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Abstract

microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor
processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1
cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ,40
million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic
miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were
unexpectedly abundant (.20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall,
variability was infrequent at the 59 start but common at the 39 end of miRNAs (5.2% and 52.3% of tags, respectively).
Nevertheless, 105 miRNAs showed marked 59 isomiR expression (.20% of tags). Among these was miR-133a, a miRNA with
important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 59 isomiRs. Analyses
of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards
uridine at the 59 most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand
selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable
expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147
novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs,
knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly,
cardiac function, disease and therapy.
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Introduction

microRNAs (miRNAs) are small non-coding RNAs (,19–24

nucleotides) whose regulation of mRNA translation and decay

provides robustness and precision to gene expression. Precise gene

regulation is crucial in the heart, where small deviations in

function and structure can have devastating consequences for the

organism. miRNA action is intimately entwined with signaling and

transcriptional pathways to modulate cardiac development,

function and disease [1,2,3] and a number of individual miRNAs

underpin key developmental processes and cardiac diseases. For

example, the MyomiRs miR-208a, -208b and -499 control myosin

heavy chain isoform expression [4], miR-133a and miR-1 are

crucial regulators of cardiac differentiation and development [1]

and miR-195 overexpression is sufficient to induce hypertrophy in

mice, while ablation of miR-208a is protective [5]. miRNA-related

gene therapies for cardiac conditions are also being considered.

For example, overexpression of miR-210 in the mouse model

improved ventricular performance and decreased apoptosis after

myocardial infarction [6], while inhibition of miR-21 reduced

pathological remodeling and fibrosis in response to pressure

overload [7]. It is thus important to fully understand the breadth

and depth of the cardiomyocyte miRNA repertoire.

miRNAs are loaded into an Argonaute protein and guide RNA

silencing complexes (RISC) to mRNAs through base pairing

between the miRNA ‘‘seed’’ (nucleotides 2–8) and 39 untranslated

region (UTR) binding sites. Binding of RISC to the target mRNA

typically inhibits translation and stimulates mRNA decay [8,9].

miRNAs originate from genome-encoded precursors, pri-miR-

NAs, with characteristic hairpin structures (miRNA biogenesis

reviewed in refs. [10,11,12,13,14]). The pri-miRNA is recognised

and processed in the nucleus by the Microprocessor complex,

which contains the endonuclease Drosha. Cleavage by Drosha

,11 base pairs from the bottom of the hairpin yields pre-miRNA.

In the cytoplasm, Dicer cleaves the pre-miRNA ,22 nucleotides

in from the Drosha cut to produce a miRNA duplex [15]. The

‘‘mature’’ strand of this duplex is then transferred to Argonaute,

while the other strand (called passenger strand or miR*) is thought

to be non-functional and commonly decayed. Strand selection is at

least in part determined by the strength of base-pairing at the ends
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of the duplex, however relative mature miRNA/miR* expression

levels can vary widely between tissues, suggesting the existence of

additional regulatory mechanisms [11,16]. Furthermore, many

miR* have been observed in RISC complexes, supporting the

contention that these actively repress mRNAs in vivo [17]. Recent

reports of miRNA length and sequence variants [18,19,20] add

further complexity to our view of what constitutes a functional

miRNA. 59 start site and 39 end variants (called 59 and 39 isomiRs)

may have altered targeting and/or turnover properties and can be

expressed in a tissue- and development-specific manner, suggesting

regulated production and biological purpose [21,22].

Previous studies (reviewed in ref. [2]) documenting expression

levels of miRNAs in the heart, and how these change in cardiac

disease, mostly relied on microarray measurements, which

typically cannot fully differentiate sequence variation. The field

thus lacks critical information on miRNA variant expression,

which could profoundly impact on our view of miRNA effects on

cardiac gene expression, the definition of their mRNA targets and

how we might devise experimental and therapeutic means to

modulate their function. This new appreciation of miRNA

complexity motivated us to generate a reference compendium of

cardiomyocyte miRNA variant expression. Thus, we exhaustively

sequenced the miRNA population of the murine HL-1 cell line as

a pure source of functional cardiomyocytes. Our results revealed

numerous examples of unexpected miRNA strand bias, sequence

variation as well as novel candidate miRNAs, the existence of

which will be of importance in future studies of cardiac biology

and more broadly, miRNA biogenesis. We further showed that

two prevalent 59 isomiRs of miR-133a can have different targeting

properties in vivo, directly demonstrating the biological relevance of

miRNA sequence variants.

Materials and Methods

Cell culture and source of cardiac tissue
Ethics statement: Animals were maintained and experimental

procedures were performed according to protocols approved by

the Garvan and St.Vincent Hospital Animal Ethics Committee

(AEC#: 09/09).

HL-1 cells were provided by W.C. Claycomb and maintained as

per instructions [23]. Cardiac left ventricular tissue was taken from

an inbred FVB/N mouse strain.

Library preparation and sequencing
Total RNA was prepared from HL-1 cultures and cardiac tissue

using the TRIzolH reagent. Small RNA ,70 nt was enriched by

flashPAGETM electrophoresis. Libraries were created with the

SOLiDTM Small RNA Expression Kit and sequenced using

SOLiDTM version 2 reagents.

Sequence analysis pipeline
We refer to an individual deep sequence read as a tag and the

number of times it occurred as a count. The SOLiDTM Small

RNA Pipeline was used to map tags to miRBase version 16 and

the mouse genome (mm37 assembly). A schematic of our tag

mapping approach is shown in Figure S1 and details of tags

mapped to miRbase are located in Datasets S1, S2 and Table S1.

Trimmed tags from a previously described dataset [22] were

mapped to miRbase version 16, allowing one mismatch.

miRNA target prediction and gene function analysis
Target prediction was done using Targetscan [24]. Enrichment

of gene function terms was determined with IPA software

(IngenuityH Systems), using the Benjamini-Hochberg multiple

testing correction method and a threshold p-value ,0.01.

Analysis of sequence and structural composition around
miRNA processing sites

Nucleotide frequency at positions either side of the presumed

processing sites was determined for each miRNA isomiR variant.

Background nucleotide frequency was a combination of all

analysed positions. For analysis of RNA structure around

processing sites hairpins were visually inspected using predicted

secondary structures as deposited in miRBase.

Quantitative RT-PCR
Quantitative RT-PCR was performed as previously described

and designed for annealing at 58uC [25]. Primers are listed in

Table S2 and were designed against the dominant 39 variant. For

high stringency PCR to validate novel miRNA expression,

annealing temperatures were increased (61uC for miR-30e-as;

62uC for 10 cycles then reducing by 0.3uC per cycle until reaching

58uC for miR-N4, -N4*, -N29 and -N29*). Melt curve analysis was

performed for all experiments.

Reporter constructs and assays
The miRNA sites were cloned into the 39UTR of Renilla

luciferase in the psiCHECKTM-2 Vector (Promega). These

reporters and MISSIONH microRNA mimics (Sigma) were used

in transient transfection assays as previously described [9].

A full description of Materials and Methods is available in Text

S1.

Results

miRNA expression profile of HL-1 cells
HL-1 cardiomyocytes were seeded into plates at low density and

cultured over a four-day period. As previously described [23], we

observed a transition from non-beating cells (at day one) to more

than 90% of cells beating by day four. Total RNA was extracted at

24-hour intervals, size fractionated and small RNA libraries

prepared for SOLiDTM next generation sequencing. Samples were

also taken from an independent repeat of the time course (except

for day two), giving a total of seven libraries. Libraries were

sequenced to a depth of 1.30 to 2.556107 tags (up to 35

nucleotides in length), yielding a total of 121,138,457 usable tags.

To identify known miRNAs and their processing isoforms, these

tags were first mapped to the 672 miRNA hairpin sequences listed

in miRBase version 16 (abbreviated to miRBase in the following).

During preparation and revision of this manuscript miRBase

versions 17 and 18 were successively released, and thus we refer to

notable differences in findings where appropriate. The remaining

tags were then mapped to the mouse genome (mm37 assembly) to

discover novel miRNAs (see below). Thus, using the tools and

parameters detailed in the Text S1 and Figure S1, we were able to

map 66,405,108 tags across the seven libraries (,55% of usable

tags; Figure 1A). Analysis of individual library data revealed that

they were highly similar to each other, indicating that progression

from a non-beating to a beating state did not correlate with

pronounced changes in cardiomyocyte miRNA profile. Neverthe-

less, we noted a 52% increase in overall miRNA abundance (Text

S1 and Figure S2), as seen with other cell types as they reach

confluency [26]. We therefore considered these libraries as one

merged set to increase the depth of coverage for our subsequent

analyses.

