stage; tissue in which the perturbation was per-

formed; tissue in which the expression of the target gene was measured; measurement

technique; type of molecule measured (mRNA or protein); citation. If we were not con-

fident about any of these pieces of information, the evidence was discarded. We further

recorded the experimental context and additional information where it was available, in-

cluding the genotype and phenotype of the perturbed mouse embryo.
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Annotation of perturbation evidence onto a developmental ontology

We used the e-Mouse Atlas Project (EMAP) (Richardson et al., 2014) developmental

ontology to provide a scaffold for consistent annotation and integration of experimen-

tal evidence from a variety of tissue types across developmental stages. We added two

additional terms to the ontology, “TS13 lens pre-placodal ectoderm” and “TS14 lens pre-

placodal ectoderm”. Each piece of collected evidence was assigned the EMAP ontology

term corresponding to the tissue and stage of the observed perturbation. Lens related

sub-trees of the ontology were then used to select data for further analysis.

The data were also split by developmental time into four different stages of lens devel-

opment: initiation (318 pieces of evidence, E8-E10.5); primary fiber cell differentiation

(PFCD, 434 pieces of evidence, E11-E13.5); secondary fiber cell differentiation (SFCD,

576 pieces of evidence, E14-E19.5); post natal (348 pieces of evidence, P0-P665).

Inferring mode of regulation of a regulator-target pair

See section 3.2.3.

Minimal upstream regulator spanning sets

The spanning set of upstream regulators for a set of seed genes is calculated via a novel al-

gorithm, the Upstream Regulator Spanning Set (URSS) algorithm. This algorithm tackles

a similar problem as the Ingenuity Upstream Regulator Analysis (URA) but with differ-

ent assumptions about the data and hence a different statistical approach (Kramer et al.,

2014). The main difference is that URA is designed to work on signed gene expression

data such as fold-change, where as URSS is designed to work on an unsigned gene set.

The URSS algorithm is a recursive depth first search, exhaustive and exact, and hence

pre-filtering the data is essential for reducing the search space. Upstream regulation is

converted into a Boolean matrix where rows represent regulators and columns seed genes.
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First, seed genes without any regulators are removed. Second, redundant regulators (those

whose targets are a strict subset of another regulator’s targets) are removed. Third, crit-

ical regulators, (ie. those that are the only regulator for a seed gene) are removed and

stored, as are all the seed genes which are covered by these critical regulators. Finally

the URSS algorithm is called on the resulting matrix, returning all upstream regulator

spanning sets for the seed genes.

From this complete collection of sets the minimum sized sets are found, as they contain

the regulator genes that regulate the largest number of seed genes, and therefore the most

relevent regulators. Several enhancements were made to improve the URSS algorithm with

the specific goal of efficiently returning the minimal spanning sets, including: not search-

ing deeper than the minimum depth of a previously found spanning set, and prioritising

regulators by their coverage of the seed genes. Thus, the minimal upstream regulator

spanning sets (MURSS) are the smallest possible sets of regulators that lie upstream of

all the seed genes in the GRN, given a maximum depth to search.

The pseudo code for the enhanced MURSS algorithm is provided below:

initialise global variable max.d = 999 #maximum depth

initialise variable cur.d = 0 #current depth

initialise variable rm = pre-processed regulator matrix

MURSS (rm, cur.d)

if cur.d > max.d

return <reg> , FALSE

end if

for each row of rm [sorted in order of coverage of rm] (reg)

if rm [ reg , ] is all TRUE

max.d = cur.d

return <reg> , TRUE

else

return <reg> , MURSS ( rm [ !reg , !(rm [ reg , ]=TRUE) ], cur.d + 1 )
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end if

end for

Where < reg > indicates a marker to keep track of the order of the path through the

regulators.

The critical regulators removed in pre-processing are now added to the minimum spanning

sets. From these minimum sets an occurrence frequency for each regulator is calculated.

This occurrence frequency is multiplied by the number of seed genes that each regulator

regulates, giving a weighted score for each regulator.

P-values were calculated using the monte-carlo simulation approach. For each set of seed

genes, 1000 random seed gene sets of the same size were generated from the genes in the

network, and the weighted scores were computed by MURSS. The reported P-value is the

fraction of simulated weighted scores that are greater than the observed weighted scores

for each minimum regulator in each seed set.

4.3 Results

4.3.1 Lens specific gene expression is predictive of cataract disease genes

Lens specificity of gene expression is predictive for CatMap genes compared with the

negative class (Fig. 4.2A). As the 22 classic non-syndromic (NS) iSyTE genes are almost

perfectly classified by lens specific gene expression (AUC 0.95), from here on we discuss

the results for the larger group of 52 NS CatMap genes. Although post natal time-

points significantly improve performance compared to any other developmental stage (p =

3.94×10−09), they do not significantly improve on all stages combined (p = 0.05745) (Fig.

4.2B). The improvement using post natal time-points may be a factor of data depth, as

early embryo is represented by five time points between, late embryo is represented by two

time points, and post natal is represented by 11 time points. Choice of DE statistic also
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made little difference (data not shown). For the sake of simplicity, dimension reduction

and interpretability, we will only use fold change (FC) in further analyses.

ROC curves for predicting cataract genes by WBS FC
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Figure 4.2: Lens specific gene expression is predictive of cataract disease genes.
A) AUROC analysis of the predictive power of lens specific gene expression on multiple
classes of cataract genes. B) Bean plots show the relative predictive power of lens gene
expression from different stages of mouse development. WBS = whole embryo background
subtracted (lens specific gene expression)

4.3.2 Certain perturbation experiments in mouse lens are predictive of

cataract genes

Changes in gene expression due to genetic perturbations (knock down of CBP/p300, Pax6,

E2f or Hsf4 ) are predictive of CatMap genes, but are less informative than lens specific

gene expression (Fig. 4.3). CBP/p300 early embryonic knock-out is the most informa-

tive individual perturbation experiment. Combining CBP/p300 with Tdrd7, E2f and Hsf4

outperforms the complete set of all perturbations. Note that the Tdrd7 knock down exper-

iment did not have a high predictive value by itself, but increases prediction performance

when combined with the others. This is in stark contrast to the Pax6 knock down data,

which was somewhat predictive on its own but reduced overall performance when com-

bined with the three informative knock down experiments. Using this specific combination
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of perturbation data sets is significantly better than using all of them (p = 3.825×10−05).

However, combining them with lens specific gene expression does not increase prediction

performance over just lens specificity alone.
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Figure 4.3: Certain perturbation experiments in mouse lens are predictive of
cataract disease genes. WBS FC = whole embryo background subtracted fold-changes
(lens specific gene expression)

4.3.3 Incorporating functional knowledge increases predictive power

We next investigated the classification power of three important sources of functional

biological information; genetic variance intolerance scores; PPI based features; and GO

based features.

Genetic variance intolerance scores had minimal classification power alone, with an average

AUC of 0.54 (Fig. 4.4). PPI based features were slightly more predictive of CatMap

genes, with an average AUC above 0.6. GO based features showed a strong predictive

power for CatMap genes, with an average AUC of 0.75, comparable to lens specificity

and genetic perturbation features. Combining GO based features with gene expression

features increased classification performance.

The most informative 10 features for CatMap classification identified by SVM-RFE contain
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a mixture of GO term and lens specific expression enrichment of PPI neighbourhood,

lens specific gene expression and perturbation experiments. Using the top 10 features for

classification produced an average AUC of 0.84, a significant improvement over lens specific

expression (p = 2.33×10−63) as well as the combination of all features (p = 1.86×10−39).
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Figure 4.4: Incorporating functional knowledge increases predictive power.

4.3.4 Predicting novel cataract genes

SVMs were trained using the top 10 features identified by SVM-RFE to classify each class

of CatMap genes, resulting in three SVM models. Predictions were then made for each

gene in the genome for which the top 10 features were available, resulting in a predicted

cataract score for 8747 genes. In total, 531 genes (6%) received a score greater than zero

(indicating a potential cataract gene) from at least one model. Of the classic iSyTE genes,

only Chmp4b was misclassified by all three models. 27 / 52 NS CatMap genes and 56 /

167 of all CatMap genes were predicted as cataract causing by at least one model.

50 genes received a score above zero from all three models (Fig. 4.5). These were taken

as our highest confidence predictions. 16 of the classic iSyTE cataract genes were in this

category, along with 8 other CatMap genes and 26 novel predictions. A literature search
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showed that five of these high confidence novel predictions (Six3, Capn3, Sox1, Aqp5

and Cyp4v3 ) have causal links to cataracts in published genetic studies. Investigating the

literature for some of the genes predicted by one or two models yielded at least another six

verified cataract genes Wfs1, Gss, Anxa1, Rbp3, Trpm3 and Birc7. Our data integration

and machine learning approach thus helped us prioritise at least 11 known cataract genes

that were not in the CatMap database, with many more potential new leads.

Figure 4.5: Combining predictions from multiple SVM classifiers generates dif-
ferent levels of cataract prediction confidence. Each predicted gene appears as a
point in this 3D scatter plot. Genes are predicted to be cataract disease genes either by all
three models (red), two models (blue and purple), one model (green) or no models (grey)

4.3.5 Lens developmental gene regulatory networks

We generated 5 networks from the collected mouse eye developmental data, split by the

time point at which the regulatory relationship was observed: lens induction covered

evidence from E8 - E10.5 (Fig. 4.6); primary fiber cell differentiation from E11 - E13.5

(Fig. 4.7); secondary fiber cell differentiation from E14 - E18.5 (Fig. 4.8); postnatal stages

(Fig. 4.9); and a complete developmental network containing all the pre-natal evidence

(Table 4.1).
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Table 4.1: Description of inferred lens GRNs
Stage Regulators Targets Edges Activating Inhibitory
Induction 46 73 140 114 26
PFCD 59 109 195 120 75
SFCD 44 188 322 193 129
All Pre-Natal 63 155 409 266 143
Post-Natal 28 167 207 134 73
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Figure 4.6: Initiation stages lens gene regulatory network.

4.3.6 Phenotype Drivers

We performed a network analysis on the complete lens developmental network to iden-

tify driving regulators of specific ocular developmental phenotypes. During the literature

curation process we recorded the phenotype of mutant animals. We Identified 7 distinct

phenotype groupings: no eye; no lens; small eye; small lens; cataract; epithelial defect;

fiber cell defect (Fig. 4.10).

We collected the regulatory relationships of the genes in the total lens GRN and submitted

them as a regulatory matrix into our MURSS algorithm, where the seed genes were those
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Figure 4.7: Primary fiber cell differentiation stages lens gene regulatory net-
work.
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Figure 4.8: Secondary fiber cell differentiation stages lens gene regulatory net-
work.

annotated to each phenotype. Calculating P-values for the weighted scores of the minimum
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Figure 4.9: Postnatal stages lens gene regulatory network.

spanning sets of regulators allowed us to identify those regulators that are most highly

significant to a phenotype gene set, relative to the rest of the network (Table 4.2). This

analysis revealed that although Pax6 is an important regulator for all observed phenotypes,

this result is expected by chance considering it’s prevalence in dominating the inferred

network structure. For fiber cell defects, Notch1 was the most outstanding regulator. For

general cataract phenotypes, Pknox1 was most significant, followed by Ctnnb1, double

knockout of Frs2 + Ptpn11, and Notch1. Rbpj stood out as the most important regulator

for the no lens phenotype. Several regulators emerged as highly significant to the small

lens phenotype, including Jag1, Rbpj and Notch 1, as well as the Fgf receptors and Spry

genes. Ralbp1 was the most significant result to the small eye phenotype. No regulators

emerged as highly significant for the epithelial defect and no eye phenotype genes.

We repeated the MURSS analysis but considered higher levels of upstream regulators

as direct regulators of the seed genes, including regulators 2 and 3 edges upstream in the

network. In this way we could identify those super-regulators that might be acting through

some intermediary direct interactions. Notch1 remained the most significant regulator for
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Figure 4.10: Lens gene - phenotype associations matrix. Matrix showing which
genes are associated with each phenotype based on perturbation studies

fiber cell defects and the small lens phenotype, absorbing the regulatory influences of Pax6

and Jag1 respectively. The most significant regulators for cataract phenotypes are lost as
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Table 4.2: Significant regulators for lens defect phenotypes based on the MURSS algorithm

Depth Phenotype Gene Score Pval
1 Cataract Pknox1 2 0.001
1 Small lens Jag1 4 0.003
1 Cataract Ctnnb1 21 0.005
3 Small eye Ralbp1 6 0.005
2 Fiber Notch1 8 0.007
3 Fiber Notch1 8 0.007
1 Cataract Frs2, Ptpn11 2 0.012
1 Small lens Rbpj 12 0.012
1 No lens Rbpj 12 0.013
1 Small lens Notch1 4 0.013
2 Small lens Notch1 4 0.013
3 Small lens Notch1 4 0.013
1 Fiber Notch1 4 0.014
2 Small eye Ralbp1 3 0.014
1 Small eye Ralbp1 2 0.022
1 Cataract Notch1 2 0.025
1 No lens Sox11 1 0.028
3 No lens Rbpj 7 0.029
1 Small lens Fgfr1, Fgfr2, Fgfr3 4 0.03
2 No lens Rbpj 6 0.03
2 Fiber Itgb1 8 0.034
3 Fiber Itgb1 8 0.034
1 Small lens Spry1, Spry2 8 0.037
1 No lens Ctnnb1 6 0.044
1 No lens Msx2 1 0.044

they or their targets are regulated by Ctnnb1. Rbpj remains the most important regulator

of the no lens phenotype, as Sox11 and Msx2 are lost. Interestingly Pax6 disappeared from

most of the lists of minimal regulator sets as longer paths of regulation were considered.

4.4 Discussion and conclusion

In this study we performed a machine learning based integrative analysis using mouse gene

expression data and functional information to predict and prioritise congenital cataract

causing genes. Our approach was able to prioritise at least 11 known cataract genes

that were not in the CatMap database, with many more potential new leads that should
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be targets of follow up investigations. Our final models performed reasonably well, and

certainly improved over the previous iteration of iSyTE that only used lens specific gene

expression information.

We also developed and applied a method for GRN analysis (MURSS) that revealed po-

tential master regulators of disease phenotypes, which could represent therapeutic targets

worthy of future investigation. The major limitation of this approach was the incomplete-

ness of the underlying GRN due to the sparse nature of the perturbation data we could

collect from the literature.
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Chapter 5

GEOracle: classification based on

free text annotation in Gene

Expression Omnibus

5.1 Issues with automated GEO analyses

The NCBI Gene Expression Omnibus (GEO) is one of the largest public repositories for

genome-wide omic data, including mostly transcriptomic data (Barrett et al., 2013). As

of March 2017, GEO contains over 79,000 data series (GSE), consisting of over 1.6 million

individual gene expression samples (GSM). This database harbours biological insights

that are not apparent when studying each data set individually (Rung and Brazma, 2013).

Several packages are available to programmatically access GEO data, including GEOquery

(Davis and Meltzer, 2007), GEOmetadb (Zhu et al., 2008), compendiumdb (Nandal et al.,

2016) and shinyGEO (Dumas et al., 2016), allowing keyword based search and download

of GSE and GSM, with few standard analysis options.

One major challenge in effectively reusing public gene expression data is the availability

of good quality metadata. The need for standardisation of metadata is the reason for
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the development of the Minimum Information About a Microarray Experiment (MIAME)

standard (Brazma et al., 2001), and more recently the MINSEQE standards for sequenc-

ing data (Rung and Brazma, 2013). While some fields in GEO metadata use controlled

vocabularies (e.g., species name, gene symbols), the majority of the metadata appears as

free text, describing the context of samples (e.g., tissue type or developmental stage) and

the experimental design (e.g., perturbation experiment). Although this free text is often

readily interpretable by humans, there is no simple means to process this information from

GEO in an automated fashion. Ultimately this imposes a major limitation on effectively

re-using the huge amount of public data in GEO (Rung and Brazma, 2013). While we

believe it is important to push for the use of standard annotations, we nonetheless wish

to reuse the large amount of data that exists in GEO.

