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Recent work has provided the detailed overall architecture and

subunit composition of three subtypes of rotary ATPases.

Composite models of F-type, V-type and A-type ATPases have

been constructed by fitting high-resolution X-ray structures of

individual components into electron microscopy derived

envelopes of the intact enzymes. Electron cryo-tomography

has provided new insights into the supra-molecular

arrangement of eukaryotic ATP synthases within mitochondria.

An inherent flexibility in rotary ATPases observed by different

techniques suggests greater dynamics during operation than

previously envisioned. The concerted movement of subunits

within the complex might provide means of regulation and

information transfer between distant parts of rotary ATPases

thereby fine tuning these molecular machines to their cellular

environment, while optimizing their efficiency.
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Introduction
Rotary ATPases are molecular motors that couple ATP

turnover with ion translocation through membranes and

are central to biological energy conversion as well as being

integral to the acidification of intracellular compartments

[1–3]. They are found across all known forms of life and,

while they share similar overall architectures, they can be

classified into several sub-types depending on their cel-

lular function and taxonomic origin (Figure 1).
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Eukaryotes contain both ATP synthases (F-type) [4] and

vacuolar ATPases (V-type) [3] that are specialized in

opposite functions (Figure 1a,b). F-type ATP synthases

are found within mitochondria or chloroplasts where they

act as biological power converters [2]. Utilizing the poten-

tial energy from transmembrane electrochemical proton

gradients generated by photosynthesis or respiration, they

synthesize the biological energy carrier, adenosine tri-

phosphate (ATP) in an endergonic reaction. V-type

ATPases on the other hand are biological rotary pumps

that use energy derived from ATP hydrolysis to pump

ions across membranes, thereby building up electroche-

mical potential gradients used as energy sources for

secondary transport [3]. Most bacteria contain only one

type of rotary ATPase, either a bacterial F-type ATPase/

synthase (Figure 1c) or a bacterial A/V-type ATPase/

synthase (Figure 1d), and these are believed to be bi-

functional [5,6]. The same is true for archaea that contain

an A-type ATPase/synthase [7] (Figure 1d) that is closely

related to the bacterial A/V-type enzymes and, to a lesser

extent, to eukaryotic V-type ATPases.

All types of rotary ATPases contain two motors, R1 and

RO, that are coupled with one another, one motor being

able to drive the other [8]. This is achieved by connecting

each motor with central and peripheral stalks (Figure 1).

The soluble R1 motors contain three nucleotide-binding

sites for ATP turnover, whereas the RO motors are mem-

brane bound and translocate protons or other cations.

Rotary ATPases can be thought of as being made up of

‘machine elements’, comparable to those of man-made

engines [1,9]. ATP synthases work analogously to a

hydroelectric generator, where water from a storage reser-

voir has the propensity to flow down hill (gravitational

potential), thereby generating torque in turbines that is

converted into electricity. Protons likewise have the

potential to flow from high to low concentration (electro-

chemical potential, also called ‘proton motive force’ or

pmf) thereby generating torque in RO. To translocate

through the membrane, protons are believed to bind

sequentially to subunits of a ring, which rotates within

the membrane. This biological turbine is attached to a

central stalk that enables mechanical energy to be trans-

ferred between each motor, analogous to the way a

crankshaft transfers torque. Indeed the central stalk is

curved like a crank and pushes catalytic subunits in R1

into different conformations to provide the correct chemi-

cal environment for ATP synthesis from its building

blocks, ADP and inorganic phosphate, Pi.
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Schematic diagrams of rotary ATPase subtypes and their major subunits. (a) Eukaryotic mitochondrial F-type ATP synthase (containing one peripheral

stalk, PS) synthesizes ATP using energy derived from a transmembrane proton gradient generated by respiration. (b) Eukaryotic V-type ATPases

(containing three PS) are situated in intracellular membranes using energy from ATP hydrolysis to pump protons across membranes. (c) Bacterial F-

type ATPases/synthases (containing one PS) synthesize ATP, but can revert and act as proton pumps if ATP levels are high. (d) Bacterial V-type and

archaeal A-type ATPases share the same architecture and contain two peripheral stalks. Like bacterial F-type ATPases they are believed to be bi-

functional. Nucleotide binding subunits are shown in greys, other stator subunits in blues, rotor subunits in reds and protons as white spheres.
In the reverse reaction (ATPase), the R1 motor works in

much the same way as an internal combustion engine.