42,451,913 tags mapped to miRBase-listed miRNA hairpins

covering 1133 generic miRNA features (i.e. tags started within

miRNA Diversity in Cardiomyocytes
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63 nt of the 59 end of a known miRNA or were appropriately

located on the opposite hairpin arm of known miRNAs, see Figure

S3; Dataset S1 and Table S1 contain detailed information on

miRNA sequence and tag counts). Consistent with expectation,

the modal tag length was 22 nucleotides (nt; Figure 1B) and 1035

of these features were already annotated in miRBase, while the

remaining 98 features potentially represent novel miR*. A recent

study sequenced murine miRNA populations from adult brain,

ovary, testes and several embryonic stages at a similar depth in

aggregate [22]. For comparison we applied an expression

threshold equivalent to theirs ($25 tags) and detected 374 of

408 known miRNAs also observed by these investigators; we saw

113 of 177 miRNAs they did not detect, and 46 of 158 of the

miRNAs discovered as novel in the previous study. We consider

this a good level of overlap, given the differences in source

material, library preparation methods and sequencing technology

(ie. Illumina versus SOLiDTM [27]). In the following, we generally

applied a more stringent expression threshold of 150 tags per

miRNA to exclude miRNAs of extremely low abundance, and to

focus on observations of particular relevance to cardiomyocyte

biology. This retained 99.95% of mapped tags, excluded 632

miRNAs of extremely low abundance and left 403 known

miRNAs confidently detected (Table S3).

The 20 most abundant miRNAs in HL-1 cells contributed 66%

of all miRBase-mapped tags (Figure 1C and Table S4), with the

cardiovascular miR-145 [28] alone contributing 13% of tags.

Altogether, a set of 139 miRNA hairpins with established cardiac

function or differential expression during heart development and

disease [29], referred to as ‘cardiac miRNA set’ hereafter, gave rise

to 88% of tags and 181 miRNA species (with $150 tags). As HL-1

cells are immortalised cardiomyocytes (though maintaining a

differentiated phenotype with ability to contract and adult

cardiomyocyte gene expression [30]) we wanted to cross-reference

our results with an in vivo cardiac setting. In related work, we had

sequenced a small RNA library derived from a biopsy of murine

cardiac left ventrical at lower depth (3,639,611 tags mapped to

miRBase). Although the biopsy contained cardiomyocytes in

mixture with other cell types, its miRNA profile had clear

similarities to that of the HL-1 cells (Spearman’s rank correlation

coefficient of 0.61; data not shown). We also noted that HL-1 cells

expressed higher levels of miR-208a than miR-208b, seen as a

marker of adult rather than embryonic cardiac tissue [1].

There were also differences between the heart biopsy and HL-1

datasets, the most notable being the higher miR-145 levels and

lower miR-1 levels in HL-1 cells. A recent study profiling

abundant miRNAs in the whole mouse heart by llumina

Figure 1. Identification of HL-1 cardiomyocyte miRNAs by next generation sequencing. (A) Distribution of 66,405,108 mappable small
RNA sequence tags derived from HL-1 cells across miRBase version 16 and the mm37 mouse genome assembly (on left). Split of miRBase-mapped
tags across different miRNA annotations (on right). (B) Distribution of tag lengths for all generic miRBase-mapped tags (dashed line), or separately for
those derived from the 59 or 39 arm of precursor hairpins (blue and green lines, respectively). (C) Distribution of tag counts across the one hundred
most abundant miRNAs. Contribution of individual miRNAs to total tag count (green), or cumulative tag contribution (blue) is plotted against ranked
miRNA abundance.
doi:10.1371/journal.pone.0030933.g001
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sequencing reported miR-1 as the most abundant miRNA,

contributing ,40% of tags [31]. In the biopsy of the mouse left

ventricle we also found that miR-1 was the most abundant

miRNA, contributing 23% of tags. However in the atrial-derived

HL-1 cell line miR-1 is the third most abundant miRNA

contributing 6.3% of all miRNA reads. The 20 most abundant

miRNAs from [31] contributed 47.8% of miRNA reads for HL-1

dataset and 70.8% of the miRNA reads from our cardiac dataset,

suggesting that the miRNA population of the whole heart is more

similar to our ventrical biopsy than HL-1 cells. Furthermore, in

adult tissue there is evidence that miR-145 is expressed to a much

greater extent in the atrium versus the ventricle [32]. As the

ventricle contributes the bulk of material to the whole heart tissue

as used in ref. [31], and the entire material for our heart biopsy, we

would suggest that the predominance of miR-145 (and possibly the

reduced miR-1 levels) in the HL-1 dataset is due to its atrial origin.

In aggregate, these results indicate our detection of miRNAs in

HL-1 cardiomyocytes is sensitive and consistent with expression in

the adult heart.

miRNAs with unexpected strand bias in cardiomyocytes
We next determined miRNA strand bias in the HL-1 dataset

and found that 90.24% of tags mapped to mature miRNAs, 3.66%

to miR*, while 4.03% aligned to -5p/-3p annotated miRNAs

(Figure 1A), confirming the notion that strand selection in the

main is asymmetrical. The remaining 2.07% of tags mapped to

non-canonical miRNA species (see below). There was a minor

preference for miRNAs to be situated on the 59 arm rather than

the 39 arm (54.6% and 45.4% of tags, respectively, Figure 2A),

consistent with previous reports [33].

Despite the overall concordance with miRBase strand annota-

tion, there were 44 mature miRNAs with abundant miR* forms.

11 cases represented a clear reversal of strand preference, with the

miR* represented by .80% of tags mapped to the hairpin.

Between 20–80% of tags mapped to the miR* for 33 others, thus

we observed relatively symmetrical hairpin processing for these

rather than the expected bias for the mature form. Conversely, 33

pairs of -5p/-3p annotated miRNAs unexpectedly displayed

marked bias in their expression (.80% tags mapping to one

strand). Figure 2B displays the observed strand bias for all

confidently detected miRNAs, while Table 1 lists the most

abundant examples for each category. Of the 77 examples with

unexpected strand bias noted in HL-1 cells we could detect 51 in

the lower depth cardiac biopsy dataset and saw similar strand bias

for 46 (90%), confirming broad applicability of our findings to the

in vivo cardiac setting. To assess how stable this biased strand

expression was across divergent tissue types, we used our

methodology to re-map and analyse miRNA sequencing data for

several other murine tissues [22] and categorized miRNA

expression in these tissues as for HL-1 cells in Table 1. Here we

found 26 cases of unexpected miRNA strand bias in HL-1 cells

that was either not seen in these other tissues or not as pronounced

(Table S5). A further 6 of these were not appreciably expressed in

the other tissues (,10 tags in all tissues; miR-147*, miR-463*,

miR-1943*, miR-1933-3p, miR-883-3p and miR-2145-1*, the

latter removed from miRbase 17) and thus their unusual strand

biases have not previously been highlighted. Notable examples of

highly expressed miRNAs with unexpected strand bias in HL-1

cells and also in the heart, but having very different strand bias in

other tissues [22] are the abundant miR-22*, -322*, -872*, and let-

7d*, as well as a marked -5p bias for miR-151-5p.

Of the 77 examples with unexpected strand bias noted in HL-1

cells 27 are part of the ‘cardiac miRNA set’ [29] referred to above.

To illustrate the potential biological relevance of strand bias to

cardiac function we analysed gene function enrichment within

Targetscan-predicted targets using Ingenuity pathway analysis,

focusing on cardiac-related miRNAs and miRNAs with potentially

cardiac-specific strand bias (Table S6). One important example

already mentioned above is miR-22, which is involved in the

cardiac hypertrophic response [34] and has an abundant miR* in

HL-1 cells and the heart (58% and 40% of tags from hairpin

respectively, Figure 2C). Interestingly, the predicted targets of

miR-22* are significantly enriched for genes functioning in

cardiovascular development, function and disease. This is similar

to mature miR-22, although their predicted targets are different,

suggesting both miRNAs regulate similar processes through

different targets. Another likely cardiac-specific abundant miR*

is derived from miR-322 (58%; Figure 2C), whose mature form is

involved in myocyte differentiation [35], post-ischemic vascular

remodeling and angiogenesis [36]. Analysis of predicted targets of

miR-322 and miR-322* showed that they are significantly

enriched for genes functioning in organ development and gene

expression (Table S6), suggesting that both species are likely to

play important roles in cardiac development and remodeling. The

predicted targets of many other miRNA species with unexpected

bias in HL-1 cells and the heart also have cardiac-related functions

(Table S6), suggesting they have important roles in cardiac

biology.

Thus, our results are consistent with the notion that one hairpin

strand is typically chosen as the mature miRNA, and we broadly

confirmed the mature/miR* and -5p/-3p annotations listed in

miRBase up to version 17. Nevertheless, we also documented

numerous examples of unexpected, and in part cardiomyocyte-

specific strand bias.

Numerous cardiomyocyte miRNAs exist as 59 isomiRs,
which can differ in their targeting properties

5.2% of all tags in our HL-1 dataset represented 59 isomiRs,

broadly similar to reports from other murine tissues and C. elegans

[22,37], and they were seen at a low level for virtually all miRNAs.