A gene expression experiment can typically be classified based on its experimental design

(e.g., perturbation, time-series and case-control experiments). In many cases, data sets

from perturbation experiments (e.g., gene knock-out, signalling stimulation, or physical

stimulation) are valuable because they allow us to identify the set of genes that are causally

downstream of the perturbation agent. This has important applications in determining

signalling pathway targets and regulatory networks (Djordjevic et al., 2014; Parikh et al.,

2010; Schubert et al., 2016; Xiao et al., 2015). There are tens of thousands of perturba-

tion studies in GEO, likely containing millions of experimentally determined perturbation

data. Nonetheless, currently there is no simple way to determine whether a GSE contains

perturbation data. Furthermore, even when a GSE is known to contain perturbation data,

it is not trivial to automatically match the treatment samples with their respective control

samples since a single GSE may contains multiple treatment and control groups. Only

around 5% of GSM have additional fields of metadata denoting comparison groups, while

the rest appear as individual samples containing only free-text metadata within a single

‘characteristics’ field. As no systematic evaluation has been performed of the challenges

presented by unstandardised free-text metadata in GEO, we do not know to what extent

each step of this process can be automated or otherwise sped-up using computational

approaches.
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In light of these challenges and lack of knowledge, we use text mining and machine learning

techniques to classify GSE that contain perturbation data, and to identify and match the

treatment and control samples in a perturbation data set. We test various approaches on

a manually curated set of perturbation experiments and quantify our performance during

each step of the process. Text mining of free text metadata has previously been used to

identify related experiments through semantic similarity (Galeota and Pelizzola, 2016),

and to automatically process large amounts of the GEO database with limited quality

control or user oversight (Wang et al., 2016; Zinman et al., 2013). Using our R Shiny

tool called GEOracle, we can quickly annotate many perturbation experiments from GEO

in a semi-automated fashion with full user control. GEOracle then performs differential

expression analysis to identify gene targets of the perturbation agent.

5.2 Implementation

The GEOracle workflow follows the same steps a bioinformatician would employ when

analysing perturbation data on GEO (Fig. 5.1).

Figure 5.1: The GEOracle workflow follows the same steps a bioinformatician would
employ when analysing perturbation data on GEO
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This begins with identifying whether a GSE is a perturbation experiment. Next comes

grouping of replicate samples and identifying the perturbation group relevant for the

analysis. Finally the appropriate control group is selected and differential expression

analysis is performed. In this section we describe our methodology for performing these

steps and evaluate GEOracle’s performance on manually curated training and test sets.

Given a list of GSE accession numbers, GEOracle begins by extracting their metadata via

the R package GEOmetaDB (Zhu et al., 2008).

5.2.1 Classifying perturbation GSE

To build a classifier for identifying perturbation experiments, we manually curated a train-

ing set of 277 randomly selected GSE IDs, which we annotated with the experimental

design.

Based on 31 manually defined textual features from the free text metadata that can differ-

entiate perturbation experiments (including keywords such as ‘knockout’, ‘KO’, ‘wildtype’,

‘WT’, ‘null’, ‘-/-’, ‘transgenic’, ‘’TG’), a support vector machine (SVM) classifier was built

to predict perturbation GSE. Performance was maximised by the radial basis function ker-

nel (Fig. 5.2). When evaluated on our training set by 100 rounds of 10-fold cross-validation

with internal feature selection, our model produced a mean Area Under the Receiver Op-

erating Characteristic curve of 0.89, suggesting high sensitivity and specificity.

5.2.2 Grouping replicate samples

To evaluate our automated grouping of GSM samples and subsequent matching of control

and perturbation groups, we manually curated a second set of 73 perturbation GSE. Half of

these GSE were chosen from the previous training set (including the particularly difficult

GSE) and the other half were randomly selected perturbation GSE. We annotated the

832 constituent GSM samples into 259 groups labelled as ‘perturbation’ or ‘control’, and

paired the ‘perturbation’ sample groups with their appropriate ‘control’ groups.
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Figure 5.2: Comparison of the performance of different SVM kernels for pre-
dicting GSE ‘Perturbation’ label based on the manually curated training set of 277
GSE IDs. Shown are boxplots of the Area Under the Receiver Operating Characteristic
(AUROC) curve from 100 repetitions of 10-fold cross-validation.

For each identified perturbation GSE, GEOracle groups replicate samples using the avail-

able GSM metadata. Replicates could mean biological or technical replicates that together

form a unit of analysis for differential expression. GSM titles are processed via a series

of string manipulations to remove replicate identifiers and tokenise the titles. A simple

hierarchical clustering approach is used, based on Gower distance between tokenised GSM

titles, with the tree cut at height 0, resulting in identical GSM titles being assigned to

one cluster. The same approach is applied to GSM characteristics to produce a second

clustering of samples. Based on these two sample clusterings, we identify the most valid

clustering outcome and assign confidences to the output, removing data-sets with insuffi-

cient metadata or invalid clustering results from further analysis (Fig. 5.3).

Our multi stage clustering approach produces a grouping sensitivity of 93.2% at the GSE
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Figure 5.3: The logic flow for assessing the most valid clustering of GSM sam-
ples. This schematic diagram shows the decision making process during the multi-stage
clustering procedure that combines information from the GSM titles and characteristics.
Informativeness and validity means that there is more than 1 cluster in the GSE and that
there are fewer than N clusters, where N is the number of GSM in the GSE.

level (meaning every sample in a GSE must be correctly grouped for that GSE to be

considered a positive result) based on our training set. All incorrectly clustered GSE

can be explained by typographical errors and other anomalies in the metadata. This
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was an improvement over more naive clustering approaches, based solely on the GSM

characteristics, GSM titles, or a simple concatenation of the two, producing sensitivities

of 64.4%, 86.3% and 74% respectively (Fig. 5.4). Although samples can often be grouped

by either the titles or the characteristics, the process of deciding which information to use

is non-trivial. Fig. 5.5 shows a complex example where a simple concatenation of GSM

titles with GSM characteristics fails to group samples correctly, while our multi-stage

decision process succeeds.

Figure 5.4: Comparing the performance of clustering using GSM titles and
characteristics. Shown is the relative sensitivity of different clustering methods, using
GSM characteristics only, GSM titles only, a simple concatenation of GSM characteristics
and titles and our multi-stage clustering approach.

5.2.3 Classifying sample groups

Both the GSM titles and characteristics were analysed for the presence of 33 textual fea-

tures that represent molecular concepts that can differentiate ‘perturbation’ from ‘control’

samples. We trained another SVM classifier to label the groups as ‘perturbation’ or ‘con-
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Figure 5.5: Sample titles and characteristics from GSE41674. Title based clustering
was not able to correctly cluster this GSE, whereas GEOracle’s multistage clustering
approach could, by utilising the information in the GSM characteristics.

trol’. We found the linear kernel for the SVM gave the best results (Fig. 5.7). We adjust

the predicted labels of some groups when only one label is predicted for all samples in

a GSE. A confidence associated with the final outcome of group labelling is determined

(Fig. 5.6). We observe a sensitivity of 94.6% for group classification at the GSE level.

This is a large improvement over the 73.3% sensitivity produced by the basic approach

of choosing the highest scoring label based on the occurrence of the subset of 20 features

that unambiguously distinguish between ‘perturbation’ and ‘control’ samples.

We examined the features weights from the trained SVM for insights into the relative

importance of features (Fig. 5.8). We found that the limited vocabulary used for denot-

ing ‘control’ samples results in high feature weight for these features, as opposed to low
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weights of many different textual features and acronyms that denote different types of

‘perturbation’ samples. This suggests that searching for the presence of the few ‘control’

textual features may be able to correctly classify the majority of samples.

Figure 5.6: The logic flow for assessing the most valid label for a cluster of GSM.
This schematic diagram shows the decision making process for fixing labels (perturbation
or control) predicted by the SVM based on textual features. This process is particularly
important when only one cluster label is generated for every cluster in a GSE.

5.2.4 Matching perturbation with control groups

GEOracle matches each predicted ‘perturbation’ group to the ‘control’ group with the low-

est Gower distance based on the tokenised GSM titles and characteristics, and determines
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Figure 5.7: Comparing the performance of different SVM kernels to predict the
label of GSM clusters (perturbation vs control). Sensitivity is calculated as the
fraction of GSE for which the GEOracle output perfectly matches the manually annotated
set of 73 GSE. Shown is sensitivity calculated on the raw label predictions (blue) and after
cluster label adjustment (red).
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Feature weights were extracted from the SVM model.
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the confidence for each of groups (Fig. 5.9). We observe a sensitivity of 83.1% for group

matching at the GSE level. Furthermore, we attempt to determine the identity of the

perturbation agent and perturbation direction for each group pair by searching for gene

names and keywords in the GSM and GSE metadata. The keywords used represent the

concepts of addition (i.e. ‘overexpress’) and removal (i.e. ‘knockout’) of a perturbation

agent. The direction with the most keyword matches becomes the assigned direction.

Figure 5.9: The logic flow for pairing labelled clusters. This schematic diagram
shows the decision making process for matching a perturbation cluster which its closest
control cluster. This can be non-trivial when multiple control clusters exist within a GSE.
Dissimilarity is Gower distance.
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Figure 5.10: The GEOracle user interface.

5.2.5 Manual adjustment using the graphical user interface

The GEOracle interface (Fig. 5.10) guides users through the entire process. Importantly

the interface allows the user to manually adjust and verify all details of the predicted GSM

labels and pairings, and create their own pairings from all GSM within each GSE. This

allows the user to be 100% confident in the setup of samples for differential expression

analysis.
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5.2.6 Differential expression analyses

The paired ‘perturbation’ and ‘control’ groups are then used to compute differential gene

expression using GEO2R, which implements the limma pipeline (Ritchie et al., 2015). The

results can then be downloaded by the user. GEOracle is currently tailored for microarray

data analysis as this is the most prevalent data type in GEO, but it can be extended to

analyse RNA-seq data or even other functional genomic data sets such as ChIP-seq.

5.3 Case studies

5.3.1 A conserved response to TGFβ stimulation in human cells

We used GEOracle to process six GSE containing TGFβ perturbation experiments and

discover the consensus target genes of TGFβ signalling stimulation in human cells. The

total time required for classifying the GSE and GSM groups, matching the treatment

and control samples, manually verifying the results, downloading the gene expression data

from GEO and performing differential expression analysis is less than 12 minutes. This

analysis required minimal human intervention and essentially no bioinformatics expertise.

Based on these results we could identify a consensus TGFβ target gene signature in human

cells consisting of 82 genes (Fig. 5.11). Many of the observed trainscriptional changes

matched the literature about the TGFβ pathway, including increased transcription of

CTGF, JUN, JUNB and WNT5B, and repression of TGFBR3, FZD7 and SPRY1. A GO

analysis of the 82 genes from the consensus signature using g:Profiler (Reimand et al.,

2007) showed significant enrichment for the term ‘response to transforming growth factor

beta’ (Benjamini-Hochberg (BH) adjusted p-value = 8.93× 10−08).
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Figure 5.11: A heat map showing the discovered conserved response to TGFB
stimulation in human cells. This plot is generated in case study 1.

101



5. GEOracle: classification based on free text annotation in Gene Expression Omnibus

5.3.2 Mouse heart specific perturbation based causal GRN

We further used GEOracle to analyse all perturbation microarray data from mouse cardiac

tissues. We searched GEO using the following query: “mus musculus”[Organism] AND

(“heart”[MeSH Terms] OR heart[All Fields] OR cardiac[All Fields]) AND (“gse”[Filter]

AND “Expression profiling by array”[Filter]). This resulted in 851 GSE.

Processing these 851 GSE though GEOracle, including the most user intensive steps of

manually verifying and modifying the predicted GSM sample comparisons and excluding

those non-cardiac GSE, required approximately 8 hours of user time, again with essentially

no bioinformatics expertise required. 164 relevant GSE were included for further process-

ing. We obtained significantly differentially expressed genes for 87 genetic perturbations

(i.e. gene knockdown or over expression) and 10 non-genetic factors (diet, chemicals etc.)

using standard thresholds (absolute log 2 fold change > 1 and BH adjusted P value <

0.05). GEOracle automatically outputs significant differentially expressed genes as an edge

list for gene regulatory network construction. From the genetic perturbation experiments

we constructed a gene regulatory network of 23,347 causal and directed relationships be-

tween 9,152 genes (Fig. 5.12). Of these 14,120 were activating relationships and 9,681

were inhibitory. This case study illustrates how we can construct a large organ-specific

gene regulatory network from published experimental perturbation data in GEO.

We used the MURSS algorithm to investigate upstream regulators of several published

gene sets, including a set of known congenital heart disease (CHD) genes (Blue et al.,

2012), and atrial fibrillation genes from GWAS and published familial disease studies

(Beck et al., 2014; Tucker and Ellinor, 2014). For CHD, at the first depth level MURSS

identified Tbx20, Tbx1 and Mesp1 as significant upstream regulators. Mesp1 is a known

CHD gene (Werner et al., 2016). At the second depth level, MURSS identified the Foxc1/2

double perturbation, as well as Dhx36 at the second and third depth levels. As a regulator

of Nkx2-5, Dhx36 can exert a lot of influence during heart development and is known to

cause heart defects and embryonic lethality when deleted in mice (Nie et al., 2015). In

atrial fibrillation, MURSS identified Tbx3 at depth 2. Tbx3 is well described as a key
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Figure 5.12: Mouse heart causal gene regulatory network. A) Overview of the
network, showing 23,347 edges between 9152 genes. B) Zoom view, showing the directed
and signed (activating vs inhibiting) information contained in a subset of the network.

gene in atrial development and assigns pacemaker function to the heart, making it a clear

risk gene for human atrial fibrillation (Hoogaars et al., 2007).
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Chapter 6

XGSA: A statistical method for

cross-species gene set analysis

Gene set analysis (GSA) is a powerful tool for determining whether an experimentally

derived set of genes is statistically significantly enriched for genes in other pre-defined

gene sets, such as known pathways, gene ontology terms, or other experimentally derived

gene sets.

One central assumption in GSA is that the gene sets being compared are subsets of the

same set of genes, in practice meaning from the same species. With an increasing variety

of genetic resources available in evolutionarily diverse model and non-model organisms,

there is an increasing interest in utilising these cross-species gene set resources in GSA.

Cross-species GSA is the process of determining whether a gene set in one species overlaps

with a gene set from another species more than would be expected by chance. This is

an important problem in the emerging field of comparative transcriptomics, which aim

to integrate knowledge on regulation of biological pathways across the tree of life (Roux

et al., 2015). For example, consider the regeneration of organs and appendages, an ability

present in several diverse vertebrate organisms but apparently missing from humans.

As the consistent gene set universe assumption fails when more than one species is involved,
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it becomes increasingly problematic as the number of many-to-many homologues increase

between evolutionarily distant species. Several largely ad hoc methods have been proposed

and used in the literature and have become the standard analysis options. The näıve cross-

species mapping approach is to apply an ‘at least one homolog’ function to map a gene

set from one species to another. This approach is the most common method for homology

mapping in general and is used by the majority of existing cross-species gene set analysis

web based platforms, including g:Profiler, Gene Weaver and GSGator (Baker et al., 2012;

Kang et al., 2014; Reimand et al., 2007).

When performing comparative analyses between evolutionarily distant species, many re-

searchers remove the increased complexity from homology assignment by applying the

BLAST best reciprocal hits (BRH) approach (Britto et al., 2012; Gohin et al., 2010;

Labbé et al., 2012). BRH reduces complexity by restricting homology assignments to at

most one per gene, choosing the best hits for each gene (highest sequence similarity or

lowest E value) and only assigning homology if the two genes are each others best hits.

This implies the assumption that the best hit is the only valuable hit, which is particularly

problematic when there are multiple closely scored hits in one gene family. For distantly

related organisms a large amount of non 1 - 1 homology information is discarded before

any analysis is done, reducing the potential insight that can be gained.

Another alternative approach to reduce complexity is to perform significance testing at

the level of gene family, also called an orthologous group (OG) (Kristiansson et al., 2013;

Rittschof et al., 2014; Zheng et al., 2011). In this approach, the entire OG is assigned a

representative value summarising the constituent genes (often the normalised minimum

p-value), discarding homology information after this assignment. Traditional statistical

enrichment tests are then applied at the level of the OG. The OG structure between a

large selection of species can be retrieved from databases such as eggNOG, OrthoDB and

InParanoid (Kriventseva et al., 2015; Powell et al., 2014; Sonnhammer and Ostlund, 2015).

