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Abstract: Congenital heart disease places a significant burden on the individual, family 

and community despite significant advances in our understanding of aetiology and 

treatment. Early research in ischaemic heart disease has paved the way for stem cell 

technology and bioengineering, which promises to improve both structural and functional 

aspects of disease. Stem cell therapy has demonstrated significant improvements in cardiac 

function in adults with ischaemic heart disease. This finding, together with promising case 

studies in the paediatric setting, demonstrates the potential for this treatment in congenital 

heart disease. Furthermore, induced pluripotent stems cell technology, provides a unique 

opportunity to address aetiological, as well as therapeutic, aspects of disease. 

Keywords: congenital heart disease; hypoplastic left heart; inducible pluripotential stem 

cells; bioengineered myocardium 

 

1. Clinical Consideration of Congenital Heart Disease 

Treatment of congenital heart disease (CHD) occupies a unique place in the human history of 

cardiovascular medicine. This dates back to the pioneering development of early heart-lung machines 

in the early 1950s. Subsequent development of this technology allowed correction of simple heart 

defects in childhood that would have otherwise led to early death, with further evolution permitting 

routine adult cardiac surgery for ischaemic and valvular heart disease, now accepted as  

“everyday surgery”. 

In modern CHD clinical research, both patients and practitioners look forward to similar paradigm 

shifts in treatments to address some of the inadequacies of current management that continue to impact 

individuals, families and workplaces. There are now more adults with congenital heart disease than 

children in advanced societies [1] and whilst many are effectively “cured” with childhood intervention 

(such as closure of infant ventricular septal defects) others have an ongoing need for close medical 

management including those with single ventricle physiology [2] or who require repeated surgeries, for 

example, those who will need replacement of right ventricle to pulmonary artery conduits. 

The burden of disease is significant and has physical, psychological and economic impacts [3].  

CHD occurs in ~7–8 in 1000 live births [4,5]. A subset of CHD is invariably lethal around birth unless 

treated, and these cases present significant challenges with respect to surgical reconstruction, critical 

care patient management, long term follow up and the ethics of focusing major health resources onto 

few individuals. CHD successfully treated in childhood carries a strong likelihood of complications in 

later life and a life-long emotional and financial burden for affected families [6]. The dramatic 

reduction in mortality after surgical correction of CHD in recent years has been accompanied by 

increasing recognition of poor neurological outcomes in survivors of CHD, which may involve genetic 

factors, abnormal brain perfusion and development in utero and/or susceptibilities to hypoxia resulting 

from CHD, or other environmental parameters such as anesthesia [7,8]. A key bottleneck in patient 

care is the transition from childhood to adulthood, where patients may be lost to follow up. 

Childhood treatment is very costly and paediatric cardiac surgery is the most common reason for 

admission to paediatric intensive care. Over the last three decades, surgery has become more complex 
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and is generally performed earlier—often during the neonatal period—to gain better functional 

outcomes in the long term. A diagnosis of CHD is associated with important psychosocial dysfunction 

with many parents reporting symptoms equivalent to post-traumatic stress disorders, high levels of 

parental depression and ongoing anxiety with similar problems observed in adolescent and adult 

survivors [9]. 

Addressing causation of CHD has been a high priority over the last decades, particularly for the 

minority of cases that show familial inheritance. Classical linkage analysis has been the mainstay 

methodology underpinning these studies. Studies on the interaction between genetic and environmental 

factors have revealed clinically important perturbations of the highly conserved and tightly regulated 

developmental cardiogenic processes but only in a smaller number of patients with single gene 

disorders and associated syndromes [10]. In the new era of genetic research, genome wide association 

studies have identified areas of common chromosomal variation associated with the most common but 

simple form of CHD, secundum ASD [11], but with relatively low odds ratios and limited clinical 

application. Massively parallel sequencing of the whole exome [12] and its more targeted  

approaches [13] have dramatically accelerated the disease gene discovery pipeline, yielding answers 

for additional families. Polygenic contribution, variable penetrance and variation in phenotype present 

ongoing challenges. 

