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Abstract  

Bioinformatics is the application of computational, mathematical and statistical techniques to solve 

problems in biology and medicine. Bioinformatics programs developed for computational simulation 

and large-scale data analysis are widely used in almost all areas of biophysics. The appropriate choice 

of algorithms and correct implementation of these algorithms are critical for obtaining reliable 

computational results. Nonetheless, it is often very difficult to systematically test these programs as it 

is often hard to verify the correctness of the output, and to effectively generate failure-revealing test 

cases. Software testing is an important process of verification and validation of scientific software, but 

very few studies have directly dealt with the issues of bioinformatics software testing. In this work, we 

review important concepts and state-of-the-art methods in the field of software testing. We also discuss 

recent reports on adapting and implementing software testing methodologies in the bioinformatics field, 

with specific examples drawn from systems biology and genomic medicine. 
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Introduction  
Nowadays, the use of computer programs is pervasive in many areas of biomedical sciences, especially 

in biophysics, genomics, proteomics, biotechnology and medicine. Rapid accumulation of high-

throughput data sets and an increasing focus on systems-level biological modelling increase the size 

and complexity of bioinformatics programs. This poses a great challenge in developing a good testing 

strategy to ensure the reliability of the design and implementation of these programs (Chen et al., 

2009). 

 

Nonetheless, the mechanism of scrutinising the software implementation of these programs is often far 

less comprehensive than the rigorous peer review process of the research articles that describe the 

programs’ applications (Check Hayden, 2015).  The potentially widespread problem of errors or 

misuses of scientific computing in biology and medicine is highlighted by recent news and 

commentary articles in top-tier journals such as Nature and Science (Joppa et al., 2013; Merali, 2010), 

and the problem could be attributed to a lack of proper software verification and validation (Alden and 

Read, 2013; Check Hayden, 2013). Incorrect computed results may lead to wrong biological 

conclusions and may misguide downstream experiments. In some cases, it may lead to retraction of 

scientific papers (Check Hayden, 2015). 

 

This problem is especially critical if these programs are to be used in a translational clinical setting, 

such as the analysis of whole genome sequencing data for identifying genetic variants in a patient’s 

DNA sample. In a genetic variant calling pipeline, one must have high confidence that the resulting 

variant calls have high sensitivity and specificity. A recent comparison of five commonly used variant-

calling pipelines demonstrates that the overall concordance of the variant calls was low (only 57.4% for 

single nucleotide variants and 26.8% for indel were concordant across the tested pipelines) (O’Rawe et 

al., 2013). The study found that a large portion of pipeline-specific variant calls could be validated by 

independent means, suggesting that each pipeline may be missing a lot of genuine genetic variants. 

This is particularly troubling, since although false positive variant calls can be distinguished from true 

positives through external validation, it is almost impossible to systematically distinguish false 

negatives from the vast amount of true negatives. 

 

Besides variant calling, the use of different variant annotation programs and transcript annotation files 

can also make a substantial difference in annotation results that are not commonly appreciated. 

McCarthy et al. recently examined the effect of using different transcript annotations and different 

variant annotation programs (McCarthy et al., 2014). They found that a non-trivial proportion of 

variants were annotated differently due to the use of different transcript annotations, or different 

programs. These troubling reports highlight the need to ensure that bioinformatics pipelines are 

subjected to better verification and validation. 

 

Software testing is an important step towards developing high quality software. It has been challenging 

for software developers, especially for developers of scientific software. In a recent survey of nearly 

2,000 scientists, it was found that in the past five years 45% of scientists spent more time developing 
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software. Nonetheless, less than half of them had a good understanding of software testing (Hannay et 

al., 2009; Merali, 2010). Performing proper software testing can be a time-consuming task, accounting 

for up to 50% of the total software development time (Myers et al., 2011). Therefore it is especially 

important to make sure we use effective and systematic software testing strategies.  