One strength of the OG framework is the ability to test gene sets from more than two

species simultaneously. Nonetheless, similar to the BRH approach, one major limitation

of this approach is the loss of information regarding the signal from individual genes in
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the same OG, and that the exact gene responsible for the final result can be unknown,

making interpretation and validation challenging.

Another approach is to computationally transfer the functional annotations (based on

protein domains for example) to a less studied organism from well studied ones, as facil-

itated by PANTHER (Mi et al., 2016). This annotation transfer reduces confidence in

annotation quality and relies on the assumption that the relationship between the protein

domain and functional annotation is known and true, which limits it’s utility to molecular

function annotation as opposed to more general biological pathways. Several other studies

harness the strength of sequence information in microarray probes to transfer information

between species (Le et al., 2010; Lu et al., 2009; Xie et al., 2011). While these and other

approaches lend more confidence and resolution than simple ID mapping, they do not

create a general and principled cross-species gene set analysis framework that specifically

addresses complex homology (Lu et al., 2010; Yang et al., 2014).

To our knowledge, there has not been any systematic investigation on the issues of cross-

species GSA. An approach that utilises the full and complex homology structure between

two species is not available. In this study we discuss the statistical issues associated with

cross-species gene set analyses and define an informative homology complexity score. We

show that the näıve implementation of homology mapping followed by Fisher’s exact test

can lead to false positive discovery. To alleviate this bias, we propose a straightforward

statistical test, called XGSA, to perform cross-species GSA by considering the complete

homology structure between two species. Our simulations show that XGSA can indeed re-

move the false positive bias, while maintaining good statistical power when analysing gene

sets with complex homology structure. We apply XGSA to two real biological applications

that involve comparing gene sets from distantly related organisms.
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6.1 Methods

6.1.1 Performing cross-species gene set analysis

Problem definition

x 10

Gene sets in species
A and B respectively.

Gene sets in species A 
and B that have 
homology with genes 
in B’ or A’ respectively.

Species A

A’  = {a1, a2, a3, a4, a5}

A” = {a1, a2, a4, a5, a6, a7}

B’  = {b1, b4, b6, b7}

B” = {b1, b2, b3, b4, b5}

Species B

a1

a2

b1

b2

a3

a4

b3

b4

a5

a6

b5

b6

a7

a8

b7

b8

A' ¬A'
A" 4 2

¬A" 1 10

B' ¬B'
B" 2 3

¬B" 2 10

pA = 0.02763

p = max(pA, pB)
P = 0.5378

pB = 0.5378

A’ B’

A” B”

Figure 6.1: A schematic diagram illustrating the XGSA method. Nodes represent genes
in species A and B respectively, with edges representing homology, and shading and out-
lines representing gene set membership. The grey box represents the remainder of the
homologous universe of 1 - 1 relationships not assigned to either gene set. The tables are
contingency tables describing the observed overlap of the homologous gene sets in the two
species. pA and pB show the different p-values derived from performing Fisher’s exact test
in each species. The red box indicates the final value p produced by XGSA.

Let A = {a1, a2, ..., al} and B = {b1, b2, ..., bk} denote the set of all homologous genes

(the homologous gene universes) in two species A and B, respectively. We further define

subsets A′ and B′ as the gene set of interest in species A and B respectively, where A′ ⊆ A

and B′ ⊆ B.

Let there be a homology mapping function, m(a, b), that describes the sequence homology
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relationship between any gene a in species A and any gene b in species B:

m(a, b) =


1, if a and b are homologous

0, otherwise.

Given gene sets of interest A′ and B′, we can further define their homologous partners in

the other species as B′′ = {b ∈ B : m(a, b) = 1, ∃a ∈ A′} and A′′ = {a ∈ A : m(a, b) =

1, ∃b ∈ B′}

The Cross-species Gene Set Analysis problem can be defined as a hypothesis test

where the null hypothesis Hµ is that the membership of A′ and A′′ are independent and

B′ and B′′ are independent (Fig. 6.1).

XGSA

We calculate the probability pA of co-membership of A′ and A′′ equal to or greater than

the observed co-membership if Hµ is true, using the hypergeometric distribution,

pA =

min(|A′|,|A′′|)∑
k=|A′∩A′′|

(|A′|
k

)(|Au|−|A′|
|A′′|−k

)(|Au|
|A′′|
)

where Au is the gene universe in A that has homology to the gene universe in species B,

Au = {a ∈ A : m(a, b) = 1,∃b ∈ B}. This is equivalent to an upper tail Fisher’s exact

test. Similarly, we compute the probability pB for observing the co-membership of B′ and

B′′ if Hµ is true,

pB =

min(|B′|,|B′′|)∑
k=|B′∩B′′|

(|B′|
k

)(|Bu|−|B′|
|B′′|−k

)(|Bu|
|B′′|
) .

We calculate a statistic p to estimate the probability of Hµ being true, as the maximum

of pA and pB,

p = max(pA, pB).

We take the maximum in order to reduce the false positive rate caused by complex ho-

mology, as illustrated in (Fig. 6.1).
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Näıve approach

We compared the performance of XGSA with other ad hoc approaches for cross-species

GSA. The näıve approach is equivalent to doing the above test in only one of the species,

e.g. species A. In this case, the p-value is the same as pA.

Best reciprocal hits (BRH)

The best reciprocal hits approach only differs from the näıve approach in that it reduces

the complexity first. We created a subset of homology mappings for which the retained

human and zebrafish homology mappings were each others highest scoring partners, based

on sequence similarity percentages from Ensembl.

Orthologous group (OG)

We downloaded OG annotations from OrthoDB with no filtering applied. We mapped

genes to OGs and calculated pA at the OG level.

6.1.2 Automatically identifying homology between species using En-

sembl BioMart

Following standard practice (Reimand et al., 2007; Yates et al., 2016), we accessed Ensembl

BioMart programmatically through the R package biomaRt (Durinck et al., 2009) and

retrieved homology mapping between Ensembl gene ids in two species. We turned this

mapping into a sparse matrix using the R package Matrix.

6.1.3 Homology complexity score

We define a measure of complexity for a gene set in one species with respect to its homology

mapping to another species (A and B), as the fraction of genes in the gene set GSA in
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species A which have more than one homologue in species B,

Complexity(GSA, B) =

∣∣∣a ∈ GSA :
∑
b∈B

m(a, b) > 1
∣∣∣

|GSA|
.

6.1.4 Statistical power analysis

For each human gene ontology (GO) term we find all of the zebrafish homologues for

that GO term. Intuitively, when gene sets devoid of any homologous genes are tested in

a cross-species gene set enrichment test, the p-value for that GO term should be 1 (no

match). Alternatively, when the entire set of homologues is tested, the p-value should be

close to zero (perfect match). Based on this logic, if we incrementally add homologous

genes to the gene set enrichment test, the p-value should decrease. We can then interpret

the rate at which several methods reached significance as an indicator of their relative

power for that cross species gene set enrichment test.

We start with a zebrafish gene set consisting of the same number of non-homologous genes

as there are zebrafish homologues to the chosen human GO gene set. We incrementally

substitute each non-homologous gene in the zebrafish set with a homologous gene, and

perform enrichment testing after each substitution.

6.1.5 Data preprocessing for the vertebrate regeneration case study

We downloaded four spinal cord regeneration data sets from three species, zebrafish (Danio

rerio), lizard (Anolis carolinensis) and Western clawed frog (Xenopus tropicalis). We

reprocessed the zebrafish and frog results from the raw microarray data because the lists

of DE genes were not available in the original papers. All processing was done in R

using the limma package and custom scripts unless otherwise noted. Benjamini-Hochberg

multiple hypothesis testing correction was applied in each case.
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Zebrafish 1 - Hui et al. (2014)

Raw Agilent microarray data were downloaded from GEO (accession GSE39295), corrected

for background effects (offset = 16), log-transformed and quantile normalised. Probes

with an average expression less than 8 were removed as ’not present’ probes after visual

inspection of probe intensity distribution. Differential expression at each post injury time-

point compared to time zero control was computed to match the published study design.

We applied an absolute T-statistic threshold of 7 resulting in 404 significantly differentially

expressed genes with Ensembl gene IDs across the 5 time-points.
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Figure 6.2: Identification of bias in näıve cross-species gene set analysis. A) P -values
from human GO analysis of 1,000 randomly selected human genes and 1,000 randomly
selected zebrafish genes näıvely mapped to their human homologues (Note: the apparent
periodicity is an artefact of TopGO). B) Frequency of the 10 most common false-positive
GO terms from 100 repeats of the experiment. C) Human and zebrafish homology rela-
tionships for genes assigned to the GO term ’flavonoid glucoronidation’. D) Complexity
scores of false positive GO terms vs. all other GO terms.
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Zebrafish 2 - Guo et al. (2014)

Preprocessing of raw data (accession GSE20460) as above. Differential expression at 4

hours and 12 hours post injury compared to matched sham time-points was computed to

match the published study design, although we ommitted the 264 hour time-point due

to poor data quality. We applied an absolute T-statistic threshold of 4 resulting in 62

significantly differentially expressed genes across the 2 time-points.

Frog - Love et al. (2011)

Raw Affymetrix CEL files were downloaded from Array Express (accession E-MEXP-2420)

corrected for background effects, log-transformed and quantile normalised using the RMA

method. Probes with an average expression less than 6 were removed as ’not present’

probes after visual inspection of probe intensity distribution. Differential expression fol-

lowed a time series design with 6 hour post amputation (PA) vs 0 hour control, 24 hour PA

vs. 6 hour PA, and 60 hour PA vs. 24 hour PA, to match the published study design. We

applied an absolute T-statistic threshold of 4 resulting in 666 significantly differentially

expressed genes across the 3 time-points.

Lizard - Hutchins et al. (2014)

We retrieved the differentially expressed gene lists from the supplementary files of the

published study.

6.1.6 Data sources for the mouse heart perturbation case study

We constructed 8 sets of genes that have been linked to human heart development and

disease in published studies. Two heart failure gene sets were the top 1000 genes corre-

lated with pulmonary arterial pressure and Natriuretic Peptide B in human myocardium

from patients with failing hearts (Min et al., 2010). Two modules of 174 and 679 atrial
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fibrillation associated genes were extracted from another recent study (Tan et al., 2013).

Another two atrial fibrillation related gene sets were extracted from a comparison of fib-

rillating atrium to normal sinus rhythm atrium, consisted of 196 down-regulated genes

and 61 up-regulated genes (Barth, 2005). Early heart development genes were determined

from the top 1000 up and down regulated genes in iPS induced cardiomyoctyes relative to

mature human heart (Babiarz et al., 2012).

6.2 Results

6.2.1 Human and Zebrafish gene sets exhibit a broad range of complex

homology

We chose two model organisms with well annotated genomes, Homo sapiens (human) and

Danio rerio (zebrafish), retrieving homology mappings between 15,908 human Ensembl

gene IDs and 18,777 zebrafish Ensembl gene IDs. Henceforth the term ’genes’ refers to

Ensembl gene IDs. 4179 human genes map to more than one zebrafish gene, and 2218

zebrafish genes map to more than one human gene, corresponding to 26.3% and 11.8% of

the respective homologous genomes.

We constructed a ’best reciprocal hits’ (BRH) subset of homology mappings (see methods),

henceforth referred to as the BRH set. The BRH set has 1807 fewer human genes and

4493 fewer zebrafish genes than the complete set, corresponding to a reduction of 11.4%

and 23.9% of the respective homologous genomes.

We calculated human-zebrafish complexity scores (see methods) for each gene set in the

gene ontology (GO). We observe a wide range of complexity occurs in GO.
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6.2.2 Näıve cross-species GSA approach results in a systematic bias

When a random selection of 1,000 human genes is tested against the human GO using the

Fisher’s exact test as implemented in TopGO (Alexa and Rahnenfuhrer, 2010), there are

no significant results passing the significance threshold after multiple testing correction,

and a relatively uniform distribution of p-values is observed, as expected (Fig. 6.2A, red

bars). The same is true when 1000 zebrafish genes are tested against the zebrafish GO,

and these results were consistent for 100 different random selections of genes.

In contrast, when all the human homologues of 1000 randomly selected zebrafish genes were

tested against the human GO (using the homologous gene universe as a background), a

very strong enrichment of small p-values is observed (Fig. 6.2A, blue bars). An enrichment

of small p-values passing multiple hypothesis testing thresholds can be interpreted as

evidence for a strong signal in the data. Considering that the original selection of genes

was entirely random, this indicates that these significant p-values are false positives.
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Repeating this virtual assay 100 times reveals that several GO terms appear repeatedly in

the list of enriched gene sets, with the most recurrent gene set ’flavonoid glucoronidation’

enriched in 38% of trials (Fig. 6.2B). This shows a systematic bias leading to false posi-

tive results when using Fisher’s exact test, introduced by näıve homology mapping from

zebrafish to human genes. Importantly this bias is species-dependent; as different pairs of

species show different biased GO terms. For example, mapping 1000 random genes from

Xenopus tropicalis to Mus musculus and performing GSA results in a very different set

of biased GO terms, including ’sensory perception of chemical stimulus’ in 65% of vir-

tual assays. This indicates that the bias may result from the complex homology mapping

between two species. When we look at the genetic homology between genes annotated

with the GO term ’flavonoid glucoronidation’ we see several striking examples of complex

homology (Fig. 6.2C). Comparing the complexity scores of the repeated biased GO terms

vs. all other GO terms shows that the biased GO terms have a significantly higher gene

set complexity on average (two-sided t-test, p-value = 1.156e-07) (Fig. 6.2D). When we

use the same sets of randomly selected zebrafish genes but map them to human genes us-

ing the BRH homology mapping, the bias disappears (data not shown). Taken together,

these findings provide evidence that the cause of the bias is the introduction of complex

homology mapping into the testing framework without compensation.

6.2.3 XGSA alleviates the bias in the näıve method

Using a toy example of the cross-species testing problem, we observe that the direction-

ality of the complex homology mapping creates the bias (Fig. 6.1). Our solution involves

performing testing in both species / directions, and combining the results. This means

that both species act as the host for a Fisher’s exact test, with the test set being näıvely

mapped from the gene set in the other species. We then return the maximum p-value of

the pair of tests. We call this approach XGSA (see methods). Intuitively this means that

the gene set overlap must be significant in both species – that is, in both directions of

testing (Fig. 6.1). In this way we reduce the effect of complex homology on the resulting p-

value. When we applied our method to the same 100 repetitions of 1000 randomly selected
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zebrafish genes we saw that the systematic bias disappears – zero out of 100 repetitions

had any significantly enriched human GO terms. By accounting for the effects of complex

homology in our statistical testing framework we can remove the bias while still utilizing

the full complex homology structure.

6.2.4 Simulation studies shows XGSA maintains good statistical power

even when analysing gene sets with complex homology

As this problem has not been studied in depth before and no gold standard exists against

which we can evaluate our method, we devised a novel testing approach to compare the

power of different methods (see methods). Briefly, after choosing a human GO gene set,

we incrementally replace zebrafish genes that are not homologous to the GO set with

genes that are homologous and calculate significance using different cross-species gene set

enrichment testing approaches. Based on the assumption that zero homologous genes

should return a p-value of 1 and all homologous genes a p-value close to zero, we can

compare the rate at which the p-value decreases as genes are replaced (Fig. 6.3).

We found that for low complexity gene sets, the four methods of näıve mapping, BRH, OG

and XGSA perform comparably with no practical difference at commonly used thresholds

(Fig. 6.3A). However when testing higher complexity gene sets the power of XGSA becomes

clearer (Fig. 6.3B). By retaining the full homology structure XGSA continues to gain power

from genes assigned to complex gene families, as opposed to BRH and OG in which the

power curve plateaus when complex genes are added. The over-sensitivity of the näıve

method to high complexity gene sets can be observed as abrupt rises in the curve above

the diagonal. In contrast, XGSA maintains a near linear diagonal power curve as with

low complexity gene sets.