On the horizon is a new era of stem cell-based therapies and bioengineering, and it is hoped that 

these approaches can help reduce the burden of CHD. In broad terms, stem cell and bioengineering 

approaches may make contributions to: (i) improving structural solutions in repair of malformed hearts; 

(ii) improving the function of repaired hearts and their circulation; and (iii) facilitating modelling of 

CHD to advance our understanding of its molecular underpinnings. These will be discussed further below. 

1.1. Structural Solutions 

In paediatric heart surgery, there is a need to address the current demands of the circulation as  

well as future growth. Many forms of advanced neonatal surgery involve utilisation of the existing  

ventriculo-arterial connection as the systemic outflow (usually through a large ventricular septal 

defect) and creation of an extra-anatomic right ventricle to pulmonary artery conduit. Repairs of 

pulmonary atresia with VSD, and truncus arteriosus are examples that utilise this approach. Usually 

either a human cadaveric allograft (homograft) is used for this purpose, or a bovine jugular venous 

conduit, combining a “tube” with a valve. A larger group of patients, those with tetralogy of Fallot, 

may require pulmonary valve replacement, currently also utilising allograft or xenograft tissue valves. 

Whilst effective in the short term, the long term functional outcomes of such approaches are poor, 

with all requiring replacement within 3 to 8 years depending on the size of the patient, patient growth, 

host response to the allograft or xenograft and other factors including the occasional development of 

endocarditis. Supplies of both types of conduit are limited and are associated with significant expense. 

Allosensitisation to donated human products can also be a problem if transplantation is later required. 

Percutaneous approaches are now available that are suitable for some patients, particularly in the 

adolescent group, but as xenoproducts they remain susceptible to immune mediated structural valve 

deterioration and infection. 
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Many biologic approaches have been attempted to improve longevity of the implanted valve, 

including decellularising and re-seeding allograft tissue with host endothelial cells [14]; however this 

approach has not yet been shown to produce meaningfully increased graft survival or somatic  

growth [15]. Generation of a vascularised matrix that can then be seeded and shaped [16] is emerging 

as an approach that avoids the need for allograft material but will require complex 3D construction to 

simulate tube and valve formation. Patients undergoing the Fontan operation as a final step in 

construction of a cavo-pulmonary connection have been managed with tissue engineered vascular 

grafts to convey the inferior vena caval blood to the pulmonary arteries [17]. This is valuable proof of 

principle work yielding understandings of optimal matrix construction, albeit that no significant 

growth is presently required of this connection using current surgical approaches [18]. Electrospinning 

and microfabrication techniques to engineer scaffolds that support the growth of valvular interstitial 

cells and mesenchymal stem cells [19] offer a way to customise the size and shape of the replacement 

tissue, perhaps guided by 3D imaging of the planned recipient. Repopulation with engineered  

patient-specific cells utilising adult stem cell or induced pluripotent stem cell technologies would seem 

logical for the future [20,21]. 

1.2. Stem Cells to Improve Cardiac Function 

There is extensive and ongoing work to support the use of stem cells in recovery from myocardial 

infarction in adult populations, particularly using bone marrow derived cells, albeit that the rationale 

for such studies is under intense scrutiny [22]. Regeneration of scar tissue into functional myocardium 

and improved ventricular performance are the aims of such interventions with recent promise [23–25].  

In paediatric cardiology the aim would be the optimisation of ventricular performance for children 

subjected to volume or pressure loads, usually after correction of the structural abnormalities that 

promote ventricular dysfunction. There is particular interest in the subpopulation of patients with a 

functional single ventricle, especially those who have undergone complex single ventricle surgery such 

as the Norwood operation for hypoplastic left heart (HLH) [26]. 

Typically HLH patients would be infants after the first two stages of surgery involving long periods 

of cardiopulmonary bypass and shorter periods of planned and “protected” myocardial ischaemia.  

An increased volume load related to the shunt providing pulmonary blood flow after the initial 

operation adds to the work that the single right ventricle must perform, which is already at an anatomic 

disadvantage being a morphologic right ventricle working against systemic vascular resistance. It is not 

uncommon for the function of such ventricles to deteriorate, particularly after second stage surgery, 

promoting atrioventricular valve regurgitation which positively reinforces the ventricular dysfunction. 