 

Many efficient software testing concepts and techniques have been developed over the years (Myers et 

al., 2011). Recently some groups, including ours, are beginning to adopt state-of-the-art software 

testing techniques to test scientific software (Baxter et al., 2006; Murphy et al., 2009a), including 

bioinformatics software (Chen et al., 2009). This review begins by outlining several key concepts in 

software testing, followed by discussing state-of-the-art testing techniques. Furthermore we review 

recent case studies that have applied various software test strategies to verify or validate bioinformatics 

software. 

 

Software testing definitions and concepts 

Software testing is the process of actively identifying potential faults in a computer program. Software 

testing can be static or dynamic. Static testing involves code review or inspection, whereas dynamic 

testing involves execution of the Program Under Test (PUT) using a given set of test cases. The rest of 

the review focuses on techniques for dynamic software testing. In dynamic software testing, the PUT 

can be thought of as implementation of a (mathematical or computational) function f(x) = y where x 

represents all valid input from the input domain and y represents all possible outputs. The goal of 

verification is to show that for a given implementation fPUT of PUT, fPUT(x) = f(x) for all possible x from 

the input domain. An input, xfailure is a failure-causing input if fPUT(xfailure)≠f(xfailure), and the PUT is 

deemed to contain a failure. A failure reveals an underlying fault in the implementation of the program, 

which in turn is a manifestation of an error introduced by the programmer (Lanubile et al., 1998). 

Common terminologies used in the software testing field are summarised in Table1. 

 

A PUT may fail because of incorrect implementation of the algorithm (i.e., the verification problem), 

or a mismatch between the algorithm and the intended behaviour (i.e., the validation problem). In other 

words, verification asks, “Are we building the software right?” whereas validation seeks to answer, 

“Are we building the right software?”. In addition to the limitations of the algorithm and 

implementation, failure can also be caused by incorrect expectations of the intended use of a program 

(Joppa et al., 2013), and runtime hardware or system failure. For the rest of this review, we mainly 

focus on methods that test the limitations of the implementation of the program, i.e., verification, but 

some ideas can be extended to validation as well. 

 

Why is bioinformatics software testing difficult? 

There are two main challenges in testing scientific software, especially bioinformatics software: the 

oracle problem and the test case selection problem.  
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The oracle problem In dynamic software testing, an oracle is a mechanism that decides if the 

output of the PUT is correct given any possible input. This mechanism is most useful if it is 

computationally simpler than the algorithm of the PUT. For example, for a program that implements a 

sorting algorithm with complexity of O(nlogn) for sorting n numbers, a possible oracle is to use a 

simple O(n) algorithm that traverses through the output sorted sequence to check the condition: the 

number in the (i+1)th position is always greater or equal to the number in the ith position. When such a 

test oracle exists, we can apply a large number and variety of test cases to test the PUT since the 

correctness of the output can be verified using the oracle. Without a tangible oracle, the choice of test 

cases is greatly limited to those special test cases where the expected outputs are known or there exists 

a way to easily verify the correctness of the testing results. In particular, an oracle problem is said to 

exist when: (1) "there does not exist an oracle" or (2) "it is theoretically possible, but practically too 

difficult to determine the correct output" (Chen et al., 2003; Weyuker, 1982). The existence of a 

practical oracle is essential when performing systematic program testing. Many bioinformatics 

programs suffer from the oracle problem since they often deal with large input and output data, and 

implement complex algorithms. Consider the situation of the molecular dynamic simulator or a short 

read sequence aligner. In both cases, the correctness of the output is very hard to verify.  

 

The test case selection problem In dynamic software testing, the main approach is to execute a set 

of test cases. If a failure is detected after executing a test case, a fault is identified. However, not all test 

cases can trigger a failure even if the PUT contains one or more faults. Therefore, an effective software 

testing strategy often aims to identify the smallest set of test cases that reveals as many different faults 

as possible. A test case is simply an input drawn from the input space of the software. Many 

bioinformatics programs have a large input space, and it is often computationally challenging to 

automatically survey this space efficiently to identify the most failure-revealing test cases. This is the 

test case selection problem. A good software testing methodology often makes use of some knowledge 

of the likely position of failure-causing input to select potentially fault-revealing input as test cases. 