We can summarise these curves by measuring the relative area under them (Fig. 6.4). We

find that for zero complexity gene sets all methods perform similarly with small differences

due to various gene universe sizes - XGSA receives a lower score because it uses the

most extensive gene universe. ODB then quickly drops in detection power as complexity
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increases in the tested gene sets and plateaus are introduced to the power curve. As gene

set complexity increases the advantage of XGSA over both ODB and BRH becomes clear.

While it seems that XGSA may be too sensitive as complexity increases, this is because

the zero p-value saturates earlier in large and complex gene sets, causing the power curve

to change shape and the AUC to increase.
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Figure 6.4: Area under the curve of different methods performance during the GO simu-
lation study. Error bars indicate the standard deviation around the mean. In parentheses
on the X-axis labels is indicated the number of GO terms in each complexity bracket. The
apparent improved sensitivity of the näıve method for maximum complexity gene sets is in
fact the detection of false positives as shown in Fig. 6.2 . ∗ = p < 0.01, ∗∗ = p < 1× 10−4

and ∗ ∗ ∗ = p < 1× 10−8 by two sided t-test

6.2.5 Case study 1: Discovering conserved pathways in social challenge

in evolutionarily distant organisms

Ritschoff et al. (2014) studied the transcriptomic changes associated with social challenge

in three species: stickleback fish (Gasterosteus aculeatus), mouse (Mus musculus) and

honey bee (Apis mellifera). They performed a ranked GSA (Sartor et al., 2009) on their

DE genes for each species by assigning GO membership based on protein domain (se-

quence) information using PANTHER. They also performed a cross-species analysis using

the homologous triplet OG approach by harnessing the OrthoDB database, and used the

mouse GO as the reference gene sets. We downloaded their lists of DE genes from each
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Figure 6.5: Cross-Species gene set analysis of transcriptional response to social challenge.
Molecular concept map showing the results of the XGSA pipeline, nodes represent gene
sets and edges represent a significant overlap between gene sets. Solid lines represent edges
between experimental gene sets and clusters of reference GO / pathway gene sets. Light
gray lines represent within cluster similarity of reference gene sets, and overlap between
experimental gene sets with outlier reference gene sets. Network is drawn in Cytoscape.

species and sought to recreate their analysis using XGSA. Because the honey bee Apis

mellifera is not yet included in the Ensembl BioMart homology database, we mapped

the 182 honey bee genes to 153 fly (Drosophila melanogaster) genes using OrthoDB as

suggested by FlyBase (Attrill et al., 2016), and used the fly genes to continue the analysis.

We visualise our results as a molecular concept map (MCM) (Rhodes et al., 2007) –

a network diagram where each node represents a gene set and each edge represents a

significant overlap between gene sets (Fig. 6.5). Unlike Ritschoff et al., we are directly

comparing the experimental gene sets from all three species against the standard mouse

GO terms which allows us to interpret them in a single MCM. This approach is different

from the approach used by Ritschoff et al. where they used computationally inferred GO

membership for each species.
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As with the original study we found very little in the way of shared significant gene

sets between two or more species when comparing the tests performed for each individual

species. However, gene set similarity clustering shows that several gene set categories span

multiple species, including ion transport and regulation of neuronal and muscle activity,

particularly between fly and mouse. We also see a mouse specific viral and ribosomal

response, as well as a fish specific phototransduction response. Furthermore we included

KEGG pathways into the MCM analysis, allowing us to identify interesting and relevant

pathways for social challenge such as Long Term Depression and Long Term Potentiation,

and the only gene set significant in two species (mouse and fly), Dilated Cardiomyopathy.

We found that 39%, 33% and 12% of our significant GO gene sets overlapped with Ritschoff

et al. results in mouse, stickleback and honey bee, respectively. Furthermore, 21% of our

total significant GO gene sets were significant in the Ritschoff et al. homologous triplet

OG analysis, including representative gene sets spanning their major result categories.

Our comparison with the study by Ritschoff et al. raises several issues. As a limitation,

our analysis used the DE gene sets as opposed to the ranked list used with GSEA in the

original study. As we also do not know the GO terms universe or term – gene assignment

used in that study, we cannot declare how closely our results matched theirs. That our

results, although retrieving fewer and different GO terms, spanned their species-specific

and homologous triplet categories indicates that we recreated many of their key findings.

Mapping from honey bee to fly was clearly not ideal and so it is not surprising the fairly

low correspondence of significant gene sets for that species. An alternative is to create

homology mappings from honey bee to stickleback fish and mouse using BLAST, to enable

direct comparisons.

6.2.6 Case study 2: XGSA reveals conserved molecular pathways in

vertebrate organ regeneration

Many vertebrates display the ability to regenerate entire appendages, but humans or other

common mammalian animal models have very limited capacity to regenerate. With the
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availability of whole genome sequences and functional genetic technologies for reptilian

and amphibian species with significant regenerative capacity, genome-wide comparative

studies of gene expression dynamics during organ regeneration are now possible. Lizards,

which are amniote vertebrates like humans, are able to lose and regenerate a functional

tail with regrowth and patterning of cartilage, muscle, vasculature, spinal cord, and skin

(Hutchins et al., 2014). In addition to the lizard, tadpoles of the African clawed frog,

Xenopus laevis, are also capable of regenerate their tails and fins, and there are extensive

genomic resources available for this model. One important task in regenerative biology

is to identify molecular pathways that are conserved in multiple regenerative vertebrates

during organ regeneration.

Here we performed a case study to investigate spinal cord regeneration across three species

for which transcriptomic profiling of regenerating spinal cord tissues was available; ze-

brafish (Guo et al., 2011; Hui et al., 2014), lizard (Hutchins et al., 2014) and frog (Love

et al., 2011). We sought to explore the biology captured in these data sets by leveraging

the extensive gene sets available for human and zebrafish in GO, MSigDB and SPEED

(Subramanian et al., 2005). In total our analysis included 97,079 XGSA tests between

2804 gene sets which took 30 minutes on a single core and resulted in 175 significant

overlaps. We analysed the results using an MCM (Fig. 6.6).

Zebrafish and tadpole regeneration gene sets show a direct overlap between them as well

as many shared enriched gene sets, including TNFa and E2F signalling, cell cycle, DNA

repair and oocyte maturation signals. The lizard gene sets are more isolated from the

other two, which is itself not surprising due to their different experimental designs and

tissues being profiled. We found that Lizard and tadpole share endothelial to mesenchymal

transition and extra cellular matrix assembly related signals. In the base of the lizards

regenerating tail we see a very strong enrichment of muscle-related gene sets, likely due

to the dominance of this tissue in this regenerative region.

When we compared our gene sets against the MSigDB perturbation gene sets, we find

a gene set related to human carious teeth that overlap significantly (adjusted p-value <

0.05) with all three species. The pulpal tissue of human carious teeth has been reported
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to be a source of active multipotent mesenchymal stem cells and may represent a tissue

with limited regenerative capacity in human (Rajendran et al., 2013). When focusing on

the TF targets and immune gene sets, we found the motif for SRF (a known regeneration

stimulant (Stern et al., 2013)) is enriched in DE genes from both lizard and zebrafish, and

that there is a conserved immune response in zebrafish and tadpole.
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Mitosis & cell cycle
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Myogenesis & muscle contraction
Mitosis

TNFa & IL signalling

Assorted
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Figure 6.6: Molecular concept map (MCM) showing the overview of the cross-species
spinal cord regeneration gene set analysis, nodes represent gene sets and edges respresent
a significant overlap between gene sets. Solid lines represent edges between experimental
gene sets and reference GO / pathway gene sets. Light gray lines represent similarity
between reference gene sets. Network is drawn in Cytoscape.

We further looked at which genes are commonly DE between multiple species. Aurora

Kinase A (AURKA), which plays a crucial role in spindle assembly, was DE in lizard and

zebrafish regeneration experiments, and is known to be required for regeneration in mouse

(Pérez de Castro et al., 2013). Furthermore, AURKB was DE in the tadpole regeneration

experiment, suggesting an evolutionarily conserved role for Aurora kinases in regeneration.

Another gene of interest is Keratin 19 (KRT19 ), a marker of hepatic stem cells, endothelial

mesenchymal transition and TGFβ signalling. KRT19 was DE in both lizard and tadpole

regeneration experiments, with other keratins being DE in zebrafish. Thirteen more DE

genes were conserved between zebrafish and tadpole regeneration, including PLK1 which is
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required for cardiac regeneration in zebrafish (Jopling et al., 2010), KIF23 which controls

G2/M arrest and is also DE in axolotl limb regeneration, SOCS3 which has been shown

to suppress optic nerve regeneration in mice (Smith et al., 2009), and several hepatocyte

regeneration markers (KIF20a, MCM4 and LIG1 ).

6.2.7 Case study 3: Mouse heart perturbation target gene sets

We also used XGSA to compare the downstream targets of each mouse genetic perturba-

tion from the previous chapter of this thesis, to human gene sets that are either cardio-

developmentally active or implicated in adult heart disease phenotypes (Min et al., 2010).

Our results visualized as an MCM, confirm knowledge such as Gata4 and Tbx5 being

central to early cardiac development, and are also risk genes for atrial fibrillation along

with Tbx3 (Fig. 6.7).

Several interesting new candidates also emerge. Atp2b4, a relatively under described

gene which codes for a calcium pump, shares many connections with Tbx5 and Gata4,

including being implicated in atrial fibrillation and early cardiac development. Atp2b4

has recently been identified as a mediator of cardiac hypertrophy (Mohamed et al., 2016).

Another clear result was the affiliation of Klf15 with heart failure genes correlated with

pulmonary arterial pressure and Natriuretic Peptide B (Fig. 6.8). Indeed Klf15 deletion

in mice has previously been found to lead to heart failure (Haldar et al., 2010). We also

found a connection between Dmpk and atrial fibrillation, which was also supported by

the literature (Berul et al., 1999). A promising novel candidate as an atrial fibrillation

gene was Frataxin, implicated in Friedrich’s ataxia, a syndrome with well described heart

conduction defects.

6.3 Discussion

The main contributions of this work are: (1) formulation of the cross-species gene set

analysis problem, (2) investigation of the statistical bias that may arise when comparing
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Figure 6.7: Molecular concept map of gene sets from mouse perturbations
(blue), human heart diseases (red) and human gene ontology terms (pink)

gene sets with complex homology relationships, (3) development of a statistical hypoth-

esis testing approach called XGSA, and (4) demonstration of how XGSA can be used in

conjunction with MCM to identify evolutionarily conserved and species-specific molecular

pathways using three real datasets.

Effectively, current GSA approaches deal with the complex homology mapping issue by

reducing the complexity of the homology mapping (i.e., by removing non one-to-one ho-

mologous gene pairs or abstracting the test to a higher level). In contrast, XGSA takes

into account the entire homology structure when performing GSA. The benefit of XGSA

is increased power to detect enrichment of gene sets with complex homology. XGSA also

alleviates the false positive bias introduced by the näıve testing framework by ensuring

gene set enrichment is significant in both species, overcoming the main limitation of ’at
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Figure 6.8: Klf15 targets showing overlap with heart failure gene sets

least one homolog’ mapping. When compared to existing cross-species GSA approaches,

XGSA balances both sensitivity and specificity for all gene sets.

Our work does not deal with the issues of comparing ranked lists, like the GSEA method

(Subramanian et al., 2005). Also, our method currently treats each homology relationship

equally (absent or present), whereas the information about the extent of sequence homol-

ogy was not used. Nonetheless, based on the formulation of the problem statement, we

aim to extend our method to incorporate these features.

We have implemented the source code for XGSA in R. By harnessing the Ensembl BioMart

portal our framework utilises the latest homology structure on a growing number of species

supported in Ensembl (currently 69). Due to the flexibility and simplicity of our R frame-
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work such that users can include custom homology matrices for unsupported species, the

potential for XGSA to unlock cross-species gene set analyses is widespread. The typical

use case is when investigating gene sets from an organism without a comprehensive gene

set database. If the organism is supported by Ensembl the XGSA workflow is trivial, other-

wise the user needs to compute homology to a genomic model organism to unleash XGSA.

A second use case is when cross-species analysis is central to the biological questions being

studied, such as in our case study of spinal cord regeneration. Our third case study shows

how XGSA can be used to gain clinically relevant insights from cross-species analyses. The

ability to integrate gene sets from different species together into a unified network-based

visualisation such as a MCM improves speed and confidence when interpreting insights

from traditionally problematic cross-species gene set analyses. This improved workflow is

expected to be valuable for researchers in practice (Huang et al., 2009).
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Chapter 7

Cross-species identification of

satellite cells from anole lizard

skeletal muscle

7.1 Introduction

Lizards are evolutionarily the closest vertebrate group to humans with the ability to re-

generate an entire appendage (Eckalbar et al., 2012; Koshiba-Takeuchi et al., 2009). Fur-

thermore, many lizard species are able to autotomize, or self-amputate, their tails to avoid

predation and then subsequently grow a replacement (Gilbert et al., 2013). The regener-

ated lizard tail is a structurally complex appendage with skeletal muscle group, tendons, a

hylainecartilage endoskeleton, peripheral motor and sensory nerves, vasculature, and skin

(Fisher et al., 2012; Hutchins et al., 2014). Mammals have some regenerative capacity of

appendages, limited to digit tip formation in neonatal mice and humans under age two

(Yu et al., 2010). Neonatal mice can also regenerate limited damage to heart ventricular

muscle during the first week of life (Darehzereshki et al., 2015; Porrello et al., 2011).

Tail regeneration in A. carolinensis likely occurs through a stem cell mediated process,
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rather than de-differentiation as occurs during epimorphic regeneration in salamanders

(Fisher et al., 2012; Hutchins et al., 2014). Regeneration of a complex, multi-tissue struc-

ture such as the tail require pools of proliferative stem cells capable of differentiating

into different lineages. Regeneration-capable species employ distinct strategies to gen-

erate these stem cell populations. In urodele amphibians, de-differentiation of injured

tissue results in proliferative, lineage restricted progenitors (Kragl et al., 2009), and trans-

differentiation of cells that change their fate can contribute to more than one tissue (Jopling

et al., 2010). Resident progenitor cells play a role in the the urodele limb, with PAX7

positive cells activated and migrating to the site of injury following amputation (Sandoval-

Guzmán et al., 2014).

Studies of skeletal muscle repair in response to injury in mammals have provided consid-

erable insight into the signalling pathways associated with satellite cell activation, prolif-

eration and differentiation during repair. In response to acute damage, the myofibers are

repaired by resident PAX7 positive satellite cells (Lepper et al., 2011; Sambasivan et al.,

2011). Mammalian satellite cells are limited in their function to the repair of existing

myofibers (Chen and Goldhamer, 2003; Dhawan and Rando, 2005; Relaix and Zammit,

2012; Wang and Rudnicki, 2011). There are cells present in a similar niche on the muscle

fibers of anole lizards (Kahn and Simpson, 1974).

Several previous studies have profiled the transcriptomes of satellite cells in mammalian

species such as the mouse (Ryall et al., 2015), human (Charville et al., 2015), pig (Jeong

et al., 2013), and cow (Lee et al., 2014). However, comparison of gene expression across

vertebrate species remains a bioinformatic challenge due to difficulties in identifying orthol-

ogous genes and differences in baseline gene expression. A useful framework for comparing

transcriptome-wide expression profiles across species is based on testing whether a gene

set that is specifically expressed in a species is shared with similar tissues or cell types in

other species (Djordjevic et al., 2016).

An earlier transcriptomic analysis of the regenerating A. carolinensis tail demonstrated

that there were 326 differentially expressed genes along the proximal-distal axis, many of

which are involved in the development of the skeletal system and muscle (Hutchins et al.,
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2014). In this study we aim to determine which mammalian cell type is the closest match

to the PAX7 positive cells isolated from the anole lizards. In order to achieve this, we

characterised the lizard muscle progenitor cells using XGSA cross-species comparison of

their transcriptome with that of mammalian cell types and tissues, including satellite cells

(Djordjevic et al., 2016). Our data demonstrated that the transcriptomic profile of the

A. carolinensis muscle progenitor cells was most similar to mammalian satellite cells. It

is likely that changes in the regulation of gene expression underlies the ability to regen-

erate appendages, thus we also compared expression of musculoskeletal and TGFβ/BMP

pathway genes between mouse and lizard satellite cells using this same bioinformatics ap-

proach. We found key regulators of myogenesis and chondrogenesis that showed much

higher ranked expression in lizard satellite cells, potentially giving insight into the mech-

anisms that drive myofiber regeneration.