The pseudo-threefold ATPase engine sequentially pro-

vides different chemical environments for ATP binding
www.sciencedirect.com 
(fuel intake), followed by hydrolysis (power-stroke), and

final release of the products, ADP and Pi (exhaust gas

release), so ATP can be bound again [2,4,10]. The per-

ipheral stalk(s) act as stators and hold the two motors
Current Opinion in Structural Biology 2014, 25:40–48
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Figure 2
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Composite models of rotary ATPases derived from fitting X-ray structures into EM densities. (a) T. thermophilus bacterial A/V-type ATPase/synthase

(EMD: 5335 [14��] and pdbs: 3j0j [14��], 3rrk [54] and 1c17 [55]). (b) Yeast V-type ATPase (EMD: 5476 [15�] and pdbs: 3a5c, 3aon, 1r5z, 2bl2, 4dl0, 3rrk,

1u7l and 1ho8 [1]). (c) Bovine mitochondrial F-type ATP synthase (EMD: 2091 [16�] and pdb: 4b2q [11��]). (d) Yeast mitochondrial F-type ATP synthase

dimer (EMD: 2161 and pdb: 4b2q [11��]), angles between ATP synthase dimers and cristae shown as u and f respectively. Color scheme as in Figure 1.
relative to one another so that the energy can be trans-

ferred. Without this key component, no torque would be

transferred, as the catalytic subunits would simply follow

the rotation of the crankshaft.

Over the past two years, a wealth of new insights has come

from a range of complementary techniques; electron cryo-

tomography (ECT) has provided low-resolution pictures

of mitochondrial ATP synthases in situ [11��,12��,13�],
while cryo-electron microscopy (cryo-EM) reconstruc-

tions of all three types of rotary ATPases have reached

nanometre resolution [14��,15�,16�]. These reconstruc-

tions have not only provided envelopes describing the

overall architecture of the motors, but in the case of the

Thermus thermophilus A/V-ATPase/synthase (TtATPase),

has also shown what could possibly be evidence of the

proton path through the membrane [14��]. Detail to

atomic resolution of the peripheral stalks has provided

insight into their function and dynamics within the rotary

ATPase during operation [17,18��,19�,20].

Overall architecture of rotary ATPases — a
new level of detail and a first glimpse of the
proton path
Advances in electron microscopy methods and analysis

have provided 3D EM reconstructions of all three classes

of rotary ATPases at or near the nanometer scale

[14��,15�,16�]. The reconstructions provide a detailed

envelope into which atomic resolution crystal structures

can be fitted, providing composite models of the intact

complexes (Figure 2).
Current Opinion in Structural Biology 2014, 25:40–48 
The reconstruction of the TtATPase to 9.7 Å resolution

[14��] (Figure 2a) has yielded the greatest detail of any

intact rotary ATPase to date, providing enough structural

detail to suggest that the two half channel model of proton

translocation proposed by Junge and Vik is correct [21,22].

In this model, a ring of subunits (termed proteolipids)

within the RO motor carries out rotational diffusion relative

to the stator by sequentially binding protons [23]

(Figure 3a). An essential and universally conserved acidic

residue on each subunit must be deprotonated when facing

a positive residue on the stator, but must be protonated

when facing the hydrophobic lipidic membrane [24,25]. It

is believed that there are two non-collinear ‘half’ channels

for protons from either aqueous phase leading to the acidic

residue on the ring. The positive residue on the stator

prevents short-circuiting of the proton flow, as well as

giving directionality to the motor by attracting the oppos-

ing negative charge. The high-resolution reconstruction of

the TtATPase provides structural evidence that the pro-

teolipid ring is exposed to the solvent on either side of the

ring, although there is insufficient detail yet to visualize the

exact proton path (Figure 3b).