 

Software testing methodologies 

Many methods have been developed in the software testing field. Many of them are designed to 

address the oracle and the test case selection problems. In the following sections we review several 

testing methods that are commonly used in the area of scientific computing, with a focus on their 

advantages and limitations. This is not an extensive list of methods, but rather a selection of methods 

that illustrate important concepts and considerations when developing a software testing strategy. 

These methods are illustrated in Figure 1 and summarised in Table 2. 

 

Special test case testing 

Special test case testing is perhaps the most widely used approach in software testing. In special test 

case testing, the program’s functionality is tested over a predefined set of (input, output) pairs known 

as the special test cases, which can be used to verify the correctness of the program. For example, to 

test the correctness of the program P that computes sin(x) for any given x, some values like x = π / 2 
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and x = π / 6 can be considered as special cases since the result of P for these inputs is well known (1 

and 0.5, respectively). Special test case testing is a useful strategy for performing testing in the absence 

of an oracle. The method has the advantages of being intuitive and easy to implement. Using this 

approach, any inconsistency between the program’s output and the expected output is considered to be 

a failure, which directly suggests an underlying fault. Nonetheless, the biggest limitation of the 

approach is that the choice of test cases is often very limited, which prohibits the application of more 

systematic testing strategies. It does not solve the oracle problem or the test case selection problem, but 

it serves as a good point of reference for a comparison with other testing methodologies. 

 

N-version programming 

In N-version programming (NVP), the correctness of a program is checked by comparing the outputs 

generated by multiple independent implementations of the same algorithm (or the same general 

requirement) against the same set of inputs (Chen and Avizienis, 1978). It is expected that the outputs 

obtained from these implementations will be the same for all test cases. At the end of a test round, a 

tester can conclude whether the outputs are concordant or discordant. To increase the effectiveness of 

this method, it is recommended that different developers implement these different versions (Chen and 

Avizienis, 1978; Knight and Leveson, 1986). For example NVP was used to discover the low 

concordance of variant calling results produced by five commonly used variant calling pipelines 

(O’Rawe et al., 2013). Compared to the use of simple test cases, one major advantage of N-version 

programming is that it enables any input to be used as a test case. In other words, this method can 

perform software testing on the entire input domain without the need of an oracle. This approach is 

readily implementable if multiple versions of the same program already exist. The main disadvantage 

of this approach is that it cannot decide which individual version/program contains a fault if the outputs 

of multiple versions do not agree. Also, this approach is expensive and may not always be feasible in 

practice. 

 

Metamorphic testing 

Metamorphic Testing (MT) alleviates the oracle problem by using some problem domain-specific 

properties, namely metamorphic relations (MRs), to verify the testing outputs. The central idea is that 

although it is impossible to directly test the correctness of any given test case, it may be possible to 

verify the expected relationships of the outputs generated by multiple executions of a program over the 

source and follow-up test cases by comparing their corresponding outputs against the MRs (Chen et al., 

1998; Zhou et al., 2004). In other words, MT tests for properties that users expect of a correct program. 

If a MR is violated, for any pair of source and follow-up test cases, the tester reports a failure in the 

program. MT has been successfully applied to test many different types of software, such as numerical 

programs (Zhou et al., 2004), embedded software (Kuo et al., 2011), analysis of feature models 

(Segura et al., 2010), machine learning (Murphy et al., 2008; Xie et al., 2011), testing service oriented 

applications (Chan et al., 2007), and big data analytics (Otero and Peter, 2015).   
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A simple and classical example of MT is to test the correctness of an implementation of a program that 

computes the sin(x) trigonometric function, using some well-known mathematical properties of the 

function as MRs (Table 3). These MRs express the expected relationships between outputs from the 

source test cases (left side of the equations), and outputs from the follow-up test cases (right side of the 

equations).  For example, we may design a source test case of x1=1.345. Based on MR2, a possible 

follow-up test case is x2=1.345+π. The output of the source and follow-up test cases are then compared 

to check whether MR2 is satisfied, i.e., sin(x1)=-sin(x2). It should be noted that this follow-up test case 

can then be used as a source test case to generate additional follow-up test cases, such as x3=1.345+2π. 