Relative coronary insufficiency [27] or a primary myocardial process may contribute. Structural 

abnormalities have been identified in single right ventricular tissue [28]. Ventricular performance is a 

major determinant of suitability for the last stage of the single ventricle pathway, Fontan completion 

(total cavo-pulmonary connection) as well as performance and survival with the Fontan circulation. 

In parallel with studies in animal models [29,30], various approaches to ventricular support using 

stem cell technology are being trialled in CHD patients with differing donor cell origins and modes of 

administration, as outlined by Tarui et al. [31]. A number of stem cell populations have been described 

in the mammalian heart using cell surface markers and various functional assays including colony 
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formation, and growth and differentiation potential in vitro and in vivo [22] Cardiosphere-derived cells 

are among the first populations to be trialled in humans for ischaemic heart disease in adults [32,33]. 

They are heterogeneous cell preparations derived from the 3D cellular clusters (cardiospheres) that can 

be readily established from heart biopsies, and which are thought to provide a harbour (niche) for cells 

with stem or progenitor cell properties during in vitro culture. Cells derived from atrial tissue and 

administered via the intracoronary route at cardiac catheterisation, have been trialled in patients with 

HLH in Phase I and Phase II clinical trials, with other groups utilising umbilical cord [34] and bone 

marrow derived cell fractions [31]. Phase 1 trials have indicated the safety of this approach with some 

improvement in right ventricular systolic function evident, and Phase 2 studies are underway. In the 

recently reported Phase 1 study of autologous cardiosphere-derived cells delivered via the 

intracoronary route [35], no safety concerns were raised and an improvement in right ventricular 

function was observed at 18 months compared to controls. The effect size is encouraging and clinically 

relevant (a 10% increase in right ventricular ejection fraction). The use of autologous cells represents a 

clear advantage in this environment. Similar approaches may be of benefit in paediatric heart failure 

presenting as dilated cardiomyopathy. 

Uncertainty persists about the mechanism by which the stem cells might induce functional 

improvement. In ischaemic disease and cardiomyopathy, paracrine activation of local regenerative 

pathways may significantly contribute to the improvements in performance, while tissue replacement 

due to stem cell deployment does not seem to be a dominant feature in animal studies [36]. 

Cord blood stem cells have been shown to engraft and augment right ventricular function in an 

ovine model in the presence of increased workload [30]. A similar model of right ventricular 

overloading in rats demonstrated improved diastolic dysfunction and suppression of ventricular 

fibrosis following skeletal myoblast transplantation (Hoashi et al. 2009). Case reports demonstrate 

improvement in ventricular function following intracoronary delivery of bone marrow derived cells in 

children with terminal cardiomyopathy [37,38] as well as ventricular failure following surgery for 

HLH [39]. In HLH, adaptation of the right ventricle to increased work load may require cellular 

proliferation beyond the capability of the intrinisic regenerative systems. The capacity for autologous 

modified cells in CHD to influence cardiac performance or myocyte proliferation may be diminished 

by the persistence of genetic characteristics that caused or contributed to abnormal development during 

primary cardiogenesis. However, the development of refined cell therapy approaches may support the 

growth and development required. 

2. Induced Pluripotent Stem Cells to Study Causation in Congenital Heart Disease 

Induced pluripotent stem cells (iPSC) can be created from virtually any somatic cell, most 

commonly from dermal fibroblasts [40]. These pluripotent cell types are created by the reprogramming 

of adult cells to a pluripotent state, giving them the ability to differentiate into all cell types of the 

human body, including cardiomyocytes (see Figure 1) as well as smooth muscle, endothelial and 

epicardial cells, the highly specialised cell types of the heart. This makes iPSC an invaluable resource 

for the study of CHD. The technology offers the unique opportunity to create human models of disease 

and development in a patient-specific context that incorporates the individual clinical features of the 
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disease. Additionally, iPSC provide material to study the earliest time points in development, 

previously difficult due to restrictions on the availability of primary human tissue for study. 