In the reconstruction, eight transmembrane helices can

be resolved for the stator subunit as previously predicted

[26], and 24 for the 12 proteolipid subunits. The stator

subunit helices divide into two bundles, each containing

four helices (Figure 3b). One bundle appears almost

perpendicular to the membrane and contacts a single

proteolipid near the middle of the membrane. The

other bundle appears tilted and contacts the adjacent
www.sciencedirect.com
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Figure 3
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The RO motor and models for the generation of rotation, with the proteolipid ring in red and the RO stator subunit in blue. (a) Schematic model of the

‘two half-channel’ hypothesis (adapted from [56]). (b) AO portion of the T. thermophilus bacterial A/V-type ATPase/synthase (EMD: 5335 [14��]), with

the RO stator subunit four helix bundles shown in light and dark blue. (c) Schematic model of the FO motor 2D EM density (adapted from [27�]). (d, e and

f) Specific sequence of steps in the proposed mechanism; (d) opening and deprotonation, (e) rearrangement of Glu-Arg ion pair and reprotonation, (f)

rotation (adapted from [28]).
proteolipid closer to the periplasm. This arrangement

places the two proteolipids in distinct chemical environ-

ments and establishes the conditions necessary for a two

half-channel model of proton translocation.

Cryo-electron crystallography of 2D crystals of the Ilyo-
bacter tartaricus FO complex yielded a projection map at a

resolution of 7.0 Å [27�]. In contrast to the eight trans-

membrane helices found in the AO stator, only seven

transmembrane helices were observed in FO (Figure 3c).

However, four of these helices form a bundle, reminiscent

of that found in the AO counterpart, suggesting at least

some similarity in function between the two subtypes. To

the side of this bundle, a fifth helix contacts the proteo-

lipid ring and two other helices can be resolved, albeit

weakly. Thus, despite an arguably conserved ion translo-
www.sciencedirect.com 
cation mechanism in different rotary ATPase subtypes

[28,29], the rotor–stator interface architecture appears to

vary.

The work on the proton path has been supplemented by

multiple crystal structures of proteolipid rings from a

range of organisms [28–31], which have provided atomic

detail of how the ions bind to specific residues in the ring.

Dicyclohexylcarbodiimide (DCCD) specifically inhibits

ATPase activity and proton translocation by reacting with

the conserved acidic residues of the rotor ring. In the

crystal structures of the Spirulina platensis and Enterococcus
hirae rotor rings, DCCD binds Glu62 and Glu139 respect-

ively [28,29]. By controlling the pH during crystallization

of the S. platensis and Saccharomyces cerevisiae rings [31],

the authors were able to show that the glutamate adopts
Current Opinion in Structural Biology 2014, 25:40–48
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an alternate rotamer depending on whether the residue is

protonated or not (Figure 3d–f).

In addition to structural studies of the isolated rotor ring,

mass spectrometry has been employed to identify mem-

brane lipids associated with the native intact complex

[32��,33�]. The rotor ring was found to bind specific lipids

that do not represent the predominant lipid species found

in the host membrane, suggesting that they are selected

via high affinity binding to RO. The function of these

lipids is still unknown; however they may fill gaps in the

protein surface to facilitate smooth rotation within the

membrane as well as sealing to prevent proton leaks in

analogy to the functions of machine oil [1,32��].

ATP synthase dimers — complexes of life and
death
ECT of intact mitochondria has shown that mitochondrial

cristae are shaped by lines of dimers of ATP synthases

[11��,34] (Figure 2d). Moreover, other respiratory com-

plexes appear to be located in close proximity to the ATP

synthase, forming supercomplexes [12��,35,36]. Placing

these respiratory complexes near the vertices of the

cristae generates the proton gradient next to where it is

needed while the vertices themselves might enhance the

steepness of the gradient (see [37] for an explanation).

Interestingly, the angle between the ATP synthase com-

plexes within the dimers (reminiscent of the angle be-

tween rows of cylinders in a V-type car engine) has been

shown to vary depending on species [12��], ranging from

�808 in bovine mitochondria to �1158 in potato. A larger

angle, u, between ATP synthase dimers will lead to a

narrower cristae angle, f (Figure 2d). This will increase

the steepness of the electrochemical potential gradient

across the membrane [37], which in turn might be an

explanation for the different proton to ATP ratios found

in different species. Although all R1 motors turn over

three ATP molecules per 3608 cycle, the number of

proton translocating subunits in RO has been shown to

vary between species with eight subunits in bovine

mitochondria [38], 10 in yeast mitochondria [39] and

up to 15 in cyanobacteria [40]. Similar to the relative

number of teeth in a gear, a larger number will make the

RO motor stronger and more difficult to reverse (as it is

proton driven), while a smaller number will lead to an

earlier stall and to the R1 motor dominating (as it is ATP

driven) [1,2,41,42]. A larger u angle however, will increase

the potential energy of each proton, resulting in such ATP

synthases operating with a smaller proton to ATP ratio,

like those observed in mammalian mitochondrial ATP

synthases [38].