 

As illustrated in the sin(x) example, an MR is used for two purposes: (1) to generate additional follow-

up test cases by modifying the source input, and (2) to check the relationship between the outputs 

produced by the execution of the source and follow-up test cases. It should be noted that in general 

many follow-up test cases can be derived from a single source test case input based on one MR. It is 

important to note that satisfying an MR does not necessarily imply the program is correct. Nonetheless, 

violation of an MR does imply the presence of a fault.  

 

Compared to NVP, MT can directly test an individual program without the need to compare to other 

independently developed programs. Also, test cases can possibly be drawn from the entire input space, 

if there is no special restriction placed on the MRs. Not all MRs have the same effectiveness to reveal 

failures in a program. Recent empirical evidence suggests that a small number of MRs may be 

sufficient to create an effective test, given that the MRs are diverse (Liu et al., 2014). The main 

challenge in applying MT for automated testing includes identification and selection of effective MRs, 

and generation of diverse test cases based on the MRs.  

 

Random testing 

If an oracle exists or if the correctness of the output can be evaluated by techniques such as NVP or 

MT, one can select any input as a test case. In this case, the main challenge is to develop a mechanism 

to select a set of inputs to be used as test cases – the test case selection problem. The main idea of the 

problem is to identify the smallest set of test cases that can reveal the maximum number of faults in a 

program. 

 

Arguably, the simplest method for selecting test cases is to select them randomly from the input space. 

This is the basic idea of Random Testing (RT). This approach starts by identifying the input domain, 

then randomly samples test cases independently from the input domain. These randomly chosen test 

cases are then executed by the PUT, and the results are checked by an oracle or other mechanisms 

(Hamlet, 1994). RT is perhaps the simplest and most intuitive approach of test case selection, and it is 

often used as the ‘reference’ when investigating the performance of test case selection methods.  

 

The advantage of this approach is that it is much easier to implement than carefully ‘hand picking’ 

special test cases. It is generally quick to generate a large number of random test cases that cover the 
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input space widely in an automated fashion. Hook and Kelly conducted an experiment to compare the 

effectiveness of 105 hand-picked test cases and 1,050 random test cases from the valid input space 

(Hook and Kelly, 2009). Surprisingly, they found that randomly picked test cases was more effective 

than hand-picked test cases (Gray and Kelly, 2010).  Their results suggest that random test case 

selection, especially when it is combined with some ‘hand-picked’ test cases, could be an effective 

technique for revealing failures (Gray and Kelly, 2010).  

 

RT has some limitations. Most notably, this method does not ‘select’ test cases per se. It simply 

generates test cases randomly from the input domain. This method does not use any information about 

the program structure, execution path, structure of the input domain, or knowledge of common faults. 

Therefore, it is conceivable that many “good” test cases (such as boundary conditions) are ignored. 

One solution suggested to overcome this issue is to use RT along with other testing methods such as 

special case testing and keep track of executions in branches of the program. Another limitation of this 

method relates to its dependency on an oracle to verify the output of program for random input. 

Therefore it cannot be used for testing programs in which a practical oracle does not exist. 