Interestingly, 59 isomiR tags were markedly more common on the

39 compared to the 59 hairpin arm (Figure 2A). For 105 miRNAs

the proportion of tags mapping to 59 isomiRs represented more

than 20% of all tags (Figure 2D), with 22 represented by .80% of

tags (Table 2). Of these 105 examples of high 59 isomiR

proportion, 58 were also detectable in the lower depth heart

biopsy dataset and 42 of these again displayed .20% 59 isomiRs

tags. To assess the universality of 59 start sites for these miRNA, we

then reanalysed miRNA data from other murine tissues [22] and

saw that, of the 105 examples, 12 had not previously been noted as

they were not appreciably expressed in any of these other tissues

(,10 tags; miR-1927, -1982, -3057, -504*, -1946b, -3079, -3076, -

3082, -1949, -511, -2145-1, -1937c, the latter two were removed

from miRbase version 17). For the remainder we required

expression of the miRNA in at least 3 tissues and observed 55

miRNAs with high proportions of 59 isomiRs (.20% of tags) in all

tissues where they were expressed, suggesting that their 59 isomiR

proportion is consistently maintained in different cellular environ-

ments. 28 miRNAs had more variable levels of 59 isomiR

expression across tissues and/or embryonic stages (expression

#20% in at least one other tissue; Table S7), while 5 examples

consistently had #20% 59 isomiR levels in all the other tissues.

This suggests tissue-specific regulation of miRNA processing for

the latter two groups and perhaps specific biological purpose for

those 59 isomiRs in cardiomyocytes.

Importantly, within the cardiac miRNA set [29], 35 had a 59

isomiR proportion of .20% (8 of these .80% of tags). To

investigate the biological role of these miRNAs and their 59

miRNA Diversity in Cardiomyocytes
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isomiRs we used their respective seed sequences for target

predictions and found highly individual relationships between

mRNA targets and enriched gene function classification (Table

S8). For example, 83% and 96% of miR-133a* tags were

contributed by a -1 59 isomiR in the HL-1 and heart biopsy

datasets, repectively. Importantly, unlike the canonical variant, the

59 isomiR is predicted to target numerous mRNAs involved in

cardiovascular disease (Figure 2F). Conversely, individual and

common predicted targets of miR-101a and its -1 59 isomiR (87%

and 74% of HL-1 and heart biopsy tags, respectively; also

predominant in ES cells but not the liver [38]) are strongly

implicated in cardiovascular disease, suggesting they may act

through both common and distinct targets to affect cardiac

function (Figure 2F).The predicted targets of miR-100* and a

prevalent 59 isomiR derived from a +1 position (57% and 77% of

HL-1 and heart biopsy tags, respectively) have similar proportions

of targets functioning in cardiovascular development. Overlapping

targeting and functions are also observed for predicted targets of

miR-222* and its -1 59 isomiR (81% and 31% of HL-1 and heart

biopsy tags, respectively), while little overlap was observed in the

targets of miR-140* and its +1 59 isomiR (86% and 79% HL-1 and

heart biopsy tags, respectively), though the enriched functions of

their targets is remarkably similar (Gene function analysis in Table

S8).

In summary, we found variation of the 59 start site of miRNAs

to be relatively rare in cardiomyocytes. Nevertheless, many

Table 1. miRNAs with strand reversal, symmetrical miR* expression or biased miRNA-5p/miRNA-3p expression.

Strand Reversal BiasedRSymmetrical SymmetricalRBiased

miR* .80% hairpin Tags
miR*
20–80% hairpin Tags miRNA Tags

miR-140{ 194,425 miR-322{ 253829 miR-125a-5p{ 511970

miR-674 45,917 miR-22{ 48046 miR-345-5p 137955

miR-877 24,357 Let-7d{ 27008 miR-542-3p 107193

miR-211{ 19,925 miR-700 20139 miR-208a-5p{ 91803

miR-330{ 6,606 miR-361{ 19126 miR-342-3p { 85185

miR-147 825 miR-872 17271 miR-151-5p{ 66756

miR-879 792 miR-503 10254 miR-139-5p{ 57793

miR-1943 752 miR-425 6643 miR-532-5p 57452

miR-463 747 miR-7a-1 6196 miR-339-5p 47424

miR-1935 612 miR-28{ 5278 miR-423-3p{ 36902

miR-3074-1 426 miR-3068 5128 miR-331-3p 34946

miR-33 4954 miR-188-5p { 10962

miR-676 3655 miR-450b-3p 10825

miR-1981 2011 miR-671-5p 9195

miR-132{ 1679 miR-3096-5p 5304

miR-96 1560 miR-1198-5p 2573

miR-130b 1078 miR-878-3p 2259

miR-465b-1 1007 miR-1843-3p 1654

miR-463 1003 miR-511-3p 1429

miR-190 747 miR-743b-3p 684

Thresholds were set at expression $150 tags (only miRNA mapped to one loci shown). Entries are ranked by tag abundance and truncated after the top 20 entries
(except strand reversal).
{(pre-)miRNA with known function and/or expression in the heart as defined in [29].
doi:10.1371/journal.pone.0030933.t001

Figure 2. Diversity of HL-1 cardiomyocyte miRNA processing. (A) Schematic of hairpin miRNA precursor showing proportion of tags derived
from either 59 (blue) or 39 (green) arm (in % of total hairpin-mapped tags; shown at center of boxed regions). For each arm, the proportion of tags
representing 59 start or 39 end positions that vary from miRBase annotation is also shown (in % of tags per arm; shown at ends of boxed regions). Red
lines indicate typical Dicer and Drosha processing sites. (B) 59 strand bias of each miRNA is plotted against the sum of tags per hairpin. Color scheme
represents miRBase version 16 annotation as mature species on 59 or 39 arms (red and orange circles, respectively), or as a 5p/-3p pair (blue circles).
(C) Examples of miRNAs with unexpected strand bias. Schematics of hairpin indicate abundance of tag mapping to opposing arms (on left), while
Venn diagrams indicate number and overlap of predicted mRNA targets (Targetscan) for each of these miRNA (on right; top: all predicted targets,
bottom: only targets with specific gene function annotation (Ingenuity) as listed; #: significant enrichment of gene function term, p,0.01). (D) The
proportion of tags representing 59 isomiRs for each miRNA is plotted against tag abundance. Color scheme represents position of miRNA on 59 (blue)
or 39 (green) arm. (E) As in (D) but showing prevalence of 39 isomiRs. (F) Examples of miRNAs with high 59 isomiR proportion. Tag sequences
representing canonical miRNA (black) and major 59 isomiR (red) are depicted on top, while analyses of mRNA targets (as in D) are shown below. (G)
Examples of distinct miRNA 39 end variability. Distribution of tag 39 ends for miR-499 is from the heart biopsy, while HL-1 cell data is shown for miR-
181a, miR-15a and miR-301a (miRBase-annotated 39 end positions are boxed). Panels (B, D and E) depict only generic miRNAs (tags with 59 start
position +/2 3 nt of miRbase v16 annotation or novel miR* directly juxtaposed to a known miRNA) with an expression level of $150 tags; the dashed
lines show tag proportion thresholds of 80% and 20% used throughout this study to categorize miRNAs.
doi:10.1371/journal.pone.0030933.g002
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individual miRNAs showed high proportions of 59 isomiR

expression in cardiomyocytes. The proportion of 59 isomiR was

relatively constant for some miRNAs but appeared to be under

tissue-selective/development-specific control for others, and is

likely to affect their biological function.

39 isomiRs are common in cardiomyocytes
52.3% of the generic miRNA tags in the HL-1 dataset indicated

miRNA variability at the 39 end, which is qualitatively similar to

other systems [21,22,37]. 379 miRNAs were represented by

.20%, and 112 miRNAs by .80% of tags with alternate 39 ends

from those described in miRbase (Figure 2E; Table 2). Similarly,

316 of 381 detectable miRNAs in the heart biopsy had 39 isomiRs

at .20% tag proportion and 39 end heterogeneity was likewise

common in other tissues [22]. The modal tag length for all generic

miRNAs in HL-1 cardiomyocytes was 22 nt, although tags

deriving from the 59 arm were 22 or 23 nt long in approximately

equal proportions (Figure 1B).

Unambiguous 39 additions, as well as internal sequence

changes, were relatively rare in the HL-1 dataset (Text S1, Figure

S4 and Table S9). In datasets from other tissues non-templated

additions were biased to A and U extensions [22,39], but we did

not observe any nucleotide bias or commonly extended miRNAs

in cardiomyocytes (.5% tags). Instead the most detectable 39 end

variation in our data appears to be the result of altered 39 cleavage

or trimming events. There were three major types of 39 end

variability observed in our dataset (Figure 2G); a small range of 39

end sites (most common, e.g. miR-499); a large spread of 39 end

sites used, perhaps indicating 39 trimming (e.g. miR-181a); or a

defined 39 end site, albeit not necessarily as annotated in miRBase

(e.g. miR-15a). In all cases there are clear preferences for some

sites, suggesting regulated alternate cleavage or trimming events.