As well as shaping the cristae, the dimerization of ATP

synthase has recently been shown to be important in cell

ageing and death. By observing the mitochondria of an

organism as it ages, it has been shown that the ATP

synthase dimers appear to dissociate from one another
Current Opinion in Structural Biology 2014, 25:40–48 
leading to the collapse of cristae, rupture of the mito-

chondria and eventually death of the cell [13�]. And on a

related note, the mitochondrial permeability transition

pore, a key effector of cell death, has been suggested to be

formed from dimers of ATP synthase [43�].

The peripheral stalks — more than mere
scaffolds
To prevent rotation between the stationary parts of the R1

and RO motors, the two motors need to be connected by

one or multiple peripheral stalks. However, recent studies

have highlighted that these domains may perform more

than just a structural role and atomic detail of the com-

plexes has uncovered a unique protein fold that facilitates

its functions.

Two crystal structures of the peripheral stalk from

TtATPase, PS1 and PS2, have been solved in different

crystal forms to 3.1 Å [17] and 2.25 Å [18��] resolution.

These show an elongated heterodimeric complex that

contains two distinct domains; a 140 Å long coiled coil

and a globular head (Figure 4a,b). Fitting of this com-

plex into the 3D reconstruction of the intact complex

showed that the globular head attaches to the A1 motor

and the coiled coil spans the gap between the motors,

attaching to the AO stator subunit (Figure 4c). The

coiled coil domain is unusual, in that it coils in a

right-handed manner rather than the common left-

handed one. This arrangement results in almost parallel

helices in the region that spans the space between the

AO and A1 motors. A consequence of having almost

parallel helices is that the peripheral stalk coiled coil

is more flexible in the direction that it is thinnest (the y
direction in Figure 4d), owing to the flexibility being

proportional to the cross-sectional area. This is intri-

guing with regard to the intact complex, as the parallel

helices are aligned such that they are most rigid in the

direction of rotation (Figure 4c,e), consistent with this

rare protein fold having evolved to provide the greatest

rigidity in opposing the torque within the intact

enzyme, while it is flexible in the perpendicular direc-

tion to accommodate conformational changes in the

nucleotide binding subunits [18��].

The flexibility of the parallel helices can be seen when

the two crystal structures are compared to one another

(Figure 4a,b), again showing flection in the thinnest

direction. The two conformations observed are related

to one another by their two lowest energy normal modes.

The ability of the complex to flex in such a manner may

allow the stalks to follow movements of the catalytic

subunits during the rotary catalytic cycle, preventing

the need to break and re-form chemical bonds that hold

the complex together thereby optimizing efficiency. In

addition, the concerted movement of subunits may pro-

vide a means of information transfer between distant

parts.
www.sciencedirect.com
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Figure 4
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Peripheral stalk structures and their bending properties. (a) and (b) Crystal structures of the peripheral stalk from T. thermophilus bacterial A/V-type

ATPase/synthase, pdb 3k5b [17] and 3v6i [18��] respectively. (c) Composite model of the intact T. thermophilus bacterial A/V-type ATPase/synthase

using same colors as Figure 1. (d) Cross-section of two parallel helices on Cartesian co-ordinates, the cross-sectional area is smaller in the y direction,

resulting in greater flexibility. (e) Schematic diagram showing how the parallel helices of the peripheral stalks are positioned to provide greatest rigidity

in the direction of rotation.
Crystal structures of the yeast V-type peripheral stalk

complex have also been solved in two different confor-

mations that likewise show a bending over the length of

the right-handed coiled coil [19�]. In contrast to the

TtATPase peripheral stalk this is accentuated by ‘skips’

in periodicity of the right-handed coiled coil sequence

repeats and a short random coil ‘bulge’ just below the

globular head adding greater flexibility to these regions.