 

Adaptive random testing 

Adaptive Random Testing (ART) is a simple approach that takes advantage of the simplicity of RT, 

and incorporates additional information about the failure-causing input regions to minimise the number 

of test cases required to detect the same number of failures. The main observation is that failure-

causing inputs are not randomly distributed in the input space, but are usually clustered together to 

form distinct failure regions (Chan et al., 1996). Chan et al. categorised failure-causing inputs into 

three types of patterns: block pattern, point pattern and strip pattern (Figure 2) (Chen et al., 2004). In 

block or strip patterns, all the failure-causing inputs are clustered in one or a few regions in the input 

space. In contrast, point pattern consists of possibly many distinct failure-causing inputs that are 

scattered across the whole input domain. They found that most of real-life failure-causing inputs in 

programs form block or strip patterns, which means failure-causing inputs tend to cluster together in 

the input space. The implication is that non-failure regions are also contiguous; therefore after the 

execution of a non-failure-causing input xi, one should select a random test case that is the furthest 

away from xi in the input space. This is the basis of ART (Chen et al., 2005, 2010).  

 

The simplest implementation of ART, the fixed size candidate set (FSCS) approach, involves first 

generating a random set of candidate test cases in the input domain. At first, one test case is randomly 

selected for execution. If execution of this test case does not cause any failure, the candidate test case 

which is most different from the executed test cases is selected for the next execution, and so on. This 

process continues until a pre-defined number of failures are discovered or until all the input test cases 

have been successfully executed. ART provides a simple and rational approach to automatically 

generate diverse test cases. 
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Theoretical and empirical studies have shown that ART can be up to 50% more effective than 

traditional RT in terms of failure detection ability (Chen and Merkel, 2008). The improved 

effectiveness stems from utilising the knowledge of the most likely failure-causing patterns of a 

program. The additional computation involved in selecting the next test cases can be reduced by 

various method, so ART remains a practical method for performing testing in real life (Chen et al., 

2010). One challenge of ART is that it requires a meaningful distance metric to be defined in the input 

space, which may be non-trivial for programs that take non-numerical inputs. 

 

In vivo testing: Continuous software testing in an operational environment. 

In vivo testing has been introduced to perform software testing not only at the testing stage of the 

software development cycle, but also in the software deployment stage when the program is being 

executed in its operational environment (Chu et al., 2008; Murphy et al., 2009b). Since not all faults 

can be revealed using test cases in the software development stage, concurrent software testing on user 

input data while the software instance is running on the users’ machines is an effective solution to 

detect more hidden faults. Similarly, in bioinformatics software, testers might not be familiar with 

some specific uses of the bioinformatics programs and their test cases may not identify all test faults in 

the software correctly.  

 

In this method, the code for executing the test cases is embedded inside the main source code of the 

program. Therefore, testing is executed in parallel to the execution of the real input from the users in an 

independent duplicated environment (Murphy et al., 2009b). This feature allows software testers to test 

their program using real inputs as test cases under realistic parameters and hardware environments. In 

vivo testing has three main advantages. Firstly, it can detect faults that may otherwise be hard to detect 

in a ‘clean state’ in a testing environment. Secondly, in vivo testing can guarantee that the testing 

process will be continued even after the software is released. Finally, inputs collected from the real 

world scenarios have a better chance of revealing faults than randomly chosen inputs (Dai et al., 2010). 

 

Cloud-based software testing 

The cloud platform is the latest revolution in information technology which provides on-demand access 

to a large and scalable amount of computing and storage resources without limiting developers to 

specific hardware restrictions (Parveen and Tilley, 2010). This feature can be beneficial to reduce 

execution time of testing, especially in terms of automated software testing (Riungu-Kalliosaari et al., 

2012).  

 

Cloud testing is one of the applications of cloud computing, and is poised to take software testing to the 

“next level” (Candea et al., 2010). Testing as a Service (TaaS) is one of the outcomes of cloud testing 

that is considered to provide on-demand software testing activities for given computer programs based 

on the cloud infrastructure (Gao et al., 2011). TaaS can be used for different purposes, such as testing 

of Service as a Service (SaaS) applications; testing of the cloud which provides testing to assure 

functionality of the cloud from an external and end-user perspective; testing inside a cloud, which 
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provides testing cloud infrastructures and the integrations of different components of cloud along with 

management and security testing; and finally testing applications over a cloud, which provides a 

service for software developers to test a specific software applications using the highly scalable and 

distributed environment offered by the cloud (Gao et al., 2011). 