Importantly, most members of the cardiac miRNA set had .20%

of mapped tags with 39 ends that differed from miRBase (177 of

181 that were appreciably expressed; 40 miRNAs with .80% of

39 end variant tags). Three notable examples include: miR-499, a

MyomiR that controls myosin heavy chain isoform expression [4]

and is a biomarker of myocardial infarction [40]; miR-21, which is

currently touted as a promising therapeutic target for cardiovas-

cular diseases [41]; and miR-195, whose deletion in mice leads to

cardiac hypertrophy [5]. We find abundant, if not predominant,

species of all these miRNA that are one base longer than

annotated in miRBase in both the HL-1 cardiomyocyte and heart

biopsy datasets.

A related observation was that although 90% of all tags were

24 nt or shorter (Figure 1B), 28 miRNAs had .20% of tags that

were longer than 24 nt (Table S9), the same was found with 8 of

11 detectable cases in the lower coverage heart biopsy dataset (see

Text S1 for structural analysis of long miRNAs). miR-301a is an

extreme and abundant case, with .60% of tags being 24 nt or

longer in cardiomyocytes (Figure 2G, Figure S5A), which we

confirmed by northern blotting (Figure S5B). Re-analysis of other

murine tissues [22,42] additionally suggested that the length of this

miRNA is tissue-specific and developmentally regulated (Figure

S5C). Interestingly, both miR-301a and several members of the

miR-30 family, which are also commonly longer than 24 nt in our

dataset (Table S10), target the mRNA for plasminogen activator

inhibitor-1, a protein involved in the pathogenesis of cardiovas-

cular disorders [43]. Another prominent example is miR-181a,

which is involved in cardiovascular development [44], yet 47% of

tags are longer than 24 nt in our cardiomyocyte dataset.

In summary, we find that miRNA 39 end variation is common

in cardiomyocytes and many miRNAs with established cardiac

functions are altered in this way.

Expression of 59 isomiRs can alter the target spectrum of
miR-133a

miR-133a is known to have key roles in cardiac biology

[45,46,47] and its example further illustrates the diversity of

hairpin precursor processing. We saw expression of 59 isomiRs

from both strands of the hairpin (a prevalent 59 isomiR of miR-

133a* is shown in Figure 2F), and we next focussed on mature

miR-133a. In addition to tags with the canonical 59 start position,

we detected a highly abundant +1 59 isomiR of 50.1% and 53.9%

of mature miR-133a tags in HL-1 cells and the heart, respectively

(Figure 3A), similar to that seen in the heart on another sequencing

platform [22]. In mammals it is known that miR-133a 59 isomiRs

can be derived from two identical genomic loci, named miR-133a-

1 and miR-133a-2, and thus these isomiR proportions are not

likely due to processing differences of individual loci [22].

Furthermore, we also observed that both 59 start positions were

associated with variable 39 ends (Figure 3A). We used the

respective seed sequences (base 2–8) of the miR-133a 59 isomiRs

to predict mRNA targets using TargetScan (Figure 3B). Overall,

this analysis yielded both common and unique targets, with both

59 isomiRs being predicted to target many genes involved in

cardiovascular disease, although few of the latter were common to

both. This suggested that both 59 isomiRs might regulate similar

cardiomyocyte functions largely through different mRNA targets.

To experimentally test if the 59 isomiRs of miR-133a can have

different targeting properties in vivo, we created two luciferase

Table 2. 59 and 39 isomiRs in HL-1 cardiomyocytes.

59 isomiRs 39 isomiRs

.80% tags Tags .80% tags Tags

miR-140*{ 194425 miR-30d{ 2281625

miR-133a-1*{ 166829 miR-21{ 728598

miR-101a{ 36475 miR-30a{ 499855

miR-504 34530 miR-30e{ 487980

miR-183* 25076 miR-351{ 207994

miR-145*{ 7456 miR-181a-1{ 196000

miR-1937a 4692 miR-140*{ 194425

miR-1983 3964 miR-195{ 158413

let-7g*{ 2575 miR-3102 153943

miR-1957 1733 miR-345-5p 137955

miR-132*{ 1679 miR-183 135000

miR-483{ 695 miR-181b-1{ 128529

miR-3082-5p 479 miR-542-3p 107193

miR-222*{ 469 miR92a-1 105635

miR-670* 436 miR-497{ 76818

miR-1186 342 miR-16-1{ 70920

miR-1949 278 miR-206 60867

miR-3470b 261 miR-339-5p 47424

miR-511-5p 164 miR-15a{ 40961

miR-3087 161 miR-350 38521

Thresholds were set at expression $150 tags (only miRNA mapped to one loci
shown). Entries are ranked by tag abundance and truncated after the top 20
entries.
{(pre-)miRNA with known function and/or expression in the heart as defined in
[29].
doi:10.1371/journal.pone.0030933.t002
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reporter constructs, each carrying three copies of a different

predicted miR-133a target site in their 39 UTR (Figure 3C). These

sites were derived from two experimentally demonstrated targets

of the miR-133a locus, the Ctgf and Pgam1 mRNAs [48]. The

reporters were transiently transfected into HeLa cells together with

synthetic RNA mimics of the two most abundant mature miR-

133a variants, a canonical 59 start site variant of 23 nt (can/23 nt)

and a +1 59 isomiR of 22 nt (iso/22 nt; Figure 3A), or a mimic of

an unrelated miRNA. This revealed pronounced preferential

targeting by each variant such that there was significantly greater

repression of the Ctgf reporter by canonical miR-133a than the

isomiR, and vice versa for the Pgam construct (Figure 3D). Given

that the two mimics chosen varied in length (22 versus 23 nt), we

tested two further mimics representing the respective other length

for each miR-133a variant (can/22 nt and iso/23 nt) and found

that repression did not depend on mimic length within this range

or vary significantly between different 39 end sites (Figure 3E).

Thus, mRNA target predictions for major 59 start site variants

of miR-133a suggested convergent biological function at least in

part through divergent target spectra. Addressing this issue

experimentally, we have also been able to provide proof-of-

principle evidence for alternative mRNA targeting by the major

Figure 3. isomiRs of miR-133a with different targeting properties. (A) Major mature miR-133a species and their abundance in HL-1
cardiomyocytes. Sequence tags are grouped into those with canonical (black, ‘can’) and +1 (red, ‘iso’) 59 start sites. Brackets denote sequences used as
miRNA mimics in panels D and E. (B) Venn diagrams indicate number and overlap of predicted mRNA targets (Targetscan) for canonical and +1 59
isomiR variants of miR-133a (top: all predicted targets, bottom: only targets with roles in cardiovascular disease (Ingenuity; #: significant enrichment
of gene function term, p,0.01). (C) Schematic of reporter constructs made to contain three copies of predicted miR-133a binding sites from Pgam1
or Ctgf mRNA 39UTRs. Base pairing potential between sites and miR-133a isomiRs is also shown. (D) Ctgf or Pgam1 R-luc reporters were transfected
into HeLa cells with mimics of the major variants of the canonical (can/23 nt) and +1 59 variants (iso/22 nt) of miR-133a, an irrelevant control, or no
mimic at all, and luciferase activity measured 24 hours later. The fold change of expression is calculated as no mimic/mimic and results are averages
of four independent experiments with standard error. (E) Transfections as in (D) comparing mimics of different lengths (can/23 nt vs can/22 nt, iso/
22 nt vs. iso/23 nt; for sequence see panel A). Repression is given as a percentage of that seen with the respective major variant and results are
averages of at least three independent experiments with standard error.
doi:10.1371/journal.pone.0030933.g003
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canonical and major 59 isomiR variants of miR-133a in living

cells.

Sequence and structural features of miRNA precursors
miRNA processing is largely determined by DGR8/Drosha and

Dicer recognizing structural elements in their RNA substrate

(ssRNA/dsRNA junction and Drosha cleavage site, respectively)

and then cleaving at a set distance away from it [13,49].

Nevertheless, local sequence context and structural distortions

are also known to contribute to cleavage site selection [14,37], 59

end nucleoside identity and base pairing affect RISC loading and

trimming of miRNA 39 ends further affect which miRNA

sequences will accumulate in cells [50,51,52,53].

We therefore examined the first and last positions in HL-1

cardiomyocyte miRNA sequence tags as well as at the immediately

adjacent external positions and calculated nucleoside frequencies

for 403 appreciably expressed generic miRNAs (see Materials and

Methods for further details). This revealed a significant enrich-

ment (p,0.01) of uridine at the first and last position within

miRNAs derived from the 59 arm of hairpins, as well as at the 59

most position of the excised terminal loop segment, and the first

position of miRNAs derived from the 39 arm was enriched for

cytidine (Figures 4A; see Figure S6 for a full display of results).

Other nucleosides, primarily cytidine and guanosine, where

significantly depleted at these positions, relative to background

nucleoside composition. We also recorded nucleoside frequencies

after grouping miRNAs into asymmetrically expressed major and

minor species ($80% or #20% of tags from the hairpin,

respectively) as well as symmetrically expressed miRNAs (less

than 80%, but greater than 20% of tags on any one arm of the

hairpin). Focussing on the 59 start of miRNAs, we observed a

strong preference for uridine at this position for major miRNA

species derived from both arms of the hairpin (Figure 4A).

Conversely, uridine was strongly depleted from the 59 most

position of the minor miRNA species, again on both hairpin arms.