Fitting of both structures into 3D EM reconstructions of

the intact eukaryotic V-ATPase [44] indicates that sig-

nificant bending must occur during assembly of the

complex. Taken together, this suggests a possible

‘spring-loading’ mechanism during assembly of the

eukaryotic V-ATPase complex, which puts the intact

complex under strain so that it is primed to disassemble

when signalled to do so. The spring-loading mechanism is

supported by the observation that the assembly of eukar-

yotic V-ATPases requires the protein RAVE, suggesting

that this chaperone may provide the energy needed to

incorporate the peripheral stalks into the V-ATPase in a

strained conformation. However, recent EM studies of

the isolated V1 motor from Manduca sexta show little
www.sciencedirect.com 
structural rearrangement when compared to the activated

complex [45,46], leaving this matter unresolved.

Lastly, the 18 Å resolution EM map of the F1FO ATP

synthase from Bos taurus mitochondria [16�] shows that

the bovine peripheral stalk crystal structure, which shares

little conservation in sequence and subunit composition

to the A/V-type peripheral stalks, needs to be bent in a

similar direction to the TtATPase peripheral stalk struc-

ture in order to fit the EM density, indicating that the

dynamics of peripheral stalks are a common feature of all

rotary ATPase subtypes. Similar to the pushrods in a car,

peripheral stalks might be responsible for synchronizing

distant parts of rotary ATPases.

Conclusions
Electron microscopy, mass spectrometry and X-ray crys-

tallography are complementary techniques that provide

different sets of information to solve molecular 3D

puzzles; X-ray crystallography provides high-resolution

pictures of subunits akin to the pieces of the puzzle, mass

spectrometry provides an inventory list of different types
Current Opinion in Structural Biology 2014, 25:40–48
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of pieces and electron microscopy supplies the overall

outline of the intact complex.

Improvements in these techniques have provided more

complete pictures of all three subtypes of rotary ATPases

than ever before, resolving intact complexes to the nan-

ometer scale, giving complete inventory lists of subunits,

ligands and lipids that can then be ‘puzzled’ together to

provide models of the complexes as a whole [1]. Additional

information from crystal structures in different confor-

mations supported by molecular dynamics provides a

revised and more dynamic picture of peripheral stalks,

suggesting they are more flexible in one direction than

in the other and that their flexibility increases from N-

terminus to C-terminus as dictated by their right-handed

coiled coil architecture [18��]. This inherent flexibility

exactly complements a wobbling motion of the intact

rotary ATPase caused by a tilt in between the central axis

through the R1 ring and the central axis through the rotor

ring in RO as observed independently in X-ray structures,

EM and single molecule microscopy [18��,47–49]. The

concerted movement of all subunits [30,50,51] might

increase efficiency, as chemical bonds that stabilize sub-

unit interfaces within the stator remain unchanged. It also

suggests novel forms of information transfer within rotary

ATPases providing potential mechanisms for regulation

and fine-tuning to specific cellular environments. The

peripheral stalks thus emerged as key players in infor-

mation transfer and synchronization of rotary ATPases, in

analogy to the pushrods in engines. Interestingly, they also

represent the most divergent parts of rotary ATPases both

in terms of sequence identity and stoichiometry and pro-

vide a simple means for their classification (Figure 1); all

known F-type ATPases contain one peripheral stalk, pro-

karyotic V-type and A-type ATPases contain two and

eukaryotic V-type ATPases contain three. The eukaryotic

V-type ATPases therefore potentially provide the maxi-

mum amount of regulation as the three peripheral stalks

connect all three nucleotide-binding subunits with one

another and with the ion channel. This is even further

enhanced by the large number of organ and organelle

specific isoforms of stator subunits and potential post-

translational modifications in eukaryotes [33�,52,53].

Future work will undoubtedly provide more detailed

insights into the synchronization and regulation of these

intricate molecular machines and how the structure and

flexibility of individual subunits are choreographed into

one unified entity.
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The 9.7 Å resolution EM reconstruction of the Thermus thermophilus
ATPase is currently the highest resolution structure to be obtained for
any intact rotary ATPase. Two bundles of a-helices that can be vizualized
in the transmembrane ion channel are proposed to form two half-chan-
nels for proton entry and exit, supporting the current model of proton
translocation.

15.
�

Benlekbir S, Bueler SA, Rubinstein JL: Structure of the vacuolar-
type ATPase from Saccharomyces cerevisiae at 11-A
resolution. Nat Struct Mol Biol 2012, 19:1356-1362.
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