 

Cloud based testing provides several benefits compared to traditional software testing. Firstly it enables 

large scale and on-demand testing with a large number and variety of input data using many compute 

instances in a short period of time. This facility alleviates the need to invest in large high performance 

computing infrastructure for testing, and also allows us to request different hardware or operating 

system environments for testing, which enables testing in a realistic situations. Moreover software 

testing may need a considerably large amount of disk space and storage, and an isolated environment to 

perform the testing (Parveen and Tilley, 2010). For instance, in vivo testing may require independent 

disks or virtual machines to execute the program against test cases with different configurations in 

parallel without affecting each other’s program state. 

 

The cloud platform also provides several advantages in comparison with conventional platforms and 

systems. Firstly, it provides an on-demand and online access for users, which is cost-effective and users 

will not be charged when they are not using the resource (Buyya et al., 2009). Secondly, the cloud can 

be accessible from anywhere and enables collaboration between developers and users access from 

different locations. Finally, the cloud is adaptive and scalable; this means it can provide scalable 

hardware resources for different tasks that can be helpful to reduce the cost of information technology 

(Leavitt, 2009). We anticipate that the next generation of software testing using TaaS will become 

more popular as it provides easier and more comprehensive software testing for software developers. 

 

Besides all of the benefits of the cloud, the scalability feature itself in the cloud can pose a great 

challenge and an underestimate of the scale ratio could lead to heavy costs. This issue could become 

worse if the scalability ratio for scaling up or reducing hardware resources is incorrectly estimated with 

an automated algorithm. Latency of network data transfer is another issue that reduces the transfer and 

access speed during tests. This is due to the nature of remote existence of cloud. Latency becomes 

more important when the testing environment or task depends on another system from a different 

region or outside of cloud (Leavitt, 2009). 

 

 

Mutation analysis: Evaluation of the effectiveness of software testing methodologies 

Mutation analysis was introduced to quantify the effectiveness of testing methods (Hamlet, 1977). The 

main idea of mutation analysis is the generation of mutants by injecting artificial faults into the 

program’s source code, which can be compiled and executed. Mutants are generated using simple 

syntactic rules, known as mutation operators. It is important to check that the mutant can generate 

different outputs compared to the original program when given the same inputs. If the mutant and the 

original program produce the same outputs given the same inputs, this mutant is considered as an 
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equivalent mutant. An equivalent mutant may arise due to having the seeded fault in a section of the 

program that cannot be reached by the execution path. The following discussion involves the analysis 

of non-equivalent mutants. In general, a non-equivalent mutant should satisfy three characteristics: 

reachability, necessity and sufficiency (DeMilli and Offutt, 1991). Reachability means the mutated part 

of the program should be accessible in the program flow. Necessity means the mutated part of the 

program should produce a different internal states compared to the original version. Finally, sufficiency 

means that the error should be propagated to the program output.  

 

Once a set of non-equivalent mutants is generated, a set of test cases, generated by a testing 

methodology, is applied to test the mutants. We can then determine how many test cases reveal a fault 

in the mutants. A mutant that is identified by a test method to contain a fault is called a killed mutant, 

whereas a mutant that is not detected to contain a fault is called an alive mutant. The proportion of the 

killed mutants to all non-equivalent mutations is called the mutation score. The process of generating 

mutants can also be either manual or automated (Jia and Harman, 2011), and the process of testing 

mutants can be automated. 

 

Applications of software testing in bioinformatics  

During our review of the bioinformatics literature, we only found several reports that attempt to adopt 

state-of-the-art software testing methods to verify or validate bioinformatics software, including reports 

from the authors of this review. Here we summarise some of their results. 