7.2 Method

7.2.1 Bioinformatic Analysis of RNA-Seq Data

RNA-Seq analysis of A. carolinensis satellite cells (3 biological replicates) has been de-

scribed previously by our group (Hutchins et al., 2014) and the data are deposited in the

NIH Sequence Read Archive (SRR1502189, SRR1502190, and SRR1502191; BioProject

PRJNA253971). RNA-Seq data of mouse C57Bl/6J satellite cells (Ryall et al. (2015);

SRA accessions SRR1726676, SRR1726677) were supplemented by our RNA-Seq analy-

sis of mouse CD1 satellite cells isolated as described above using protocols as described

in Hutchins et al. (2014). Transcript reads were mapped to A. carolinensis (AnoCar2.0)

or mouse (GRCm38) Ensembl annotated genomes with HISAT2 v2.0.1 using default pa-

rameters (Kim et al., 2015). Gene level read counts were generated using HTSeq v0.6.0

in intersection-nonempty mode (Anders et al., 2015). For lizard and mouse satellite cell

transcriptomes, Reads Per Kilobase of transcript per Million mapped reads (RPKM) were

generated using edgeR (Robinson et al., 2010). For human satellite cells, Fragments Per

Kilobase of transcript per Million mapped reads (FPKMs) were generated from two biolog-
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ical replicates analysed by RNA-Seq (Charville et al., 2015) using TopHat (Trapnell et al.,

2009) and Cuffnorm (Trapnell et al., 2010). For comparison with reported gene expression

profiles for a library of different tissues, ENCODE transcriptome profiles summarized as

FPKMs were obtained for human (hg19; 139 tissues) and mouse (mm9; 94 tissues).

7.2.2 Cross-species gene set analysis

For each RNA-Seq experiment containing RPKM or FPKM values, rank products were

calculated for each gene using all available replicates (Breitling et al., 2004). We identified

the 1,500 most highly expressed genes in each cell type or tissue type. We then remove

genes that are deemed highly expressed in more than 10% of the cell types, as these genes

are likely ubiquitously expressed genes. The remaining genes are considered specifically

expressed in each cell type or tissue type. We call this collection of gene sets the cell-type

specific gene sets. Using the human and mouse ENCODE data collections, we generated a

compendium of cell-type specific gene sets in humans and mice. Using a similar procedure,

we used our lizard RNA-Seq data to generate a highly expressed gene set. We compared

the lizard gene set against the human and mouse cell-type compendium using XGSA. A

p-value is generated to represent whether the lizard gene set has significant overlap with

a mouse or human cell-type-specific gene set.

To confirm that our gene set analysis is robust against our choice of parameters, we

repeated the same analysis with a range of parameters (number of top highly expressed

genes: 500, 1,000, 1,500, 2,000; % of cells containing marker gene: 1%, 2%, 3%, 5%, 10%,

15%, and 20%).

7.3 Results

Analysis of genes expressed in lizard satellite cells was carried out using RNA-Seq tran-

scriptomic analysis (Hutchins et al., 2014). Based on our previous data, we wanted to

determine the similarity of the lizard PAX7 positive cells to the satellite cell population in
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the mouse and human. We carried out this comparison using XGSA, a statistical method

for cross-species gene set analysis (Djordjevic et al., 2016). We compared highly expressed

genes in the lizard satellite cell transcriptome to a compendium of cell-type-specific gene

sets including 94 tissues from the mouse ENCODE project (Yue et al., 2014). This com-

parison demonstrated that out of the tissues examined, the lizard PAX7 positive cell has a

significant similarity with the mouse satellite cell based on expression of cell-type-specific

marker genes (p−value < 1.9×10−26). It has a much more significant overlap with mouse

satellite cell markers than markers of any other mouse cell types studied here (Fig. 7.1A),

and this result is robust against analysis parameters (Fig. 7.2). Similarly, we compared

lizard satellite cells with 139 tissues from the human ENCODE project and identified the

greatest similarity with activated and quiescent human satellite cells (Fig. 7.1B, 7.2).

- log10 P-value- log10 P-value
0 1 2 3 4

HT1080
K562

MCF−7
thoracic aorta endothelial cell

K562
GM12878
GM12878

K562
Activated satellite cells

Quiescent satellite cells

liver embryonic 11.5 day

84 tissues / cells

neural tube embryonic 11.5 day
bladder day 0

lung embryonic 14.5 day
GMP

CH12.LX
megakaryocyte progenitor

G1E
G1E−ER4

Mouse satellite cells

0 1 2 3 4 25

Lizard MSC vs. mouse tissues and cells
A

Lizard MSC vs. human tissues and cells
B

131 tissues / cells

Figure 7.1: XGSA analyses comparing the transcriptome from lizard satellite
cells to multiple tissues from the mouse and human ENCODE projects. XGSA
comparison of marker genes with 94 mouse (A), and 139 human (B) tissues reveals that
the lizard satellite cell transcriptome (Hutchins et al., 2014) displayed highest similarity
with mouse and human satellite cells. Depicted are the top 10 most similar for each species
comparison.

Bone morphogenic protein (BMP) and transforming growth factor β (TGFβ) signaling

pathways have important regulatory roles both in embryonic myogenesis and postnatal

muscle regeneration (George et al., 2015; Lee et al., 2012; McFarlane et al., 2011; Sartori

et al., 2013). We examined the differences in the expression of the Tgfβ/Bmp path-

way genes by comparing the relative rankings of 105 Tgfβ/Bmp pathway genes (KEGG
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Mean rankMean rank

Lizard MSC vs. mouse tissues and cells Lizard MSC vs. human tissues and cells

Quiescent satellite cells
Activated satellite cells

K562 adult 53yo
GM12878 adult

K562 adult 53yo
HT1080 adult 35yo

GM12878 adult
MCF-7 adult 69yo

SJCRH3 17yo
MCF-7 adult 69yo

K562 adult 53yo
hair follicle dermal papilla cell adult 70yo

MG63 child 14yo
K562 adult 53yo
GM12878 adult

thoracic aorta endothelial cell adult 22yo
K562 adult 53yo

Daoy child 4yo
skeletal muscle myoblast

M059J adult 33yo
Purkinje cell child 6yo

GM12878 adult
RPMI-7951 adult 18yo

HepG2 child 15yo
HT1080 adult 35yo

A375 adult 54yo
melanocyte of skin child 1yo

fibroblast of the aortic adventitia adult 24yo
HepG2 child 15yo

keratinocyte
induced pluripotent stem cell adult 53yo

endothelial cell of umbilical vein newborn
K562 adult 53yo

articular chondrocyte of knee joint adult 64yo
fibroblast of villous mesenchyme newborn

pericyte cell newborn
SJSA1 adult 19yo

melanocyte of skin adult 52yo
smooth muscle cell embryonic 5 day

HT1080 adult 35yo
stomach fetal 40 week
osteoblast adult 56yo

fibroblast of lung
NCI-H460 adult 37yo

A172 adult 53yo
SK-N-DZ child 2yo

umbilical cord fetal 20 week
neural progenitor cell embryonic 5 day

H4 adult 37yo
fibroblast of dermis adult 44yo

renal cortical epithelial cell adult 84yo
smooth muscle cell of the umbilical artery newborn

GM12878 adult
urinary bladder fetal 20 week

subcutaneous preadipocyte adult 65yo
aortic smooth muscle cell adult 21yo

uterine smooth muscle cell adult 50yo
vein endothelial cell adult 48yo

LHCN-M2 adult 41yo
SK-N-DZ child 2yo

K562 adult 53yo
fibroblast of lung fetal 12 week

LHCN-M2 adult 41yo
Caki2 adult 69yo

skeletal muscle satellite cell adult 64yo
kidney epithelial cell fetal,

newborn
nasal cavity respiratory epithelium epithelial cell of viscerocranial mucosa adult 70yo

smooth muscle cell of the coronary artery adult 53yo
H7-hESC

keratinocyte
uterus fetal 28 week

regular cardiac myocyte adult 51yo
glomerular endothelial cell fetal 22 week

bronchial epithelial cell adult 40yo
fibroblast of lung adult 23yo

epithelial cell of umbilical artery newborn
bronchus fibroblast of lung

fibroblast of arm adult 53yo
endothelial cell of coronary artery adult 77yo

OCI-LY7 adult 48yo
pulmonary artery endothelial cell adult 52yo

endothelial cell of umbilical vein newborn
smooth muscle cell of the pulmonary artery adult 26yo

PC-3 adult 62yo
mesangial cell fetal,

thyroid gland fetal 40 week
tracheal epithelial cell adult 21yo

Karpas-422 adult 73yo
SK-MEL-5 adult 24yo

skeletal muscle myoblast
G401 child 3yo

monthepithelial cell of proximal tubule
spinal cord fetal 22 week

mammary microvascular endothelial cell adult 26yo
placental epithelial cell newborn

cardiac ventricle fibroblast adult, 18yo
dermis lymphatic vessel endothelial cell child, adult 45yo

myotube
bladder microvascular endothelial cell adult 46yo

GM12878 adult dermis blood vessel endothelial cell child 13yo
smooth muscle cell of trachea adult 56yo

pericardium fibroblast fetal, 20 week
smooth muscle cell of bladder adult 53yo

SK-MEL-5 adult 24yo
myometrial cell adult 34yo

heart fetal 19 week
endometrial microvascular endothelial cells adult 34yo

temporal lobe fetal 24 week
cardiac atrium fibroblast child 2yo

skeletal muscle tissue fetal 19 week
skin of body fetal 22 week

epithelial cell of alveolus of lung fetal
neural cell embryonic bronchial smooth muscle cell adult 52yo

diencephalon fetal 20 week
lung fetal 24 week

bipolar spindle neuron adult 53yo
keratinocyte

camera-type eye fetal 24 week
cerebellum fetal 19 week

dermis microvascular lymphatic vessel endothelial cell adult 64yo
HT-29 adult 44yo

frontal cortex fetal 22 week
astrocyte

occipital lobe fetal 22 week
SK-N-DZ child 2yo

cardiac myocyte fetal hepatocyte embryonic 5 dayparietal lobe fetal 22 week
lung microvascular endothelial cell adult 63yo

endothelial cell of umbilical vein newborn
metanephros fetal 20 week

hair follicular keratinocyte adult 55yo
tongue fetal 20 week
airway epithelial cell

liver child, adult 32yo
NCI-H460 adult 37yo
SK-MEL-5 adult 24yo

liver fetal 22 week
liver child, adult 6yo

Mouse satellite cells
G1E-ER4 postnatal 0 day

MEP adult 5-6 week
CH12.LX 

megakaryocyte progenitor cell adult 5-6 week
G1E postnatal 0 day

bladder postnatal 0 day
CH12.LX 

GMP adult 5-6 week
hematopoietic stem cell adult 5-6 week

megakaryocyte adult 5-6 week
liver embryonic 11.5 day

CMP adult 5-6 week
lung postnatal 0 day

erythroid progenitor cell adult 5-6 week
limb embryonic 11.5 day

midbrain embryonic 11.5 day
cerebellum Purkinje cell layer adult 14 month

heart postnatal 0 day
forebrain embryonic 13.5 day

embryonic facial prominence embryonic 11.5 day
neural tube embryonic 11.5 day

forebrain embryonic 16.5 day
cerebellar granule layer adult 14 month

lung embryonic 14.5 day
forebrain embryonic 15.5 day
hindbrain embryonic 11.5 day

lung embryonic 15.5 day
liver embryonic 14 day

erythroblast adult 5-6 week
liver embryonic 13.5 day

heart embryonic 11.5 day
lung embryonic 16.5 day

midbrain embryonic 13.5 day
forebrain postnatal 0 day

cerebral cortex, layer 5 adult 8 month
forebrain embryonic 11.5 day
forebrain embryonic 14.5 day
stomach embryonic 14.5 day

embryonic facial prominence embryonic 13.5 day
thymus postnatal 0 day

kidney embryonic 14.5 day
limb embryonic 14.5 day

heart embryonic 14.5 day
midbrain embryonic 14.5 day
stomach embryonic 16.5 day

hindbrain embryonic 13.5 day
cerebellar granule layer adult 8 month

neural tube embryonic 14.5 day
neural tube embryonic 13.5 day

Purkinje cell adult 8 month
embryonic facial prominence embryonic 15.5 day

kidney embryonic 15.5 day
limb embryonic 15.5 day

intestine embryonic 14.5 day
heart embryonic 13.5 day
liver embryonic 14.5 day

adrenal gland postnatal 0 day
kidney postnatal 0 day

hindbrain embryonic 15.5 day
kidney embryonic 16.5 day

limb embryonic 13.5 day
neural tube embryonic 15.5 day

stomach postnatal 0 day
hindbrain embryonic 16.5 day

hindbrain postnatal 0 day
embryonic facial prominence embryonic 14.5 day

hindbrain embryonic 14.5 day
forebrain postnatal 0 day
midbrain postnatal 0 day

midbrain embryonic 16.5 day
spleen postnatal 0 day

midbrain postnatal 0 day
stomach embryonic 15.5 day
midbrain embryonic 15.5 day

liver embryonic 18 day
hindbrain postnatal 0 day
liver embryonic 14.5 day

heart embryonic 15.5 day
liver adult 8 week

heart adult 8 week
kidney adult 8 week

liver adult 8 week
thymus adult 8 week

heart embryonic 16.5 day
liver postnatal 0 day

cerebral cortex, layer 5 adult 8 month
intestine postnatal 0 day

intestine embryonic 15.5 day
heart postnatal 0 day

liver embryonic 15.5 day
neural tube postnatal 0 day

liver embryonic 16.5 day
intestine embryonic 16.5 day

skeletal muscle tissue postnatal 0 day
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Figure 7.2: Average XGSA rank for all tissues from the mouse and human
ENCODE projects compared to anole satellite cells across a large range of
parameters. Over a large range of parameters (number of top highly expressed genes:
500, 1,000, 1,500, 2,000; % of cells containing marker gene: 1%, 2%, 3%, 5%, 10%, 15%,
and 20%), XGSA comparison against 94 mouse and 139 human tissues reveals that the
lizard satellite cell transcriptome (Hutchins et al., 2014) consistently displayed highest
similarity with mouse and human satellite cells.

131



7. Cross-species identification of satellite cells from anole lizard skeletal muscle

category mmu04350 and GO term GO:0030509) from lizard and mouse satellite cells

(Fig. 7.3A). Genes with differential expression, higher rankings in lizard, included Bmp2,

Bmp5, Bmp7, Dcn, Fst, Id4, Inhba, Pitx2, Smad9, Tgif2, Zfyve16, Msx1, Msx2, Rnf165,

Grem2, and Sostdc1. Included in this list were genes with important roles in myogenesis,

such as follistatin (Fst) and Pitx2 that induce proliferation of satellite cells in regenerating

muscle (Lee and McPherron, 2001; Lozano-Velasco et al., 2011; Ono et al., 2011; Winbanks

et al., 2013). Msx1 also was among the highly ranked genes in lizard satellite cells, this

gene regulates the cellularisation of myofibers, i.e., the conversion of multi-nucleated skele-

tal muscle fibers into mononuclear cells, during amphibian limb regeneration. Msx1 also

regulates cell cycle re-entry of the resulting myoblasts. Ectopic expression of either Msx1

or Msx2 in mouse myofibers induced cellularisation and inhibited myoblast differentiation

(Echeverri and Tanaka, 2002; Kumar et al., 2004; Odelberg et al., 2000; Yilmaz et al.,

2015).

Our data demonstrated that the expression of Bmp2, Bmp5, and Bmp7, genes encoding

proteins that inhibit muscle differentiation and regulate chondrogenesis and osteogenesis,

ranked considerably higher in satellite cells of the lizard compared to the mouse (Fig.