iPSC are playing an increasing role in personalised medicine, specifically in disease profiling of 

both rare and common diseases, and in the design of personalised therapies. Due to the recent success 

of directed differentiation protocols [41–43], iPSC allow the provision of lineage-specific stem and 

progenitor cells, as well as differentiated specialised cell types, for disease research, cellular  

therapies and tissue engineering. However, before iPSC are used as a source of biologic material for 

clinical application, concerns regarding the oncogenic effect of retained transgenes [44] and  

trans-differentiation need to be addressed [45]. Until then, iPSC are being increasingly used as a test 

bed to study development and disease mechanism. In the cardiac area, iPSC approaches have been 

successful in assessing the functional disorder associated with LEOPARD Syndrome [46,47] and 

various arrhythmias and cardiomyopathies [48,49]. 

 
(A) (B) (C) (D) 

Figure 1. (A) Patient-derived fibroblasts generated from a skin biopsy; (B) 

Undifferentiated iPSC colonies derived from patient-derived fibroblasts; (C) 

Cardiomyocytes derived from iPSC stained for the sarcomeric protein, cardiac troponin T; 

(D) Smooth muscle cells derived from iPSC stained for the cell scaffolding protein, alpha 

smooth muscle actin. 

iPSC are playing an increasing role in personalised medicine, specifically in disease profiling of 

both rare and common diseases, and in the design of personalised therapies. Due to the recent success 

of directed differentiation protocols [41–43], iPSC allow the provision of lineage-specific stem and 

progenitor cells, as well as differentiated specialised cell types, for disease research, cellular therapies 

and tissue engineering. However, before iPSC are used as a source of biologic material for  

clinical application, concerns regarding the oncogenic effect of retained transgenes [44] and  

trans-differentiation need to be addressed [45]. Until then, iPSC are being increasingly used as a test 

bed to study development and disease mechanism. In the cardiac area, iPSC approaches have been 

successful in assessing the functional disorder associated with LEOPARD Syndrome [46,47] and 

various arrhythmias and cardiomyopathies [48,49]. 

The approach is applicable to CHD particularly for cell-autonomous genetic disorders affecting, for 

example, the development or function of cardiomyocytes that can be modelled in 2D cell cultures or 

3D tissue constructs [50,51]. The approach has its obvious limitations with respect to modelling the 

complex tissue interactions necessary for organ structure, and the non-cell autonomous environmental or 

epigenetic influences on disease. However, rapid progress is being made on directed differentiation of 
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highly complex organoids and tissue layers from pluripotent stem cells [52,53], opening up vast new 

potential for therapies and modelling disease in this system. 

Using a patient-specific in vitro model of HLH is of particular interest to clinicians and scientists in 

the field attempting to reconcile the most common theory about the genesis of HLH—reduced 

transventricular flow and altered loading during development—with the heterogeneity in morphology 

as well as performance and decline observed in clinical cases [54,55]. An iPSC approach will 

complement the forward genetic approach being taken in mice [56]. While it has been suggested that 

HLH is essentially a severe form of valve malformation [56,57], some cases of HLH have a bulky LV 

and small but formed mitral and aortic valves, whilst others have barely a recognisable LV cavity. In 

combination these studies lead to speculation that a primary myocardial disorder is present in HLH, 

which likely predetermines the size and function of the ventricle and perhaps contributes to difficulties 

in later childhood in some with this condition. HLH is thought to have a high genetic component with 

complex inheritance, and is often associated with chromosomal abnormalities [58], which could 

impact on either valvular structures or ventricular cardiomyocyte growth and function, or both. Of the 

limited number of gene pathways implicated in HLH [58], the transcription factors NKX2-5 and 

NOTCH1 are known to be involved in both valvular and chamber development [59,60]. Both genes are 

also involved in aortic coarctation and bicuspid aortic valve, which exist within the spectrum of  

left-sided abnormalities that includes HLH at its most severe end [61–63]. 