 

Biological Network Simulators Bergmann and Sauro performed a comparison of twelve biological 

network simulators that are compatible with Systems Biology Modeling Language (SBML). In their 

study, they simulated the same 150 curated SBML models from the BioModels database using the 

twelve simulators and compared their results. Their approach is akin to N-version programming. They 

showed that only six packages could return the result for all their models (all other packages failed to 

simulate some of the models). They also observed that among all the simulators, only two of them had 

complete agreement with each other across all models (Bergmann and Sauro, 2008). In a separate 

study, Evans et al. developed a test suite for testing stochastic simulators (Evans et al., 2008). Their 

approach is essentially special test case testing – they evaluated the simulation output from multiple 

executions, and checked that the outputs from these distribution fell within the expected range of 

values. They showed that this test suite could be very helpful for simulator developers to test the 

correctness of their implementations. Chen et al. used MT to test a gene network simulator, GNLab 

(Chen et al., 2009). They identified ten MRs for this program. In this study, they found violation of one 

MR, which specified that adding a new edge with zero weight should not affect the simulation results. 

It turned out that this problem is due to a mis-specification of the algorithm.  

 

Sequence alignment programs Short read sequence alignment programs are popular software 

programs in bioinformatics, and are widely used to analyse next-generation sequencing data. Popular 

alignment programs such as BWA (Li and Durbin, 2009), BOWTIE and BOWTIE2 (Langmead and 
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Salzberg, 2012) are widely used among bioinformaticians. These programs have been tested and 

evaluated using many reference test data by the developers. In a recent study by Giannoulatou et al., 

these sequence aligner programs were tested using MT (Giannoulatou et al., 2014). In their approach 

they identified nine MRs. As an example, one of the MRs stated that random permutation of the input 

should not affect the alignment results. Surprisingly, this is one of the MRs that was violated by one of 

the aligners. This result is unexpected since the order of the input data is not supposed to affect 

alignment results. None of the tested aligners satisfied all nine MRs. This result further supports the 

importance of testing bioinformatics programs, especially these widely used programs that have a 

potential to be used in a translational clinical setting in genomic medicine. The usefulness of 

metamorphic testing for such a type of software was clearly demonstrated. 

 

Concluding remarks 

In this paper we discussed the needs of proper software testing in bioinformatics. The main problem is 

related to the amount of data and complexity of algorithms in bioinformatics software, which makes it 

hard to verify the output data and to select many diverse test cases. We have also reviewed several 

popular and state-of-the-art software testing techniques, and discussed their applications. The key 

concepts illustrated by these methods include multiple executions of the same program or related 

programs, using diverse test cases in the input space, testing after deployment, and enabling scalable 

and parallelised testing using cloud technology. It is important to mention that there are many other 

software testing techniques (Beizer, 2002; Myers et al., 2011), but our main focus of this review was to 

discuss those techniques that have been used or are suitable for testing bioinformatics programs. 

Further research is required to quantify and compare the effectiveness of different methodologies, and 

make software testing much more systematic and automatable. We believe additional testing activities 

will improve the reliability of bioinformatics software, and therefore the reliability of scientific 

research results. 
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Figure Legends 

 

Fig. 1 Comparison of different testing techniques. 

 

Fig. 2 Illustration of different types of failure-causing input patterns, with corresponding 

example source codes. 
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Tables 

Table 1 Definition of commonly used terms in software testing  

Key Term Definition 

Validation 

“The process of evaluating a system or component during or at the end of the 

development process to determine whether it satisfies specified requirements.” 

(IEEE, 1990) 

Verification 

“The process of evaluating a system or component to determine whether the 

products of given development phase satisfy the conditions imposed at the start 

of that phase.” (IEEE, 1990) 

Quality Control “A set of activities designed to evaluate the quality of developed or 

manufactured products.” (IEEE, 1990) 

Quality Assurance 

“A planned and systematic pattern of all actions necessary to provide adequate 

confidence that an item or product conforms to established technical 

requirements.” (IEEE, 1990) 

Test Case 

“A set of test inputs, execution conditions, and expected results developed for 

a particular objective, such as to exercise a particular program path or to verify 

compliance with a specific requirement.” (IEEE, 1990) 

Test Suite 

“A set of several test cases for a component or system under test, where the 

post condition of one test is often used as the precondition for the next one.” 