7.3A;(King et al., 1994; Ono et al., 2011; Shen et al., 2009; Snelling et al., 2010). While

mouse and human satellite cells and myoblasts typically only differentiate into skeletal

muscle, high levels of these BMP ligands can induce these cells to undergo osteogenesis

and chondrogenesis in vitro (Asakura et al., 2001; Katagiri et al., 1994; Shea et al., 2003;

Wada et al., 2002). Decorin (Dcn) encodes an extracellular matrix protein that decreases

the fibrotic response during muscle regeneration (Fukushima et al., 2001; Li et al., 2008;

McCroskery, 2005). Similarly, Tgfb2 and Fzd1, implicated in fibrosis in dystrophic and

aged skeletal muscle, are ranked much lower in the lizard myoprogenitors (Biressi et al.,

2014; Brack et al., 2007). Other genes with lower expression levels in satellite cells of

lizard, as compared to mouse, included Bmp6, Bmpr1b, Bmper, Fzd1, Lef1, and Sox11.

We observed that the transcriptomic profile of lizard satellite cells was marked by the high

expression of genes involved in not only myogenesis, but also chondrogenesis and osteogen-

esis (Fig. 7.3B). Mammalian satellite cells are limited to differentiating into skeletal muscle
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Mouse

Rank

Lizard

Mouse Lizard

ZFYVE16
PITX2
HTRA3
GREM2
INHBA
FST
BMP5
ACVR1B
SMAD9
RPS6KB1
TOB1
BMPR2
TGFBR2
EP300
CTDSPL2
RHOA
PPP2CB
LTBP1
SMURF2
PPP2R1A
PPM1A
ROCK1
ACVR1
RBX1
RUNX2
MAPK3
SMAD2
SMURF1
BMPR1A
RBPJ
ID2
TGIF1
ABL1
SMAD5
SMAD4
E2F4
MAPK1
ACVR2A
SMAD1
E2F5
SP1
SPG20
RBL1
SMAD6
SOX11
RGMA
BMP6
TGFB2
BMPER
BMPR1B
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DCN
ILK
LEF1
FZD1
TWSG1
FBN1
CREBBP
RPS6KB2
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SMAD3
TGFB1
ROR2
TGFB3
MSX2
RNF165
VWC2
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TGIF2
BMP7
BMP2
MSX1
SOSTDC1
FGF8
T
BMP4
CHRDL1
SFRP2
GATA4
CHRD
TMPRSS6
AMHR2
BAMBI
GDF6
ACVRL1
KCP
INHBB
WNT5A

CTNNB1
MYOD1
MYL6
GPX1
MAPK14
CFL2
COPS2
ANKRD1
RUNX2
MBNL1
VGLL2
FOXN2
CCNT2
LEMD2
METTL8
FLNB
CHST11
DMD
USP19
UQCC2
SERPINH1
CDON
PPP3CA
MYLPF
EMD
IMPAD1
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BTG2
PRKAA1
TGFB1
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SIX4
COL5A1
SULF1
BCL9
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MEF2C
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TGFBR2
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HDAC4
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Figure 7.3: Gene rank comparison of mouse and lizard satellite cell transcrip-
tomes. Heatmaps of genes involved in the TGFβ/BMP signaling pathway (panel A)
and musculoskeletal development (panel B) show differential rankings between mouse and
lizard satellite cells. Genes with the highest rank (highest level of expression) are closer to
1, and those with the lowest rank (lowest expression in that species) are closer to 20,000.

in vivo (Starkey et al., 2011) however, murine satellite cells can be induced to become other

musculoskeletal cell types or adipocytes in vitro when cultured in the presence of high con-

centrations of morphogens (Asakura et al., 2001; Haas and Tuan, 1999; Ozeki et al., 2007;
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Takács et al., 2013; Usas and Huard, 2007; Wada et al., 2002). Focusing on genes in the

gene ontology (GO) terms skeletal muscle and cartilage development and differentiation,

we found that expression of several key genes involved in satellite cell activation and pro-

liferation, and muscle differentiation ranked higher in lizards compared to mouse. This

set included Mef2c, Pitx2, Sox8, Srpk3, Hdac4, Axin2, Bcl9, and Sulf1 (Fig. 7.3B; Brack

et al. (2008, 2009); Edmondson and Olson (1989); Gill et al. (2010); Knopp et al. (2013);

Mart́ınez-Fernandez et al. (2006); Molkentin et al. (1995); Raines et al. (2015)). Nr4a1

whose expression was also ranked higher in lizard plays a key role in tissue repair and re-

presses TGFβ target genes to limit fibrosis (Palumbo-Zerr et al., 2015). Another receptor

ranked higher in lizards was Nr2f2, a negative regulator of differentiation of many stem

cells, including those in the skeletal muscle, cartilage, and bone marrow lineages (Gao

et al., 2017; Zhu et al., 2016), and is up-regulated in activated satellite cells (Gill et al.,

2010). Genes that demonstrated a lower level of expression in lizard satellite cells included

genes with known regulatory roles in muscle development and satellite cell function such

as, Dll1, Six1, Ankrd2, Cited2, Gpc1, Fzd1, Megf10, and Smo (Fig. 7.3B). Among these

Megf10, Ankrd2, Fzd1, and Smo induce differentiation of satellite cells (Brack et al., 2008;

Holterman et al., 2007; Kemp et al., 2000; Zhao and Hoffman, 2004). Together these data

suggest that these myoprogenitors express the myogenic transcriptional program but are

not differentiating, consistent with their status as proliferating single cells.

One of the most striking observations from our analyses were the very high expression

of Bmp2, Bmp5, Bmp7, and many other cartilage-promoting genes in the lizard satellite

cells, which would be predicted to result in greater potential of these cells to differentiate

along the cartilage lineage.

7.4 Discussion

Transcriptomic and histological analysis of regeneration in the A. carolinensis tail points

to a stem cell-mediated process (Fisher et al., 2012; Hutchins et al., 2014). Previous work

has demonstrated that lizard skeletal muscle contains PAX7 positive progenitor cells and
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RNA-Seq analysis showed that the regenerating tail expressed marker genes of activated

satellite cells and myoblasts (Hutchins et al., 2014). Using the cross-species analytical

tool XGSA, we carried out comparative transcriptomic analysis of proliferating satellite

cells from the lizard with mouse and human tissues from the ENCODE project. As might

be expected, we found the closest match with satellite cells (Fig. 7.1). However, the

expression level of genes associated with chondrogenesis and osteogenesis were higher in

lizard satellite cells compared with their mouse counterparts (Fig. 7.3).

BMP signalling induces different responses depending on ligand concentrations and expo-

sure times. BMPs and their inhibitors define where and when muscle formation occurs

(Hirsinger et al., 1997; Re’em-Kalma et al., 1995; Reshef et al., 1998). During skeletal

muscle regeneration, low concentrations of BMP2, 4, and 7 maintain proliferation of satel-

lite cells and myoblasts (Amthor et al., 1998; Friedrichs et al., 2011; Ono et al., 2011; Ozeki

et al., 2007; Sartori et al., 2013; Wang et al., 2010). Whereas, high levels of BMP2, 4,

5, or 7 inhibit myogenesis, induce chondrogenesis, and ultimately, osteogenesis of satellite

cells, C2C12 myoblasts, C3H10T1/2 MSCs, and other MSCs, with continued exposure in

culture (Bandyopadhyay et al., 2006; Friedrichs et al., 2011; Katagiri et al., 1994; Knip-

penberg et al., 2006; Liao et al., 2014; Ozeki et al., 2007; Schmitt et al., 2003; Shea et al.,

2003; Takács et al., 2013; Zhou et al., 2016). Proliferating lizard satellite cells expressed

Bmp2, Bmp5 and Bmp7 at high levels, unlike their murine counterparts (Fig. 7.3).

The expression of Msx1 and Msx2 was ranked higher in lizard compared to mouse satellite

cells. These transcriptional repressors play important roles in inhibition of chondrogenic

cell differentiation in mammals. (Ishii, 2005; Odelberg et al., 2000; Satokata et al., 2000).

In amphibians, these proteins are important for de-differentiation of muscle during limb

regeneration and are expressed in the blastema (Echeverri and Tanaka, 2002). The ex-

pression of these two genes in proliferating lizard satellite cells may indicate that they are

necessary for maintenance of proliferation and plasticity.

Taken together, these data suggest that lizard satellite cells have increased musculoskeletal

potential governed by changes in the regulation of gene expression. Further inquiry into

these changes will not only shed light on the mechanisms of lizard tail regeneration, but
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also provide a means for approaching improved tissue engineering of mammalian muscle

and cartilage from satellite cells. Understanding the regeneration strategy employed by

reptiles could provide important genetic algorithms that are exploitable in mammals.
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Chapter 8

hiHMM: Bayesian non-parametric

joint inference of chromatin state

maps

8.1 Introduction

Readout of genetic information in eukaryotic genomes is mediated by the dynamic chro-

matin environment, which regulates DNA accessibility for the gene expression machinery

through chromatin compaction, associated histone modifications and incorporation of hi-

stone variants. Chromatin immunoprecipitation experiments followed by genome-wide

microarray (ChIP-chip) or sequencing (ChIP-seq) have revealed that distinct genomic

regulatory regions are associated with different covalent modifications of histone proteins

across various organisms (Kharchenko et al., 2011; Liu et al., 2011; Mikkelsen et al., 2007;

Park, 2009; Roudier et al., 2011). For example, H3K4me3 (trimethylation of histone H3 at

residue lysine 4) marks active promoters, H3K4me1 marks enhancers, H3K36me3 marks

transcribed gene bodies, H3K27me3 marks Polycomb-repressed regions, and H3K9me3

marks heterochromatin. Although there are theoretically up to 2n possible combinations
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of n histone modifications at any given locus in the genome, in practice we only observe a

small number of distinct dominant combinations, thus giving rise to the concept of chro-

matin states (Ernst and Kellis, 2010; Heintzman et al., 2009; Hon et al., 2008; Kharchenko

et al., 2011; Liu et al., 2011; Mikkelsen et al., 2007; Roudier et al., 2011), in which each

state consists of a combination of histone modifications.

A key idea underlying chromatin state analysis is to computationally identify the number

and composition of chromatin states in the genome based on multiple genome-wide pro-

files of histone modifications, and to annotate the genome with these chromatin states.

These states were found to be strongly correlated with various functional genomic features

such as promoters, actively transcribing gene bodies, enhancers and heterochromatins. Al-

though many chromatin states are common across different cell types or organisms, there

are indeed clear examples of cell-type specific chromatin states consisting of unique co-

occurrence of histone modifications. The H3K4me3/H3K27me3 bivalent promoter state

that is prevalent in embryonic stem cells but mostly absent from terminally differentiated

cells is such an example (Bernstein et al., 2006). Investigating co-occurrence of multiple

histone marks facilitates the differentiation of more subtle features in chromatin state, such

as identifying tissue specific strong and weak enhancer regions (Ernst et al., 2011) and

changes in co-occurrence patterns between evolutionarily distant species (Ho et al., 2014).

Therefore a chromatin state map is a powerful means to infer potential genome function

in a systematic and automated fashion. In conjunction with transcriptomic, DNase I and

transcription factor binding data, chromatin state analysis was used to infer putative bio-

chemical functions to a large fraction of the non-coding genomic regions (Dunham et al.,

2012).

Various machine learning algorithms, such as ChromHMM (Ernst and Kellis, 2012), Seg-

way (Hoffman et al., 2012), TreeHMM (Biesinger et al., 2013), and tiered HMM (Larson

et al., 2013), have been developed to generate such maps to facilitate cell type-specific

genome annotations in a systematic and automated fashion. All of them are based on

probabilistic graphical models such as the hidden Markov model (HMM) and dynamic

Bayesian network. One essential task for these algorithms is to learn the prominent com-
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bination of histone modifications. Similar to any clustering problem, it is often difficult

to identify a reasonable number of combinations that can adequately capture the major

variation in the data. One possibility is to estimate the adequate number of states by

performing exploratory analysis such as the Principal Component Analysis (PCA) (Juli-

enne et al., 2013). Another common approach is to run the HMM learning multiple times

with varying state numbers, and identify the best fitting model using measures such as

the Bayesian Information Criterion (BIC). The inferred states do not necessarily have a

one-to-one correspondence with distinct functional regions in the chromatin, but they do

give a very good data-driven description of the chromatin that can act as a starting point

for further bioinformatics and experimental analysis (Baker, 2011). Therefore it is still of

great interest to develop principled methods for identifying chromatin states within and

across multiple genomes.

The cross-species chromatin state comparison problem was motivated by a recent model

organism encyclopedia of DNA elements (modENDCODE) project that aims to systemati-

cally compare chromatin organisation in Homo sapiens (human), Drosophila melanogaster

(fly) and Caenorhabditis elegans (worm) (Ho et al., 2014). A näıve approach to this prob-

lem would be to compute the state map for each organism separately and then try to

compare them afterwards. However, this causes significant problems for interpretation

because what was defined as an enhancer state in one organism is likely not identical with

that from another organism. In the other extreme, we could simply concatenate the three

genomes into one and infer states, but then the inferred result would be highly biased by

the species with the largest genome size or by other species-specific biases in the ChIP-

seq signals. Similar problems exist when comparing multiple developmental stages or cell

types in the same organism. In essence, we require a method that allows the information

of the state definition to be shared across multiple genomes while retaining the ability for

each genome to have its own chromatin state definition.

In the context of that project, a novel Bayesian non-parametric method was developed,

called hierarchically linked infinite hidden Markov model (hiHMM), to infer chromatin

state maps across multiple genomes simultaneously. The application of hiHMM in the

139



8. hiHMM: Bayesian non-parametric joint inference of chromatin state maps

human/fly/worm cross-species comparison setting indicates that the chromatin state seg-

mentations in individual organisms generated by hiHMM are highly comparable to the

maps generated by ChromHMM (Ernst and Kellis, 2010, 2012) and Segway (Hoffman

et al., 2012) - two widely used chromatin state segmentation algorithms (Ho et al., 2014).

Furthermore, hiHMM is designed to address species-specific confounding factors such as

variations in ChIP signal strength, genome size and co-occurrence patterns. In this chapter

we will demonstrate the utility of this method using real data sets.

8.2 Methods

8.2.1 hiHMM

To address the problem of inferring consistent chromatin state definition across multiple

related genomes, we employ an infiniteHMM (iHMM) (Beal et al., 2002), a non-parametric

extension of a finite state hidden Markov model, as a base model and extend it to model

data from multiple conditions. For ease of conceptualisation, we consider the problem of

chromatin state segmentation on multi-species histone modification data, in which case

multiple conditions correspond to multiple species. The same statistical model can be

used to describe data from different types of conditions such as multiple developmental

stages or cell types.

To obtain a consistent state definition for principled comparison of chromatin states be-

tween multiple species, we propose to model the multi-species data by using an iHMM

as a base model for each species data and then by coupling species-specific iHMM pa-

rameters together through the use of hyper-parameters, so that state definitions can be

shared across species. We denote the proposed model as hiHMM. As the majority of his-

tone modification co-occurrence patterns are conserved in animals, the probabilistic basis

of hiHMM allows for largely consistent chromatin state inference across samples, while

still allowing for minor species-specific differences. For more details about the statistical

foundations of hiHMM, see (Sohn et al., 2015).
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Figure 8.1: Common histone modification marks profiled between samples. Dif-
ferent stages of organism development were compared in this study: late embryo (EL);
third instar larvae (L3); adult head (AH).

8.2.2 Running hiHMM on fly and worm ChIP-seq data

The fly (genome assembly version dm3) and worm (genome assembly version WS220)

ChIP-seq and RNA-seq data were generated by modENCODE consortia. All Input-

normalised ChIP-seq signal tracks were downloaded from the ENCODE-X interactive

faceted browser: http://encode-x.med.harvard.edu/data_sets/chromatin/. The orig-

inal fly and worm ChIP-seq data were in 10-bp resolution. All tracks were re-binned to

100 bp resolution by taking the mean of 10 consecutive bins. Data from multiple his-

tone modifications were concatenated as columns into a tab-delimited format. Bins that

overlapped unmappable regions were removed (Mappability regions were downloaded from

https://www.encodeproject.org/comparative/chromatin/#mappability).
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hiHMM was run in Matlab with default parameters: 200 burn-in iterations which means

the first 200 samples are discarded during iterations for posterior inference, and then 10

consecutive posterior samples are collected to produce the final Maximum-A-Posterior out-

put. For each comparison all available histone modification profiles produced by ChIP-seq

experiments that are common across the targeted species and cell-types were used (Fig.