We found a strong preference for cytidine at the 59 start of minor

miRNA species deriving from the 39 arm of hairpins. Symmet-

rically expressed miRNAs on both arms exhibited 59 nucleoside

bias that was intermediate between those of the corresponding

major and minor species. Overall, our analyses indicate that there

is no absolute requirement for a given nucleoside at any of the

positions we examined. Nevertheless, the observed patterns of

enrichment and depletion of nucleosides are consistent with a role

for local sequence context in miRNA processing and/or

incorporation into argonaute proteins. In particular, the pattern

of uridine bias at the miRNA 59 end is consistent with the known

bias towards this nucleoside at the first position of miRNAs and

the preference of mammalian Ago 2 for uridine or adenine in this

position [50,51]. While the frequency of adenine varied between

miRNA categories, any bias for or against it was comparatively

minor. A curious finding was the strong preference for cytidine in

the 59 most positions of minor and symmetrically expressed

miRNA species only on the 39 arm, suggesting factors beyond

discrimination by Ago 2 are at play in this case.

With the proviso that miRNA start and end positions as

measured by sequencing are subject to trimming as well as

‘purifying’ Argonaute selection, we further examined local RNA

structure near processing sites in 229 appreciably expressed and

canonically processed hairpins (196 with expression from both

arms), considering only the most abundant expressed isomiR

variant on each arm. We noted that a majority of miRNA

duplexes reconstructed in this way had a 2 nucleotide overhang at

Drosha- and Dicer-processed ends (58.1% and 60.7%, respective-

ly; see Figure 4B), consistent with the known property of both

enzymes to produce recessed termini in this way, but also

significant post-processing extension and trimming of miRNA 39

ends. Next, we determined the extent of base-pairing of the 59

most position of miRNAs and saw two clear tendencies. We found

that a majority of miRNA duplexes were base-paired at both ends

(68.4%). Beyond that, there was a preference for the first base of

miRNAs residing on the 59 arm of the hairpin to be unpaired,

compared to those residing on the 39 arm (31.5% and 10.5%,

respectively; see Figure 4C). When considering major/minor and

symmetrically expressed species separately, additional trends

emerged. First, regardless of arm location, there was a bias

towards the major miRNA species exhibiting an unpaired 59

terminus, although this effect was much more pronounced when

major species resided on the 59 arm than on the 39 arm (48.2%

and 14.8%, respectively). Second, minor species tended to favor

base-pairing of their 59 termini; this effect was particularly striking

with minor species residing on the 59 arm, where only 9.5% of

minor species had an unpaired terminus, compared to 31.5% of all

miRNAs on that arm. Third, with symmetrically expressed

hairpins, miRNAs on both arms exhibited virtually the same

preference for unpaired 59 ends as seen with major species in these

locations, i.e. there was a bias towards unpaired 59 termini at both

ends of the miRNA duplex. Overall, these results indicate that

there is no absolute requirement for an unpaired 59 terminus to

allow a miRNA to accumulate. Nevertheless, we detect a clear

signature of the established thermodynamic stability rule for

miRNA strand selection [33]. The general bias for an unpaired

miRNA 59 terminus on the 59 arm of hairpins can be explained by

more common structural distortions around the Drosha cleavage

site compared to the Dicer cleavage region (see below).

Next, we extended our analyses to assess more generally local

structural distortion around miRNA processing sites. We found

that 63 Drosha cleavage regions were base-paired throughout.

The majority of Drosha cleavage sites featured some form of

structural distortion. Most common was a symmetrical internal

loop of 2 or 4 nucleotides (72 and 36 examples, respectively; see

Figure 4D). The remainder of sites (58) had miscellaneous other

structural distortions (see Figure S7 for a full analysis). The most

common structure near the Dicer cleavage site was the terminal

loop region, with the 59 arm cleaved immediately prior to the loop

for 63 hairpins and 1 nt into the stem for a further 31 (Figure 4D).

The majority of these miRNAs had no other structural distortions

in the vicinity of the Dicer processing region (54 and 28 hairpins,

respectively). The next most common structural feature near the

Dicer cleavage site were smaller bulges and loops starting

immediately after the 59 arm cleavage site (42 hairpins,

Figure 4D). There was no preference for asymmetrical structures

to be on the 59 or 39 arm for either cleavage site (data not shown).

Altoghether, these findings reveal that there is no absolute

requirement for specific structural features around either cleavage

region. Nevertheless, there was a tendency towards symmetrical

structural distortions around and within in the Drosha cleavage

region. For Dicer, the immediate cleavage region typically was

base-paired but immediately adjacent to either the terminal region

loop or other distortions that may be functionally equivalent.

Novel and unusual miRNAs originating from known
miRNA precursors

To search for evidence of novel miR* we looked for tags that

mapped to hairpins opposite to known mature miRNA. After

applying a $150 tag expression threshold we retained 5 examples

of novel generic miR* (miR-1927*, -1196*, -184*, -1983* and -

721*; Figure 5A & C, Table 3), whose position is consistent with

canonical Drosha/Dicer processing of the respective miRBase-
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annotated miRNA hairpin structure. In the recent release of

miRBase v18 miR-184 and miR-1196 hairpins have miRNA

annotations on both arms, although these new miR*s were not

derived from experimental evidence. Furthermore the sequence of

miR-1196 is not the same as our observation, nor compatible with

canonical processing of the predicted structure, suggesting that our

miR-1196* is a more appropriate miR* candidate.

Because there is precedent for a number of unusual processing

events that can give rise to miRNAs, we then extended our

analysis to the 266,989 miRBase-mapped tags whose 59 ends fell

outside the expected start position of a generically processed

miRNA (more than 63 nt) and further added 3,594 tags that

mapped to the mouse genome just outside the miRNA hairpin

sequences listed in miRBase. This allowed detection of two highly

expressed contiguous sets of miRNA pairs from the long stem of

the putative miRtron mir-3102 (Dataset S1 and S2) [22]. Another

known example of unusual pri-miRNA processing we detected was

miR-451, which overlaps with the hairpin loop and is generated by

a Dicer-independent, AGO2-dependent mechanism [54]. Inter-

estingly, we found a novel variant on the miR-711 hairpin

(Figure 5B), which we termed an extreme isomiR (e-miR-711; see

Figure S3 for an explanation of miRNA variant nomenclature

Figure 4. Sequence and structural features around cardiomyocyte miRNA termini. (A) Sequence logos displaying nucleoside frequency at
the 59 start position of miRNAs residing on the 59 or 39 hairpin arm. Results are shown averaged over all miRNAs (total), or after grouping miRNAs into
asymmetrically expressed major and minor species ($80% or #20% of tags from the hairpin, respectively) as well as symmetrically expressed miRNAs
(less than 80%, but more than 20% of tags on any one arm of the hairpin). Significant over- (#) and under-representation (*) compared to
background is also shown (p,0.01, t-test with Welch adjustment). Background was defined as the average of positions adjacent to all cleavage sites.
Only generic miRNAs with expression level $150 tags were included in this analysis. See Figure S6 for expanded analysis. (B) Proportion of miRNAs
with different 39 overhang lengths in reconstructed duplex processing intermediates. (C) Proportion of miRNAs with an unpaired first nucleoside after
grouping miRNAs as in (A). Number of miRNAs in each group is shown in brackets above. (D) Shown are schematics of the most common structural
distortions on miRNA precursors surrounding miRNA termini (see Figure S7 for details). Analyses in (B–D) were performed on canonically processed
miRNA hairpins with expression level $150 tags from at least one arm. Structural features were determined by visual inspection of the most common
isomiR on each arm overlaid onto the predicted miRNA hairpin folding as deposited in miRBase.
doi:10.1371/journal.pone.0030933.g004
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used here). e-miR-711 is the major species mapped to this hairpin

in the HL-1 and heart biopsy datasets and may similarly be

derived by AGO2-dependent processing.

To search for any other high confidence e-miR variants we

further required that non-generic sequence tags represented

$20% of the total tags mapped to a given miRNA hairpin.

These criteria retained 63 hairpins for further visual inspection

(Table S11). 25 of these were disqualified on the basis of a lack of

credible miRNA-like properties. As a plausible explanation for the

genesis of the remaining 38 examples we considered that many

may arise from generic Drosha/Dicer processing of pri-miRNAs

adopting a hairpin fold in vivo that differs from the miRBase-

prediction. With that proviso we assign 11 tag sets as representing

novel non-canonical miR*. (Interestingly, several examples of this

already exist in miRbase, e.g. miR-147, miR-3096 and miR-3113).