(ISTQB, 2015) 

Test Reliability 

“A test T is called reliable if it can reveal error in program P if P has 

implemented incorrectly. It is important to note that it has been proven that 

there is no testing strategy that can check the reliability of all programs.” 

(Howden, 1976) 

Regression Testing 

“Testing of a previously tested program following modification to ensure that 

defects have not been introduced or uncovered in unchanged areas of the 

software, as a result of the changes made. It is performed when the software or 

its environment is changed.” (ISTQB, 2015) 

Oracle 
“A mechanism, which can systematically verify the correctness of a test result 

for any given test case.” (Liu et al., 2014) 

Test Oracle 

Problem 

“The oracle problem occurs when either an oracle does not exist, or exists but 

is too expensive to be used.” (Liu et al., 2014) 

Black-Box Testing 

“Testing that ignores the internal mechanism of a system or component and 

focuses solely on the outputs generated in response to selected inputs and 

execution conditions.” (IEEE, 1990) 

White-Box Testing 
“Testing that takes into account the internal mechanism of a system or 

component. Types include branch testing, path testing, statement testing.” 

(IEEE, 1990) 



  18 

Test Coverage 
“The degree to which a given test or set of tests addresses all specified 

requirements for a given system or component.” (IEEE, 1990) 

Fault 

“Fault – concrete manifestation of an error within the software. One error may 

cause several faults, and various errors may cause identical faults.” (Lanubile 

et al., 1998) 

 

Error 

“Defect in the human thought process made while trying to understand given 

information, solve problems, or to use methods and tools. In the context of 

software requirements specifications, an error is a basic misconception of the 

actual needs of a user or customer.” (Lanubile et al., 1998) 

 

Failure 

“Departure of the operational software system behavior from user expected 

requirements. A particular failure may be caused by several faults and some 

faults may never cause a failure.” (Lanubile et al., 1998) 

 
Successful Test 

“A test that cannot reveal any error in the implemented software using given 

test case.” (Chen et al., 1998) 

Static Testing 
“Testing of a component or system at specification or implementation level 

without execution of that software, e.g. reviews or static analysis.” (ISTQB) 

Dynamic Testing “Testing that requires the execution of the test item.” (IEEE, 2013) 

Majority of these terms are defined in IEEE Standard Glossary 610.12-1990 (IEEE, 1990) and 

International Software Testing Qualification Board Glossary (ISTQB, 2015) and ISO/IEC/IEEE 29119 

(IEEE, 2013). 

 

 

 

 

Table 2 Comparison of advantages and disadvantages of testing techniques 

Methodology Test case 

selection 

Test case 

coverage 

Testing output Requires 

oracle?  

Alleviates the  

oracle.problem? 

Special Case 

Testing Predefined Limited Faulty/Not faulty No No 

NVP Input space Input space Concordant/Discordant No Yes 

RT/ART Random Input space Faulty/Not faulty Yes No 

MT 

Based on 

relations 

Nearly all 

input space Satisfied/Not Satisfied No Yes 

NVP: N-version programming; RT: random testing; ART: adaptive random testing; MT: metamorphic 

testing 
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Table 3 Metamorphic Relations for sin(x)  

MR MT Relation 

MR1 sin (x) = sin (x + 2𝜋) 

MR2 sin (x) = -sin (x + 𝜋) 

MR3 sin (x) = -sin (-x) 

MR4 sin (x) = sin (𝜋 - x) 

MR5 sin (x) = sin (x+ 4𝜋) 

 

 
Figure 1 
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Figure 2 
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