Jiang and colleagues made iPSC from a single HLH patient and used them to derive cardiomyocytes 

by directed differentiation. They found a number of important primary cardiac defects including 

altered expression of key cardiac transcription factors, fewer beating clusters and reduced myofibrillar 

organisation, persistence of a fetal gene expression pattern as well as altered calcium transients and 

calcium handling [54]. Kobayashi et al. analysed single clones from three HLH patients, using a clone 

from a patient with bicuspid aortic valve and total anomalous pulmonary venous connection as a  

control [55]. They showed reduced expression of a number of cardiac transcription factors at late time 

points after induced cardiomyocyte differentiation, and associated changes in total chromatin marks—

di-methylation on histone H3 lysine 4, tri-methylation on histone H3 lysine 27, and acetylation of 

histone H3. Whether the reported changes are common to all cases of HLH remains to be seen. Such 

molecular phenotypes in patient specific iPSC-derived cardiomyocytes raises the possibility that 

disease modelling using the iPSC platform can provide both molecular diagnosis, as has been utilised in 

other cardiovascular diseases [64] and cell therapy into the future. 

Bioengineering Heart Muscle Using iPS Cells 

Investigations into the creation of functional heart tissue in vitro by tissue engineering techniques 

using donor cardiomyocytes is still in its very early stages [65–68]. While there are no clinical 

applications of the method to date, cardiac tissue engineering has seen progress over the last twenty 

years in all four of the elements central to this method: generation of donor cardiomyocytes, 

development of scaffold materials and control of cell survival, engraftment and growth with bioactive 

molecules (see recent reviews [51,69,70]). The latest developments include ex vivo and in vivo 

approaches that promote the growth of vascular and structural elements of cardiac tissue [71,72]. 

Growing cells as sheets has made possible the insertion of iPSC-derived cardiomyocytes into the 
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porcine heart for short term benefits [73]. Human embryonic stem cell-derived cardiomyocytes have 

been successfully engrafted in a non-human primate model of myocardial infarction [74]. This 

approach included development and application of mass culture techniques able to support production 

and delivery of a billion cells, selection of delivery techniques to optimise survival, such as a 

supportive hydrogel scaffold and application of a cocktail of preconditioning regimes. While this 

demonstrates potential for successful remuscularization of the human heart, issues with the incomplete 

maturation of cardiomyocytes, as well as arrhythmogenesis, need to be addressed. Contractile and 

vascularised human cardiac tissues have also been created from iPS cells [75,76] to provide long term 

survival and contractility, and 3D microtissues derived from iPSC also show promise for 

transplantation [77]. 

The ability to make whole functional hearts or bioengineered patches and conduits is challenging 

and has not been achieved for clinical use thus far. A form of bioengineered hearts have been 

configured using human iPSC-derived multipotential cardiovascular progenitors (MCP), which are 

likely similar to the earliest cardiac progenitors in heart development, by implanting them into a 

decellularized donor mouse heart [78]. The decellularized heart provides an excellent 3D structure for 

bioengineering whole organs or surgical implants as it utilises the natural extracellular matrix to 

promote cardiomyocyte proliferation, differentiation and function. The use of such native cardiac 

scaffold provides appropriate cues for engraftment, promotes rapid vascularisation and also avoids the 

biocompatibility problems of some artificial scaffold materials. MCP may offer an advantageous cell 

type for cardiac tissue bioengineering applications as they can potentially self-organise into structures 

containing cardiomyocytes, smooth muscle cells and endothelial cells, guided by extracellular matrix 

cues. However, before a whole heart can be bioengineered, a number of challenges remain, including 

safeguards surrounding the use of iPSC as discussed, as well as modulation of the immune response 

and, in CHD applications, finding ways that allow growth of the graft along with the patient’s heart. 

3. Conclusions 

Emerging technology in stem cells and bio-engineering may address major issues in congenital 

heart disease that limit lifespan and reduce quality of life for a significant number of children and 

adults. iPSC technology offers an opportunity to provide both molecular diagnosis and, in the future, 

tissue based therapy for some of the more complex reconstructive tasks in congenital heart disease. 
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