27 tags sets mapped to a hairpin arm that already harbours a

miRBase-annotated miRNA species, thus we classify them as

additional novel e-miRs (Table 3). Many of the unusual miRNA

processing events described above were also seen in the lower

depth heart biopsy dataset. Specifically, of the 17 detectable

miRNA hairpins, 14 had observable e-miRs and 10 of these were

expressed in similar proportions as in HL-1 cardiomyocytes. Four

of the pre-miRNAs with observed novel miR* had some coverage

in the lower depth heart biopsy dataset, and thus we could confirm

expression of the novel miR-1944*, miR-3470* and miR-1195*

(Dataset S2).

e-miR-721* is the most abundant non-generic miRNA in the

cardiomyocyte and heart biopsy datasets (Figure 5C). As an

indication of the biological significance of e-miR-721*, we

performed gene function analysis with the predicted targets of

the three miR-721 hairpin-derived miRNAs. The mature and e-

miR-721* are predicted to target appreciable numbers of genes

involved in cardiovascular disease, unlike the novel generic miR*,

suggesting a reason for the processing of the e-miR-721* to be

favored in cardiomyocytes (Figure 5D). Furthermore, there is

much greater sequence identity across species for e-miR-721* than

mature miR-721, suggesting this to be the more important miR-

721 variant expressed at this locus (data not shown).

In summary, our data suggests that unusual miRNA variants

are frequently derived from their precursors, many with potentially

important cardiac functions. Regulated modulation of hairpin

folding may underlie many of these observations.

Antisense miRNAs and other novel miRNAs
Next, we analysed our dataset for the presence of miRNAs that

are derived from precursors transcribed in antisense orientation to

known miRNA loci [55] using ,600,000 tags that mapped to the

opposite strand of miRBase-listed hairpins. We also looked for

expression of entirely novel miRNAs in 23,953,195 tags that

mapped to the mouse autosomes and X chromosome. Using a

bioinformatic pipline to identify abundant tags in genomic regions

with properties of known miRNA (described in Text S1 and shown

in Figure S8) we identified 8 putative antisense (as) miRNAs

(Table 3) and 147 genomic regions corresponding to putative

novel miRNA precursors (Dataset S3), with individual tag counts

of up to 8748. Thirteen of the novel candidate miRNAs (termed

‘miR-N’ plus a serial number), and all of the antisense miRNAs,

had expression of a miR* form (e.g. miR-N27 and miR-30e-as;

Figure 6), providing additional confidence in suggesting these as a

Table 3. Novel miR*, novel non-canonical miRNAs and novel
antisense miRNA.

Novel miR* Non-canonical miRNAs

miRNA Hairpin%{ miRNA Hairpin%

miR-1944*|| 68.8 e-miR-721* 99.7

miR-3470b* 47.8 e-miR-3072 99.97

miR-1983* generic e-miR-1274a|| 96.06

miR-1187* 99.1 e-miR-1983 54.22

miR-3471-1* 99.6 e-miR-1937b-1|| 46.77

miR-721* generic e-miR-1947 97.55

miR-467f* 96.6 e-miR-1933-5p 77.40

miR-1195* 72.2 e-miR-1934* 73.05

miR-2145-1*|| 82.8 e-miR-136 98.31

miR-678* 99.8 e-miR-711 98.8

miR-1927* generic e-miR-690 92.78

miR-688* 92.1 e-miR-3473 45.87

miR-1196* generic e-miR-463 48.4

miR-184*{‘ generic e-miR-697 97.08

miR-717* 98.2 e-miR-194-1*{ 54.74

miR-1892* 92.5 e-miR-592 92.13

e-miR-344g-5p 97.08

Antisense miRNAs1 e-miR-455* 68.65

miRNA Counts e-miR-2137 30.87

miR-30e-as{ 5,996 e-miR-144 89.86

miR-873-as 1,016 e-miR-743b-5p 23.75

miR-449c-as 515 e-miR-715|| 69.35

miR-541-as 439 e-miR-881* 56.21

miR-148b-as 336 e-miR-370 97.41

miR-546-as 333 e-miR-3067 100

miR-3074-as 262 e-miR-448-5p 100

miR-451-as{ 286 e-miR-669o-5p 99.35

{Novel miR* that are processed within the expected window of the mature
strand are labelled ‘‘generic’’. Entries are ranked by tag abundance.
{(pre-)miRNA with known function and/or expression in the heart as defined in
[29].

1All antisense hairpins have at least one tag aligned to the opposing side of the
stem.

||miRBase v16 annotated miRNAs removed from miRBase v17.
‘reported in miRbase v18.
doi:10.1371/journal.pone.0030933.t003

Figure 5. New miRNA variants mapping to known hairpin precursors. (A) Examples of generic miR* species discovered in HL-1 cells not
currently annotated in miRBase. Position within the hairpin structure is consistent with canonical processing. (The additional case of miR-721* is
shown in panel C). (B) We refer to a set of miRNA tags outside the canonical processing region of hairpins as an extreme isomiR (e-miRs). Position of
the major e-miR on the mir-711 hairpin suggests it as a novel case of Ago2-mediated processing [54]. (C), The miR 721 hairpin gives rise to an
abundant e-miR; expression of the annotated mature miR-721 and its generic miR* counterpart is much lower. Left, hairpin fold as listed in miRbase;
right, hypothetical alternative fold consistent with canonical processing of miR-721 together with the novel e-miR-721*. (D) Venn diagrams indicate
number and overlap of predicted mRNA targets (Targetscan) for the three miRNA variants mapping to the miR-721 hairpin (top: all predicted targets,
bottom: only targets with roles in cardiovascular disease (Ingenuity). miRNAs already annotated in miRBase are marked by open boxes, while novel
species are highlighted by filled boxes.
doi:10.1371/journal.pone.0030933.g005
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bona fide miRNA. Furthermore, we have verified the expression in

HL-1 cells of two novel miRNA and their repective miR* (miR-

N4/miR-N4* and miR-N29/miR-N29*) and one antisense

miRNA (miR-30e-as) by high stringency PCR with melt curve

analysis (Text S1 and Figure S9).

39 novel miRNAs had a seed sequence identical to a known

miRNA family (Dataset S3). For example, six novel miRNAs share

their seed sequence with the cardiac-related miR-1/206 family.

While seven novel miRNAs originated from snoRNA-encoding

loci, 64 others were derived from protein coding genomic loci. 33

of the latter mapped to the sense strand, with 31 being situated in

introns. Furthermore, 17 novel miRNAs were derived from gene

loci associated with in cardiac biology (as defined by Ingenuity, e.g.

Gnaq, Ntn1, Rttn, Gli2, Man1c1 and Scarb2).

Our novel miR-N108, which is encoded in an intron of Eif4g3,

has been annotated as a bona fide miRNA in miRBase version 17

(now called miR-5123 [56]), but none of the other 134 entries new

to version 17 and 18 are related to our novel miRNAs. None of

our novel miRNAs have been previously removed from miRBase

or, to our knowledge, been detected in other recent deep

sequencing publications. There are also no already annotated

orthologs in conserved syntenic genomic regions in other species

(data not shown). However, novel mir-N84 has been bioinforma-

tically predicted and is listed in Deepbase [57]. Additionally, while

a number of antisense miRNA are known (including miR-1-2as

now called miR-1b, which we did not detect here), none of the

antisense miRNAs reported here, to our knowledge, have been

previously observed. Thus, while we have support for our novel

miRNA discovery pipeline through some overlap of its output with

predicted and experimentally verified miRNAs, the bulk of our

novel candidate miRNAs are without precedent.

Of the 8 identified novel antisense miRNAs present in our

dataset, miR-30e-as is the most abundant and arguably the most

interesting (Figure 6A&B, Figure S9). The sequences for mature

miR-30e and miR-30e-as are notably similar, and miR-30e-as is

relatively abundant in the heart biopsy dataset at ,4% of miR-30e

expression. The predicted targets of miR-30e and miR-30e-as

overlap considerably and there is significant enrichment of targets

involved in cardiovascular disease for individual and overlapping

predicted targets (67/283 common, p,0.01; 154/648 miR-30e

only, p,1026; and 88/456 miR-30e-as only, p,0.5). Furthermore

miR-30e is known to be commonly down-regulated in hyperten-

sive heart disease [46] and regulates connective tissue growth

factor in myocardial matrix remodelling [47], suggesting miR-30e

and (by association) miR-30e-as have important roles in cardiac

biology.

Figure 6. miRNAs candidates deriving from novel precursors and genomic locations in HL-1 cells. (A) The miR-30e locus appears to be
expressed bi-directionally, giving rise to miRNAs tags sets mapping to both, the sense (known) and antisense strands (novel; suffix –as denotes
antisense-derived miRNA). (B) Predicted structures for both sense and antisense miR-30e hairpin precursors. (C) Examples of tag sets mapping to
entirely new candidate miRNA loci in the murine genome. These miRNA species are tentatively named miR-N.. (N for novel). Predicted hairpin
structures (RNALfold) of surrounding sequence is shown.
doi:10.1371/journal.pone.0030933.g006
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In summary, by applying stringent criteria to a dataset of great

depth we have found expression of many candidates for antisense

and entirely novel miRNAs in cardiomyocytes.