8.1). Chromatin states were trained on representative fly chromosomes 2L, 2LHet, X and

XHet and worm chromosomes II, III and X, as per the modENCODE study (Ho et al.,

2014). Our prior experience suggests that training with all or only this representative sub-

set of chromosomes in these organisms make very little difference in terms of the resulting

chromatin state definition. Nonetheless, the hiHMM program is scalable to analyse all

the chromosomes — which would be useful for exploring any previously uncharacterised

chromatin landscapes.

Emission matrices from hiHMM output were examined and states were named based

on chromatin state definitions in previous studies as well as overlap with expressed or

unexpressed genes (Ernst et al., 2011; Kharchenko et al., 2011) (Fig. 8.2, Fig. 8.3).

A custom R script is used to rename the states and re-introduce unmappable regions as

State 0.

8.2.3 Chromatin state statistics

Genomic coverage was calculated as the percentage of the mappable genome that is oc-

cupied by each state, at the bin level. Expression odds ratio was calculated as the ratio

of the number of expressed versus silent genes that overlapped with each chromatin state,

divided by the genome-wide ratio of the number of expressed versus silent genes. A gene

was considered expressed if its mRNA expression levels were greater than 1 RPKM. Gene

body overlap was calculated as the percentage of bins annotated to each chromatin state

that occur between the transcription start site (TSS) and transcription end site (TES) of

an annotated gene.
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Figure 8.2: Chromatin State Meta Gene Enrichment Profiles - Fly vs Worm
Heatmaps showing the spatial enrichment of each chromatin state in relation to the average
‘meta gene.

8.2.4 Meta-gene chromatin state enrichment profile

A meta-gene matrix was constructed from all annotated protein coding genes that were at

least 1300bp in length and do not overlap another gene within 500bp of its TSS or TES.

Protein-coding gene annotation was downloaded from https://www.encodeproject.org/

comparative/transcriptome/. We further excluded genes that occurred within 1000bp

of a chromosome start or end. The meta-gene matrix contains the chromatin state anno-

tations of each ‘representative’ gene extending to 500bp upstream of the TSS and 500bp

downstream of the TES. Enrichment profiles are presented as heatmaps where the colour

indicates the percentage of genes that have been annotated with that particular chromatin

state at that relative genomic position. Meta-gene profiles of expressed and silent genes

were computed separately.
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Figure 8.3: Chromatin State Meta Gene Enrichment Profiles - Fly 3 Stages -
Model 2 Heatmaps showing the spatial enrichment of each chromatin state in relation to
the average ‘meta gene.

8.2.5 Inter-sample chromatin state co-occurrence

Fold change was calculated as the observed number of bins that transitioned between

any two chromatin state annotations divided by the expected number. The expected

number was the mean number of bin transitions between those two states in 1000 Monte

Carlo simulations with a randomised chromatin state assignment, preserving the relative

genomic coverage of each state. Fold change was truncated between 1 and 5 for simplified

visualisation and interpretation.
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8.2.6 Co-occurrence matrices

Co-occurrence of genomic chromatin state annotation between experiments was calculated

as the number of bins that were annotated as a particular chromatin state combination

in two experiments divided by the total number of bins annotated to those states in

the respective experiments. This gives a value between 0 and 1 which is presented in a

heatmap.

8.2.7 Gene ontology enrichment of target genes in a region

Official gene symbols for all genes that overlapped with the selected regions were submitted

to the DAVID bioinformatics tool (Huang et al., 2009). The Benjamini and Hochberg

adjusted P -value (Benjamini and Hochberg, 1995) of the 10 most significant gene ontology

(GO) biological process results are presented for each analysis.

8.3 Result

8.3.1 Case study 1: hiHMM identifies species-specific chromatin states

in fly and worm

The analogous developmental stage of stage 3 larva (L3) in fly and worm was selected for

this cross-species chromatin state analysis. hiHMM was run using 25 starting states with

Models 1 and 2 on the combined data, and 30 starting states using Model 2 to capture

more species specific states.

Chromatin state analysis of fly L3 vs. worm L3 shows both shared and unique patterns of

chromatin mark co-occurrence between the two species (Fig. 8.4A). We found 25 states

that grouped into 6 categories: promoters, enhancers, gene body, heterochromatin, re-

pressed and low signal. Most states are conserved and have similar compositions, but with

some clear differences. Fly promoter states (red) show a distinct lack of H3K23ac when
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compared with worm (green highlight in Fig. 8.4A). Conversely, worm promoter states

lack H3K79me1 when compared with fly (blue highlight in Fig. 8.4A). Genic and tran-

scription states (green) in fly show enrichment of H4K16ac, H3K79me1 and H4K20me1,

all of which are largely absent in the same states in worm (orange highlight in Fig. 8.4A).

H4K8ac on the other hand, is enriched in these states in worm but completely absent in

fly (yellow highlight in Fig. 8.4A). Further differences are visible in the repressed (purple)

and heterochromatin (blue) states. In fly there is a clear differentiation of repressive his-

tone modifications between the two state classes whereas the marks consistently co-occur

in worm (purple highlight in Fig. 8.4A).
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Figure 8.4: Cross-species chromatin state analysis. A) ChIP signal matrix showing
the average observed histone modification profiles for each of 25 states inferred by the
hiHMM algorithm (Model 1) in fly and worm. Species specific differences are highlighted.
B) Percentage of genome covered by the state (Coverage), relative enrichment of expressed
genes per state (Expression Odds Ratio) and the percentage of state annotations that occur
between the TSS and TES of annotated genes (Gene Body Overlap).

In fly all low signal (grey) states are associated with an expression odds ratio of less than or

equal to one, indicating a low overlap between the state and expressed genes (Fig. 8.4B).

In worm however, most low signal states have an expression odds ratio above one and low

signal state 2 shows largely increased odds for overlapping with expressed genes. We also

see reduced gene body overlap in worm promoter and enhancer states when compared to

fly, also visible in the meta-gene enrichment profiles (Fig. 8.2).
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8.3.2 Case study 2: hiHMM identifies developmental stage specific loci

in fly

Three fly developmental stages were chosen for chromatin state comparison: Late embryo

(EL), third instar larvae (L3) and adult head (AH). hiHMM was run on the combined

data sets using 25 starting states with Models 1 and 2.

Jointly learned average ChIP signal matrices for three developmental stages in fly show

that the majority of observed histone modification combinations and their genomic oc-

currence remains stable during development (Fig. 8.6). H3K79me1, however, shows a

marked reduction in enrichment in active states in AH compared with EL and L3 stages

(Fig. 8.7). While this difference is interesting it is secondary to our ensuing analysis of

differential state co-occurrence during development.

Using these chromatin state maps we implemented an unbiased approach for identifying

developmentally regulated genes from chromatin state co-occurrence between two devel-

opmental stages — EL and AH — in fly (Fig. 8.5). 1659 genes from regions that tran-

sitioned from an active (promoter, enhancer, gene) state in EL to an inactive (repressed,

heterochromatin, low signal) state in AH (Fig. 8.5C, top right) were strongly enriched for

multiple developmental GO terms, including ‘Respiratory system development’ (P -value

1.66 × 10-8 ) (Fig. 8.5E). Similarly, 1889 genes that changed from inactive in EL to

active in AH (Fig. 8.5C, bottom left) were strongly enriched for terms expected from a

fully developed organism, including ‘Transmission of nerve impulse’ (P -value 1.48 × 10-7).

These transitions in developmental regulation are clearly visible in a genome browser when

the chromatin state tracks are visualised (Fig. 8.5D).

8.4 Discussion

The main difficulty of joint analysis of related data-sets is how to obtain a consistent state

definition, or the mapping between a set of states defined in one species and the one in
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Figure 8.5: Chromatin state characterisation and analysis across developmental
stages in fly. A) ChIP signal matrix showing the average observed histone modification
profiles for each of 25 states jointly inferred by the hiHMM algorithm (Model 2) for three
stages of fly development: late embryo (EL), stage 3 larvae (L3) and adult head (AH). B)
Percentage of genome covered by the state (Coverage), relative enrichment of expressed
genes per state (Expression Odds Ratio) and the percentage of state annotations that occur
between the TSS and TES of annotated genes (Gene Body Overlap). C) Chromatin state
co-occurrence between two developmental stages in fly (EL and AH). Shown is the observed
vs. expected fold change of the co-occurrence of each state in EL and each state in AH.
Based on this analysis we selected significantly over represented co-occurrence regions to
investigate and characterise the genes involved through gene set enrichment analyses. D)
Genome browser views of representative genes Ubx and Oamb with three stage chromatin
states. These genes were identified through chromatin state co-occurrence analysis as
having different chromatin states in EL and AH. E) The top 10 GO biological processes
enriched in the genes that are within regions of the genome that changed from an active
state in EL to a repressive state it AH (top panel) or vice versa (bottom panel).

another species. If one were to apply iHMM separately on each of the data-sets, we face

the problem of mapping state definitions between species. The proposed hiHMM solves
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8. hiHMM: Bayesian non-parametric joint inference of chromatin state maps

Figure 8.6: Chromatin state characterisation across developmental stages in
fly. A) Jointly inferred chromatin states for each developmental time point show that
H3K79me1 differs in AH compared to EL and L3.

Figure 8.7: IGV browser plot showing differences in active state composition
between developmental stages in fly. For each histone modification two fly develop-
mental stages are shown, EL (above) and AH (below). H3K79me1 is coloured in purple,
last two tracks. Active states are coloured red, yellow and green in the hiHMM chromatin
state track (below gene annotations) and are marked by H3K4me3 (red signal), H3K4me1
(yellow signal) and H3K36me3 (green signal).

this problem by assuming a common state space definition across all the data-sets.

One distinguishing feature of hiHMM is that we can jointly infer emission values for

genomes of differing lengths without the dominating influence of a longer genome on the

result or the need to perform compensatory sub-sampling during training. This is a major

limitation of existing methods that concatenate multiple samples for joint learning that is

overcome using hiHMM.
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8. hiHMM: Bayesian non-parametric joint inference of chromatin state maps

Similar to Segway or the HMM approach of Kharchenko et al. (2011), hiHMM directly

models continuous ChIP signal values and therefore alleviate the need of selecting a binary

threshold cutoff.

Our real data analysis shows that the advantages of Model 1 become more evident when

the data discrepancy across different conditions is large, for example, in the case of multiple

species data. In terms of revealing interesting biology, the ability to infer sample specific

emission matrix parameters (as in Model 1) allows for intuitive and detailed comparison

of chromatin mark combinations between different species, or cell-types. This is evident

from our 25 state analysis in fly vs worm in case study 1. In addition to the finding that fly

and worm have different chromatin modifications compositions in heterochromatin, here

we observed several previously unreported differences between the two species as described

above, most notably the relative depletion of H3K23ac and enrichment of H3K79me1 in

fly promoter states, as well as multiple differences in the transcription states. Model 1

was also useful in identifying the unexpected changes in the distribution of H3K79me1

during fly development. Many of these observations were not possible in previous studies

that did not include these marks in their comparison (Fig. 8.8), and they may suggest

different mechanisms of genetic regulation between the two species.

Jointly learned and shared emission matrix parameters (as generated by Model 2) provide

an easily interpretable platform on which to compare multiple samples from the same

genome without the confounding factor of different state definitions. Model 2 can also

be used to identify species specific states, when the genomic coverage of states approach

0 in one species. Additionally, Model 2 enjoys better statistical properties such as faster

convergence and shorter running time, so Model 2 would be a better choice when the

discrepancy between genomes is expected to be relatively small as in the case of different

developmental stages or environmental conditions in a single species.

By applying hiHMM to this newly compiled data set we were able to identify two previ-

ously uncharacterised chromatin states that we have named ’Repressed’ states in the fly

development analysis (State 17 and 18 in Fig. 8.4A). These two states combined con-

stitute roughly 18% of the fly genome and are almost exclusively characterised by marks
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Figure 8.8: Inter-study Co-occurrence matrices Co-occurrence matrices showing the
overlap between the 25 states generated by this study using 20 histone modification marks
and the 17 state model generated by Ho et al. 2014 using a subset of 8 histone modification
marks.

that were not profiled in previous studies, and so these states were missed.

In this paper, we demonstrated a variety of features of hiHMM that makes it useful for

cross-sample joint chromatin state inference. We have implemented two models of hiHMM,

each having advantages and limitations of interpretation and inference. The flexibility of

using both learning models allows for a more comprehensive analysis during different

applications and experimental designs.
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Chapter 9

Conclusions and Future

Challenges

The world of biomedical research is quickly becoming more data driven. The promise of

this data for unravelling human disease makes it of utmost clinical importance. Many of

the genetic systems that drive phenotypic variation remain undescribed, even though there

are unprecedented amounts of biological data available. Data generation is no longer the

bottleneck in biomedical discovery it once was, but data analysis and integration remain

hindered by unsolved technical challenges and are very time consuming.

This thesis aimed to develop and apply methods that would facilitate the extraction of

biomedically relevant information from the wealth of data produced by the genomics rev-

olution. This included methods for constructing and analysing highly informative causal

GRNs, extracting and integrating multiple data types and sharing biological insights across

species.

152



9. Conclusions and Future Challenges

9.1 Towards more complete causal GRNs

Many different types of experiment aim to resolve the key questions about genetic reg-

ulation – which molecular pathway controls a gene’s expression, and how? One popular

way to model the underlying systems is via gene regulatory network construction. The

most common approaches for large scale GRN inference are based on correlating gene ex-

pression values across many samples. Comparing the results of these approaches to ‘gold

standard’ causal regulatory edges as measured by perturbation experiments, showed that

these methods do not perform very well in eukaryotic organisms (Marbach et al., 2012).

As such, while being a very well studied topic, GRN inference remains a difficult and

unsolved problem for biomedical research.

We collected 187 microarray samples from two mouse organs and 2228 matched high

quality perturbation data from the literature, and showed that correlation based algo-

rithms have a very high false positive rate, rendering them essentially useless for causal

GRN construction. Additional sources of data such as biological pathways and PPI net-

works has been shown to improve inference of causal phospho-protein networks (Hill et al.,

2016), however they did not contain discriminative power for causal GRN inference in our

analysis. We therefore conclude that in mammalian systems it is preferable to utilise

perturbation data directly and have a reliable high quality causal GRN.

To facilitate this, we developed the GEOracle tool to allow non-experts to very rapidly

extract ‘gold standard’ perturbation data directly from the GEO microarray database.

Using this tool we constructed in 8 hours what may be the largest organ specific causal

GRN in a mammal, and qualitatively demonstrated its biomedical utility by extracting

insights confirmed by the literature via the MURSS algorithm developed in this thesis.

We have solved a critical component of the pipeline to make it feasible for biomedical

researchers to easily harness the power of published perturbation data, if it is available.

In the future it is likely that correlation based GRN inference algorithms may somewhat

improve by integrating directly relevant prior knowledge such as transcription factor bind-
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ing sites. However based on the work in this thesis, it is unlikely that correlation based

algorithms will be able to confidently distinguish true from false positive edges on their

own. More exciting however is that perturbation data is becoming more widespread, high-

throughput and much cheaper to generate. Indeed, genome-wide CRISPR based genetic

knockdown screens are already being deployed (Chen et al., 2015). Combining such pow-

erful perturbation assays with single cell transcriptomic technology will create very high

dimensionality perturbation datasets from which we will likely be able to extract high

quality cell type-specific causal regulatory relationships. We will soon have many such

data sets that will need to be integrated, across conditions, tissues, developmental time,

and across species. This is a very promising area of future research that will likely lead to

reliable, predictive and explanatory causal GRNs.

9.2 Towards large scale principled data integration

Vast resources are being dedicated to generating and analysing many types of genomic

data in every biological context. But how can we best integrate the resulting knowledge to

generate clinically or commercially relevant insights? There is potential to greatly reduce

the time between data generation and understanding causative mechanisms with systems

based integrative analyses.