Discussion

We presented here a comprehensive census of the murine

cardiomyocyte miRNA repertoire. Detailed information down to

sequence tag level for each miRNA is available in Table S1 and

Dataset S1. We saw appreciable expression of 403 known

miRNAs, as well as detecting five novel miR*, 38 extreme

isomiRs, eight antisense miRNAs, and 147 entirely novel miRNA

candidates. We furthermore documented in detail the contribution

of processing variants to the miRNA population, describing 77

hairpins exhibiting unexpected strand bias and 105 examples of

high 59 isomiR proportion, while most miRNAs exhibited variable

39 ends. Importantly, 55 miRNAs derived from hairpins with

known cardiac function [29] exhibit one or several of these

unusual features. Often for these miRNA (e.g. 9 cases of

unexpected strand bias and 15 instances of high 59 isomiR

proportion) the unusual feature was not as prominant in other

murine tissues previously analysed [22], suggesting particular

relevance to cardiomyocyte biology. We then focused on abundant

59 isomiRs and directly demonstrated potential for differential

mRNA targeting for two 59 isomiRs of the key cardiac regulator

miR-133a. More broadly, we found that 55 of 105 59 isomiRs

were prevalent (.20% of tags) also in all other murine tissues

where they were appreciably expressed [22]. Of the remainder, 12

were below detection limits in non-cardiac tissue and 28 exhibited

varying degrees of tissue-selective accumulation, suggesting

frequent tissue-specific miRNA processing and cardiomyocyte-

specific roles for a subset of 59 isomiRs.

Features of miRNA biogenesis and function
Our dataset confirmed the established view that most miRNA

hairpins are asymmetrically processed, yielding mature miRNAs

predominantly from one arm. Concordance with miRBase version

16 assignment of mature and miR* was generally good and we

also found that -5p/-3p annotated miRNAs tended to be

expressed relatively evenly (Figure 2B). Nevertheless, expression

was detectable at some level from both arms of most hairpins and,

like others [33,58], we found that many individual hairpins

markedly deviate in strand bias from their miRBase version 16

annotation. In some cases this appeared to reflect cardiomyocyte-

selective miRNA processing, in others we observed similar arm

bias upon reanalysis of datasets from other tissues [22]. Notably,

the recently released miRBase version 18 has dispensed with the

mature/miR* nomenclature and instead renamed all murine

miRNA species with a -5p or -3p suffix, acknowledging the notion

that (regulated) expression from both arms can give rise to

functional miRNA species [59,60]. It is now appreciated that

multiple miRNA features may affect miRNA strand selection

(reviewed in refs [11,12,14]). We found that no single aspect was

uniquely required, however, two known features were sufficiently

common to leave a ‘signature’ in our analyses. First, using an

unpaired 59 base as a surrogate measurement (Figure 4C), we saw

patterns consistent with the established thermodynamic stability

rule for asymmetric miRNA incorporation into miRISC

[61,62,63]. Second, we could detect a clear overrepresentation

of uridine at the 59 start of major miRNA species (Figure 4A),

consistent with the known bias towards this nucleoside at the first

position of miRNAs and the preference of mammalian Ago 2 for

uridine or adenine in this position [50,51].

While the modal miRNA tag length in cardiomyocytes was

22 nt (Figure 1B), we observed common miRNA end heteroge-

neity, which was much more pronounced at the 39 end than at the

59 start site (52.3% and 5.2% of tags deviated from miRBase

annotation, respectively; Figure 2D&E). As observed previously,

heterogeneity at both termini was also less pronounced at the

Drosha compared to the Dicer cleavage site (Figure 2A), perhaps

suggesting more a precise cleavage by Drosha, or indicating a

cumulative effect of variability in successive processing steps [64].

Additionally, it is clear that observable miRNA 39 ends in our

dataset did not strictly follow 59 start choice, and thus much of the

variability at the 39 end probably derives from post-processing

addition and trimming events [52,53]. This is likely further

reflected in our analysis of miRNA duplexes as we find that a large

minority do not conform to the 2 nt 39 overhang rule (Figure 4B).

Similar trends were seen in previous analyses [22,38,65], and the

basis for some of the diversity of miRNA termini and length has

been ascribed to structural features of the pre-miRNA [14].

Additionally, proteins associating with Drosha or the hairpin loop

sequences are known to regulate individual hairpin processing

[11,13,37,66], implying that many instances of end variability will

be cell context-specific. Our data indicated a tendency towards

symmetric structural distortions around and within in the Drosha

cleavage region, while for Dicer, the immediate cleavage region

was typically base-paired but immediately adjacent to either the

terminal loop or other local distortions (Figure 4D). Similar

observations were made for C. elegans Drosha and Dicer sites [37].

These structural features, while not strictly required, may

contribute to miRNA processing accuracy, in addition to the in-

built ‘ruler’ functions of the Drosha and Dicer complexes [49].

Importantly, in our dataset we observe high levels of variability

for numerous individual miRNAs (Figure 2D&E), which are likely

to impact on their role in cardiac biology. Evidence in favor of this

notion includes the observation that isomiR expression is regulated

during development [21] and variations at the 39 end can

influence miRNA stability [67], loading into distinct Argonaute

complexes [16,17], as well as potentially affecting target mRNA

binding [20] and the cellular location of miRNAs [68]. There is

also the strong expectation that 59 isomiRs will have distinct

mRNA targeting properties, since changes to the miRNA 59 end

will alter their seed region identity [21,22,38,65]. Importantly, we

present here a direct experimental validation of differential mRNA

targeting by 59 isomiRs using the example of miR-133a (Figure 3).

Interestingly, alteration to the 39 end of miR-133a mimics did not

affect the level of mRNA repression, suggesting that in this

instance the 39 end is not essential for efficient target binding. Our

work further provides information on expression of novel miR*

(e.g. Figure 5A), a new candidate for AGO2-mediated processing

(Figure 5B) and antisense-miRNAs (e.g. Figure 6A & B), as well as

documenting a substantial repertoire of entirely novel miRNA

candidates (e.g. Figure 6C). Remarkably, we also described

numerous examples of extreme miRNA variants (e-miRs; e.g.

Figure 5C), whose existence may often be explained by the pri-

miRNA adopting an alternate secondary structure(s) that differ

from the predicted structures deposited in miRBase. We therefore

suggest that many novel e-miRs may be produced by canonical

Drosha and Dicer processing of alternate miRNA harpin

structures. While novel as a concept in this context, it is in general

well established that long-range interactions within RNA mole-

cules or interactions with cellular proteins can affect local RNA

secondary structure (e.g. RNA chaperones [69]) and the current

catalog of known miRNA hairpin interacting proteins is rapidly

expanding [13].
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Implications for cardiac biology and disease
The HL-1 cell line is a popular cell culture model of

cardiomyocyte biology and, as shown previously for transcriptomic

and phenotypic aspects [30], we have demonstrated here that they

express an adult cardiomyocyte-like miRNA profile. Furthermore,

a small number of miRNAs with prominent roles in cardiac

biology represented the bulk of the HL-1 cell tag count, as is

typically seen in differentiated cells [70]. Nevertheless, the miRNA

expression profile of HL-1 cells did deviate from a previously

described whole heart miRNA expression profile [31] and our

own left ventricle dataset in some respects, e.g. exhibiting higher

miR-145 and lower miR-1 expression. This may partly be due to

the transformed nature and cell culture environment of HL-1 cells,

or their atrial origin as there is some evidence that expression of

miRNAs differs between atrium and ventricle [32]. Importantly,

our observations of the many miRNA processing variants were

remarkably consistent between HL-1 cells and our ventrical

biopsy. It was interesting to test whether the characteristic change

from a non-beating to a beating state mimicked a distinct step in

cardiomyocyte differentiation, however, the relative lack of

differential miRNA expression we found (Figure S2) argues against

this notion. Instead, we saw a bulk up-regulation in miRNA level,

consistent with observations in other cells types reaching

confluency [26]. It remains to be tested whether this merely

correlates with the beating state, or directly contributes to it in

some way.

The importance of miRNAs for cardiac development and

cardiomyocyte function is well described [2,3]. Many individual

miRNAs have further been implicated in the pathology of heart

disease, already leading to efforts of utilizing this knowledge for

therapy development [2]. However, many of these studies were

devised, conducted and their findings interpreted without detailed

knowledge of the prevalence of miRNA sequence variation. The

present study now provides such detailed information, which will

at a minimum allow a more sophisticated understanding of

previously generated data. For instance, knowledge of all extant 59

isomiRs of a given disease-associated miRNA will enrich our

picture of how they target the cardiomyocyte mRNA population

and are thus involved in the disease pathology. miR-133a, a

miRNA crucial to cardiac development and associated with a

number of cardiac pathologies [1], served as an example here of a

miRNA with an array of different sequence variants and

demonstrated differential targeting properties of its two major 59

isomiRs (Figure 3). Leading on from this, knowledge of miRNA

variant expression will also improve the development of diagnostic

tests of miRNA expression and allow greater precision in the

design of miRNA mimics or anti-miRs as therapeutic agents.

In summary, our detailed compendium of cardiomyocyte

miRNAs has revealed many unexpectedly abundant miR*, as

well as unusual sequence variants and novel miRNA species. This

raises interesting questions regarding their biological functions and

specific modes of production that now await experimental

characterization. It further highlights the fact that miRNA

biogenesis and their impact on cellular processes is much more

complex than originally anticipated. The diversity of miRNA

sequences documented here will enrich our view of how these

post-transcriptional regulators coordinate cardiomyocyte gene

expression and more broadly, govern processes in cardiac biology

and disease.