As has been discussed in this thesis, many network and systems based approaches for

integrative analyses have been applied to studying human diseases (Azuaje et al., 2013;

Barabasi et al., 2011; He et al., 2011b; Lage et al., 2010, 2012; MacLellan et al., 2012;

Sperling, 2011; Zhang et al., 2013). In that context, disease gene prioritisation is critical,

as up to 80% of disease sequencing studies fail to find a causative mutation in a known

disease gene (Taylor et al., 2015). The logical next steps are to intelligently link more

genes to each disease, and to link non-coding regulatory variation to their relevant genes.

In chapter four we recorded disease phenotypes from mouse perturbation experiments in

the literature, and by applying the MURSS algorithm to a tissue-specific GRN, we iden-
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tified potential key regulators for different eye disease phenotypes. We also implemented

this GRN based strategy in the contexts of heart disease. In both case studies, some unex-

pected results were validated by recently published literature. This approach will become

more powerful as disease gene databases and the GRNs we can construct become larger and

more complete. Additionally, a more sophisticated pathway based analysis that incorpo-

rates additional data types like the potential for TF binding, tissue-specific genomic and

epigenomic activity, and protein interactions and phosphorylation levels, should extend

the power of this approach to prioritise candidate disease genes beyond the perturbation

based GRN.

Non-network data like tissue-specific gene expression, disease-specific differential expres-

sion, or GO annotations, can be used to predict disease gene status directly, or can itself

be propagated through a network structure to improve detection of the functional mod-

ules most relevant to the disease. We implemented this approach by propagating GO

annotations and lens-specific gene expression from the developing mouse through a PPI

network, and significantly improved our ability to classify human cataract causing genes.

The approach of combining different types of functional data through network scaffolds

to identify key modules would likely be further improved by explicitly modelling the re-

lationships between the data types, as an alternative to the homogenous SVM approach

used in this thesis.

Incorporating non-coding regulatory information into disease studies remains a largely

unsolved problem, because unlike the genome, the epigenome is different in every cell

type and disease context. Some aspects of genetic regulation we are only just beginning

to understand, and no single experiment gives a complete picture of the regulatory state

of the entire genome. It is therefore still very expensive and time-consuming to unravel

comprehensive regulatory states in disease samples. As more cell type-specific epigenomes

are constructed (for example by ENCODE (Dunham et al., 2012)) we are provided with

a valuable foundational resource with which to start looking at these questions.

An outstanding bioinformatics challenge is how to integrate tissue-specific gene regulatory

information across different cell types and developmental time points. This is a crucial task
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for the field, as performing every relevant assay in every tissue and experimental context

will remain unfeasible for the foreseeable future. A potential solution lies in the intelligent

use of structured tissue ontologies. Tissue ontologies (such as those provided by the e-

Mouse Atlas Project (Richardson et al., 2014)) describe the constituent tissues and cell

types in each organ during development. If each publicly available data set was annotated

to a specific entry in such an ontology, we could automatically borrow and integrate data

from tissues and time points most similar to the one we are studying, greatly increasing

the re-usability of published data.

The lack of consistent sample annotation, or metadata, remains a major hurdle to large-

scale integration of publicly available data. We began to address this by constructing

GEOracle, an online tool that semi-automatically processes large numbers of perturbation

data sets from GEO, by mining and analysing the free-text metadata. If combined with

automated ontology-based sample annotation and search strategies (Galeota and Pelizzola,

2016), further development of this approach could provide a means to rapidly integrate

many related data sets, and greatly increase the pool of data from which we can extract

reliable insights.

As more genomic and gene regulatory information becomes available we will see improved

prioritisation of disease genes and elucidation of biological mechanism. Although the

bioinformatics analysis can theoretically be semi-automated and completed in a matter

of days, laboratory validation and in vivo studies can take months or years. While no

novel laboratory validation of the predictions made in this thesis have been completed, a

portion were validated by recent biomedical literature.

9.3 Towards cross-species analyses

The extreme difficulty with which we share data across species means this often not at-

tempted in routine biomedical research. Integrating data representing the richness of

biological diversity across the tree of life presents an opportunity to uncover discoveries

156



9. Conclusions and Future Challenges

that are otherwise implausible to elucidate from studying one species alone. We urgently

need the theoretical basis and bioinformatics tools to reuse data for cross-species analyses

in a principled way, to understand biological mechanisms that are conserved, as well as

those that are unique, across the many branches of life. In particular, we need methods to

‘steal’ from the knowledge ‘rich’ organisms including human and mouse, and transfer this

data to the vast majority of knowledge ‘poor’ species. More researchers are understanding

this and incorporating cross-species analyses into their studies (Claussnitzer et al., 2014;

Gerstein et al., 2014; Ho et al., 2014; Rittschof et al., 2014; Zheng et al., 2011), even

though there has been very little investigation into the unique challenges such analyses

create, and very few tools specifically designed to address them (Kristiansson et al., 2013;

Yang et al., 2014).

The major obstacle to cross-species analyses is the complex-homology problem – which

gene in one species matches to which gene in another species, and how functionally similar

are they? This question becomes harder to answer as the species become more evolutionary

divergent. Many studies ignore this issue and use a näıve homology mapping approach

(Baker et al., 2012; Kang et al., 2014; Reimand et al., 2007). Another common approach

used by researchers today is to eliminate the complexity entirely (i.e. by using the BLAST

reciprocal best hits approach) (Britto et al., 2012; Gohin et al., 2010; Labbé et al., 2012),

but while convenient, this throws away a lot of valuable homology information. The

complexity of life is rich and fascinating, and depending on the biological question you

are investigating this discard of data may be unacceptable. In order to begin to address

this problem, we developed XGSA for cross-species gene set analysis, the first method

for cross-species gene set analysis that utilises the complete complex-homology between

species and alleviates the associated bias.

Gene set analyses are broadly useful to any biological problem where you can construct

a set of related genes, and we demonstrated several varied applications of XGSA. First

we identified conserved and species-specific molecular signatures in spinal cord regenera-

tion and responses to social challenge, integrating data sets from mouse, fish, frog, lizard,

insects and human. We also used XGSA to gain some clinical insight into human heart
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disease, by identifying genetic signatures from mouse perturbation experiments that re-

semble human heart disease signatures. Finally, we applied XGSA to cross-species cell

type identification, to confirm that the marker genes of Pax7 positive cells from lizard

closely resemble those of skeletal muscle satellite cells in human and mouse.

A limitation of XGSA is that it only deals with binary gene sets, and not other structures

such as ranked lists of genes which contain additional information about how the genes

relate to each other. This is an important area for potential future research which would

make the XGSA platform more powerful and broadly applicable.

In this thesis we also empirically evaluated and applied a recently developed method for

cross-species chromatin state inference on epigenomic data sets from fly and worm, two

model organisms separated by around 600 million years of evolution. We discovered pre-

viously unreported differences in the histone modification patterns that occur in these two

species, raising interesting hypotheses about the evolutionary timeline of epigenomic mech-

anisms. The fact that most of the chromatin state patterns were consistent demonstrates

the high conservation in the overall systems of genetic regulation in animals, strengthen-

ing the notion that we should be sharing knowledge across species. Further innovations

in cross-species bioinformatics methodologies will undoubtedly help us understand many

more aspects of biology in a timely manner.

9.4 An expanded suite of computational methods for biomed-

ical discovery across species

Alongside theoretical and applied research, this thesis presented three methodological

innovations that aid in analysing the regulation of genetic systems across species: GEOra-

cle, MURSS and XGSA. While various distinct biological problems provided the basis for

the development and application of these methods, this section describes a hypothetical

pipeline that uses all three synergistically during the modern biomedical research process.
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A common problem

A research group is searching for drugs that can increase heart regeneration after myocar-

dial infarcts in humans. They perform a compound screen in an axolotl animal model to

evaluate effects on heart regeneration, finding two compounds that positively affect organ

regeneration, and want to know if and how these effects might translate to humans. Pre-

vious mouse studies have shown that these compounds are largely inactive in mammalian

hearts, due to a lack of receptor expression in heart tissues.

The researchers perform transcriptome profiling of the regenerating axolotl hearts before

and after these two compounds are administered and produce transcriptional signatures

for the compounds. How can they translate these findings back to humans?

A novel solution

The researchers use XGSA to compare the compound transcriptome signatures to human

gene set knowledge bases like GO and KEGG. This identifies the key tissues in which

the changes are happening (muscle cells and satellite cells) and a mixture of GO terms

involving some signaling pathways and differentiation.

The researchers want more detailed mechanistic insights for human tissues so they can

generate hypotheses for further experiments and potentially find existing drugs that may

activate the same combination of pathways. They construct large tissue specific GRNs in

relevant human tissues (heart, muscle, stem cells) using GEOracle derived perturbation

based data to integrate and validate mechanistic edges from a scaffold of existing network

resources like TF networks and PPI data.

The researchers apply the MURSS algorithm to the tissue specific GRNs to find upstream

regulators of the genes and pathways identified from the compound signatures. Several

regulators are significant across different tissues and for both compound signatures, provid-

ing a small number of high confidence predicted regulators of the desired gene signatures
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in the human heart.

The researches search the literature, including various drug-target databases and GEO for

compounds that interfere with or alter the expression of those key regulators, revealing

several promising candidate drugs for pre-clinical validation studies.
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Wold, B., Carninci, P., Guigó, R., Gingeras, T. R., Rosenbloom, K. R., Sloan, C. A.,
Learned, K., Malladi, V. S., Wong, M. C., Barber, G. P., Cline, M. S., Dreszer, T. R.,
Heitner, S. G., Karolchik, D., Kent, W. J., Kirkup, V. M., Meyer, L. R., Long, J. C.,
Maddren, M., Raney, B. J., Furey, T. S., Song, L., Grasfeder, L. L., Giresi, P. G., Lee,
B.-K., Battenhouse, A., Sheffield, N. C., Simon, J. M., Showers, K. A., Safi, A., London,
D., Bhinge, A. A., Shestak, C., Schaner, M. R., Ki Kim, S., Zhang, Z. Z., Mieczkowski,
P. A., Mieczkowska, J. O., Liu, Z., McDaniell, R. M., Ni, Y., Rashid, N. U., Kim,
M. J., Adar, S., Zhang, Z., Wang, T., Winter, D., Keefe, D., Birney, E., Iyer, V. R.,
Lieb, J. D., Crawford, G. E., Li, G., Sandhu, K. S., Zheng, M., Wang, P., Luo, O. J.,
Shahab, A., Fullwood, M. J., Ruan, X., Ruan, Y., Myers, R. M., Pauli, F., Williams,
B. A., Gertz, J., Marinov, G. K., Reddy, T. E., Vielmetter, J., Partridge, E., Trout,
D., Varley, K. E., Gasper, C., Bansal, A., Pepke, S., Jain, P., Amrhein, H., Bowling,
K. M., Anaya, M., Cross, M. K., King, B., Muratet, M. A., Antoshechkin, I., Newberry,
K. M., McCue, K., Nesmith, A. S., Fisher-Aylor, K. I., Pusey, B., DeSalvo, G., Parker,
S. L., Balasubramanian, S., Davis, N. S., Meadows, S. K., Eggleston, T., Gunter, C.,
Newberry, J. S., Levy, S. E., Absher, D. M., Mortazavi, A., Wong, W. H., Wold, B.,
Blow, M. J., Visel, A., Pennachio, L. A., Elnitski, L., Margulies, E. H., Parker, S. C. J.,
Petrykowska, H. M., Abyzov, A., Aken, B., Barrell, D., Barson, G., Berry, A., Bignell,
A., Boychenko, V., Bussotti, G., Chrast, J., Davidson, C., Derrien, T., Despacio-Reyes,
G., Diekhans, M., Ezkurdia, I., Frankish, A., Gilbert, J., Gonzalez, J. M., Griffiths, E.,
Harte, R., Hendrix, D. A., Howald, C., Hunt, T., Jungreis, I., Kay, M., Khurana, E.,
Kokocinski, F., Leng, J., Lin, M. F., Loveland, J., Lu, Z., Manthravadi, D., Mariotti,
M., Mudge, J., Mukherjee, G., Notredame, C., Pei, B., Rodriguez, J. M., Saunders,
G., Sboner, A., Searle, S., Sisu, C., Snow, C., Steward, C., Tanzer, A., Tapanari, E.,
Tress, M. L., van Baren, M. J., Walters, N (2012). An integrated encyclopedia of DNA

168



Conclusions and Future Challenges

elements in the human genome. Nature, 489(7414), 57–74.

Durinck, S., Spellman, P. T., Birney, E., and Huber, W. (2009). Mapping identifiers for
the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature
Protocols, 4(8), 1184–1191.

Echeverri, K. and Tanaka, E. M. (2002). Mechanisms of muscle dedifferentiation during
regeneration. Seminars in Cell & Developmental Biology , 13(5), 353–360.

Eckalbar, W. L., Lasku, E., Infante, C. R., Elsey, R. M., Markov, G. J., Allen, A. N.,
Corneveaux, J. J., Losos, J. B., DeNardo, D. F., Huentelman, M. J., Wilson-Rawls,
J., Rawls, A., and Kusumi, K. (2012). Somitogenesis in the anole lizard and alligator
reveals evolutionary convergence and divergence in the amniote segmentation clock.
Developmental Biology , 363(1), 308–319.

Edgar, R. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Research, 30(1), 207–210.

Edmondson, D. G. and Olson, E. N. (1989). A gene with homology to the myc similarity
region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle
differentiation program. Genes & Development , 3(5), 628–640.

Ehrenberg, M. (2003). Systems Biology Is Taking Off. Genome Research, 13(11), 2377–
2380.

Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., and Nadeau,
J. H. (2010). Missing heritability and strategies for finding the underlying causes of
complex disease. Nat Rev Genet , 11(6), 446–450.

Ernst, J. and Kellis, M. (2010). Discovery and characterization of chromatin states for
systematic annotation of the human genome. Nature Biotechnology , 28(8), 817–825.

Ernst, J. and Kellis, M. (2012). ChromHMM: automating chromatin-state discovery and
characterization. Nature Methods, 9(3), 215–216.

Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein, C. B.,
Zhang, X., Wang, L., Issner, R., Coyne, M., Ku, M., Durham, T., Kellis, M., and
Bernstein, B. E. (2011). Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature, 473(7345), 43–49.

Fahed, A. C., Gelb, B. D., Seidman, J. G., and Seidman, C. E. (2013). Genetics of
congenital heart disease: the glass half empty. Circ Res, 112(4), 707–720.

Fakhro, K. A., Choi, M., Ware, S. M., Belmont, J. W., Towbin, J. A., Lifton, R. P.,
Khokha, M. K., and Brueckner, M. (2011). Rare copy number variations in congenital
heart disease patients identify unique genes in left-right patterning. Proceedings of the
National Academy of Sciences, 108(7), 2915–2920.

169



Conclusions and Future Challenges

Fisher, R. E., Geiger, L. A., Stroik, L. K., Hutchins, E. D., George, R. M., Denardo,
D. F., Kusumi, K., Rawls, J. A., and Wilson-Rawls, J. (2012). A Histological Com-
parison of the Original and Regenerated Tail in the Green Anole, Anolis carolinensis.
The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology ,
295(10), 1609–1619.

Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J.,
Minguez, P., Bork, P., von Mering, C., and al, e. (2012). STRING v9.1: protein-protein
interaction networks, with increased coverage and integration. Nucleic Acids Research,
41(D1), D808–D815.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using Bayesian networks to
analyze expression data. Journal of Computational Biology , 7(3-4), 601–620.
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Aránega, A. E. (2011). Pitx2c modulates Pax3+/Pax7+ cell populations and regulates
Pax3 expression by repressing miR27 expression during myogenesis. Developmental
Biology , 357(1), 165–178.

Lu, Y., Huggins, P., and Bar-Joseph, Z. (2009). Cross species analysis of microarray
expression data. Bioinformatics, 25(12), 1476–1483.

Lu, Y., Rosenfeld, R., Nau, G. J., and Bar-Joseph, Z. (2010). Cross Species Expression
Analysis of Innate Immune Response. Journal of Computational Biology , 17(3), 253–
268.

Lyons, I., Parsons, L. M., Hartley, L., Li, R., Andrews, J. E., Robb, L., and Harvey, R. P.
(1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos
lacking the homeo box gene Nkx2-5. Genes & Development , 9(13), 1654–1666.

Maathuis, M. H., Colombo, D., Kalisch, M., and Bühlmann, P. (2010). Predicting causal
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