Supporting Information

Text S1 Supporting methods and results.

(doc)

Figure S1 Schematic of the sequence tag mapping
approaches employed in this study. Sequence tags were

first mapped to hairpin sequences deposited in miRBase version

16 using the SOLiDTM Small RNA Pipeline. A custom script

named the Mismatch and Multimapping Resolver (MMR) was

then applied to deal with tags with mismatches and those that

mapped to multiple miRNA loci (see Materials and Methods and

Text S1 for details). Tags not mapping to miRBase were then

mapped against the murine genome to mine for novel miRNAs.

(EPS)

Figure S2 Global upregulation of miRNA expression in
beating HL-1 cardiomyocytes. (A) HL-1 cardiomyocytes

progressed from a non-beating to a confluent, beating state over

four days in two biological replicate experiments. RNA was

harvested every 24 hours. (B) Normalized average miRNA

expression levels on day 1 and 4 were compared on an M/A

plot [71]. A miRNA expression threshold of .1000 tags per

library was applied to increase stringency and only changes in

expression exceeding two-fold in both replicates were considered

significant (green dots). Nine miRNAs across a range of expression

levels, which did not consistently show altered expression, were

further selected as a reference set (dots in dark blue). (C) The set of

reference miRNAs, as well as five that showed consistent down-

regulation by SOLiDTM sequencing were independently quanti-

fied by qPCR across all four time points of HL-1 cell culture.

Their expression level was further normalized to the average

expression of 5 snoRNAs and to the average expression at all time

points. Median expression of all miRNAs (denoted by a horizontal

bar) on day one was then set to one. qPCR data are generated

from one matched four-day time-course sample set. P-value was

calculated using the Wilcoxon Matched-Pairs Signed-Ranks Test.

(EPS)

Figure S3 Operational definition of miRNA features
used in interpreting miRBase-mapped tags. (A) All tags

with a 59 start position +/2 3 nt of a miRbase v16 annotated

miRNA were counted as evidence of expression of that miRNA.

These tags were considered as compatible with canonical Drosha

and Dicer dependent cleavage and thus referred to as ‘generic’

miRNA tags. (B) Well-phased sets of tags mapping to the arm of a

hairpin without a miRBase-annotated miRNA were classed as a

novel miR*. A subset of these was classed as ‘generic’ as they are

directly juxtaposed to a known miRNA. (C) Well-phased tag sets

that mapped to hairpins outside the boundaries of miRBase

annotated miRNAs were referred to as extreme isomiRs (e-miRs).

To provide a unique identifier we have added the number and any

other naming suffix from the known miRNA proximal to the new

species. (D) Well-phased tag sets mapping to sequences antisense

to known hairpin precursors and conforming to the criteria for

novel miRNA discovery displayed in Figure S8 were taken as

evidence for expression of antisense miRNAs (miR-as). We

generally marked miRNAs that were already annotated in

miRBase by open boxes, while filled boxes highlight novel species.

The color convention used is blue for miRNAs on the 59 arm,

green on the 39 arm. Discovery of novel miRNA species is

exemplified in panels B and C for the 39 arm of a hairpin;

equivalent scenarios apply for the 59 arm.

(EPS)

Figure S4 Sequence mismatches within generic miRNA
tags. Left, proportion of miRBase-mapped tags without (grey) or

with one or more mismatches at internal positions (blue) or at the

39 end (red). Top right, Split of internal mismatches across all

possible sequence changes. Note: an A-to-I editing event would
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manifest as an A-to-G substitution. Bottom right, 39 terminal

mismatches classed by non-templated base addition.

(EPS)

Figure S5 Features of the long miR-301a. (A) Predicted

structure of miR-301a as deposited in miRbase v18, with most

common isomiRs highlighted. Arrow shows asymmetrical loop,

which may add extra nucleotides to the mature miR-301a. (B)

miRNA Northern blot. Northern blots of HL-1 cell total RNA

were probed for miR-301a, as well as miR-133a and miR-145 for

reference (top panel). Length distribution of sequence tags for each

miRNA in the HL-1 cell dataset is also shown (bottom panel). (C)

miR-301a length distribution in other murine tissues. The

proportion of miR-301a 39 isomiRs of lengths 22–25 nt was

determined by reanalysis of Illumina datasets deposited in

miRbase v18 [22,42]. Tissues with appreciable expression of

miR-301a are shown along with our heart and HL-1 datasets.

(EPS)

Figure S6 Nucleoside frequencies observed at hairpin
positions surrounding the termini of cardiomyocyte
miRNAs. Nucleoside frequency at positions either side of the

presumed processing sites was determined for each miRNA

isomiR variant. For each miRNA, isomiR variant data were

weighted according to their tag frequency; results were then given

equal weight and averaged across all miRNAs per hairpin arm.

For each sequence logo shown, the Y-axis denotes the frequency of

that position being a specific nucleoside, with the size of the letter

correlating to its frequency. Analysis was performed after

separating miRNAs into (A,B) major/minor species derived from

a given hairpin ($80% or #20% of tags, respectively), for (C)

miRNAs with symmetrical expression (tags .20% but ,80%) and

(D) for all miRNAs together. Background nucleotide frequency

(top right) was calculated as a combination of all eight positions.

Significant over-representation (#) and underrepresentation (*) are

shown (p,0.01, two tailed t-test with Welch correction).

(EPS)

Figure S7 Structural features of precursor hairpins
surrounding miRNA termini. The structural features of 229

precursor hairpins at miRNA termini were determined by visual

inspection of the most common isomiR overlaid onto the predicted

hairpins deposited in miRbase v18. The most common structures

surrounding the presumed (A) Drosha and (B) Dicer cleavage sites

are shown (cleavage positions based on 59 start of miRNAs). The

capital Nx denotes a nucleotide directly adjacent to a cleavage site.

The lower case nx denotes the opposing nucleotide. For each

position only the major structural distortions are listed. For

internal loops .2 nt the arrow indicates the direction the

distortion extends. Analysis was performed on hairpins with at

least one miRNA $150 tags and canonically processed. Analysis

and display based on [37].

(EPS)

Figure S8 Schematic of the novel miRNA discovery
approaches employed in this study. Genome-matched tags

were size-selected and abundant well-phased tags set were

identified. RNA secondary structures were predicted for surround-

ing genomic sequences and interrogated for a series of features

characteristic of genuine pri-miRNA precursors (see Methods for a

detailed description of this pipeline). Only novel miRNA

candidates that complied with these criteria were shortlisted.

The naming convention used was miR-N (for novel) followed by a

serial number. Figure is 59 arm focused, but novel miRNA occur

on both arms of predicted hairpins.

(EPS)

Figure S9 Validation of novel miRNAs by high stringen-
cy PCR and melt curve analysis. PCR conditions were

designed and optimised to specifically detect several novel

miRNAs observed in the HL-1 dataset. RT-PCR was then

performed on HL-1 and HeLa total RNA, with total RNA from

S.cerevisiae and reactions containing HL-1 RNA but no reverse

transcriptase acting as specificity controls. Amplification curves are

shown to indicate relative abundance (though reactions are not

considered strictly quantitative), melting curves shown to indicate

specificity of the reaction (one peak indicates only one product is

formed) and gel electrophoresis images are shown to demonstrate

the single product is of the expected size.

(EPS)

Table S1 Tag counts for all miRNAs and their features
in the HL1 data set.

(XLS)

Table S2 Probes primers and mimic sequences.

(DOC)

Table S3 Known miRNA features detected in HL-1 cells.

(DOC)

Table S4 Most abundant generic miRNA tags in HL-1
cells.

(DOC)

Table S5 Examples of miRNAs with unexpected strand
bias in HL-1 cardiomyocytes that have different strand
bias in non-cardiac tissues{.

(DOC)

Table S6 Gene function analysis of the predicted targets
of miRNAs with abundant miR* or biased miRNA-5p
and -3p (.80% tags).

(DOC)

Table S7 miRNAs with a high proportion of 59 isomiRs
in HL-1 cardiomyocytes (.20% of tags), which have
low or variable 59 isomiR levels in non-cardiac tissues
{.

(DOC)

Table S8 Gene function analysis of the predicted targets
of 59 isomiR variants.

(DOC)

Table S9 miRNAs with internal sequence changes.

(DOC)

Table S10 miRNAs with .20% tags longer than 24 nt.

(DOC)

Table S11 Extreme isomiRs of known miRNAs.

(DOC)

Dataset S1 Alignment of tags derived from HL-1
cardiomyocytes with miRNA hairpins as listed in
miRBase version 16.

(HTML)

Dataset S2 Alignment of tags derived from murine
cardiac left ventricle with miRNA hairpins as listed in
miRBase version 16.

(HTML)

Dataset S3 Novel miRNAs identified in HL-1 cardiomy-
ocytes.

(HTML)
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