
 1

How to test bioinformatics software?

Amir Hossein Kamali1,2, Eleni Giannoulatou1,3, Tsong Yueh Chen4, Michael A. Charleston5, Alistair L.

McEwan2, Joshua W. K. Ho1,3

1Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
2School of Electrical and Information Engineering, The University of Sydney, NSW 2006, Australia
3St. Vincent’s Clinical School, The University of New South Wales, Sydney, NSW 2010, Australia
4Department of Computer Science and Software Engineering, Swinburne University of Technology,

VIC, Australia
5School of Physical Sciences, The University of Tasmania, TAS, Australia

Corresponding author:

Dr. Joshua W. K. Ho

Email: j.ho@victorchang.edu.au

Tel: 61 2 9295 8645

Fax: 61 2 9295 8601

Abstract

Bioinformatics is the application of computational, mathematical and statistical techniques to solve

problems in biology and medicine. Bioinformatics programs developed for computational simulation

and large-scale data analysis are widely used in almost all areas of biophysics. The appropriate choice

of algorithms and correct implementation of these algorithms are critical for obtaining reliable

computational results. Nonetheless, it is often very difficult to systematically test these programs as it

is often hard to verify the correctness of the output, and to effectively generate failure-revealing test

cases. Software testing is an important process of verification and validation of scientific software, but

very few studies have directly dealt with the issues of bioinformatics software testing. In this work, we

review important concepts and state-of-the-art methods in the field of software testing. We also discuss

recent reports on adapting and implementing software testing methodologies in the bioinformatics field,

with specific examples drawn from systems biology and genomic medicine.

Keywords

software testing, bioinformatics, quality assurance, automated testing, cloud-based testing

mailto:j.ho@victorchang.edu.au

 2

Introduction
Nowadays, the use of computer programs is pervasive in many areas of biomedical sciences, especially

in biophysics, genomics, proteomics, biotechnology and medicine. Rapid accumulation of high-

throughput data sets and an increasing focus on systems-level biological modelling increase the size

and complexity of bioinformatics programs. This poses a great challenge in developing a good testing

strategy to ensure the reliability of the design and implementation of these programs (Chen et al.,

2009).

Nonetheless, the mechanism of scrutinising the software implementation of these programs is often far

less comprehensive than the rigorous peer review process of the research articles that describe the

programs’ applications (Check Hayden, 2015). The potentially widespread problem of errors or

misuses of scientific computing in biology and medicine is highlighted by recent news and

commentary articles in top-tier journals such as Nature and Science (Joppa et al., 2013; Merali, 2010),

and the problem could be attributed to a lack of proper software verification and validation (Alden and

Read, 2013; Check Hayden, 2013). Incorrect computed results may lead to wrong biological

conclusions and may misguide downstream experiments. In some cases, it may lead to retraction of

scientific papers (Check Hayden, 2015).

This problem is especially critical if these programs are to be used in a translational clinical setting,

such as the analysis of whole genome sequencing data for identifying genetic variants in a patient’s

DNA sample. In a genetic variant calling pipeline, one must have high confidence that the resulting

variant calls have high sensitivity and specificity. A recent comparison of five commonly used variant-

calling pipelines demonstrates that the overall concordance of the variant calls was low (only 57.4% for

single nucleotide variants and 26.8% for indel were concordant across the tested pipelines) (O’Rawe et

al., 2013). The study found that a large portion of pipeline-specific variant calls could be validated by

independent means, suggesting that each pipeline may be missing a lot of genuine genetic variants.

This is particularly troubling, since although false positive variant calls can be distinguished from true

positives through external validation, it is almost impossible to systematically distinguish false

negatives from the vast amount of true negatives.

Besides variant calling, the use of different variant annotation programs and transcript annotation files

can also make a substantial difference in annotation results that are not commonly appreciated.

McCarthy et al. recently examined the effect of using different transcript annotations and different

variant annotation programs (McCarthy et al., 2014). They found that a non-trivial proportion of

variants were annotated differently due to the use of different transcript annotations, or different

programs. These troubling reports highlight the need to ensure that bioinformatics pipelines are

subjected to better verification and validation.

Software testing is an important step towards developing high quality software. It has been challenging

for software developers, especially for developers of scientific software. In a recent survey of nearly

2,000 scientists, it was found that in the past five years 45% of scientists spent more time developing

 3

software. Nonetheless, less than half of them had a good understanding of software testing (Hannay et

al., 2009; Merali, 2010). Performing proper software testing can be a time-consuming task, accounting

for up to 50% of the total software development time (Myers et al., 2011). Therefore it is especially

important to make sure we use effective and systematic software testing strategies.

Many efficient software testing concepts and techniques have been developed over the years (Myers et

al., 2011). Recently some groups, including ours, are beginning to adopt state-of-the-art software

testing techniques to test scientific software (Baxter et al., 2006; Murphy et al., 2009a), including

bioinformatics software (Chen et al., 2009). This review begins by outlining several key concepts in

software testing, followed by discussing state-of-the-art testing techniques. Furthermore we review

recent case studies that have applied various software test strategies to verify or validate bioinformatics

software.

Software testing definitions and concepts

Software testing is the process of actively identifying potential faults in a computer program. Software

testing can be static or dynamic. Static testing involves code review or inspection, whereas dynamic

testing involves execution of the Program Under Test (PUT) using a given set of test cases. The rest of

the review focuses on techniques for dynamic software testing. In dynamic software testing, the PUT

can be thought of as implementation of a (mathematical or computational) function f(x) = y where x

represents all valid input from the input domain and y represents all possible outputs. The goal of

verification is to show that for a given implementation fPUT of PUT, fPUT(x) = f(x) for all possible x from

the input domain. An input, xfailure is a failure-causing input if fPUT(xfailure)≠f(xfailure), and the PUT is

deemed to contain a failure. A failure reveals an underlying fault in the implementation of the program,

which in turn is a manifestation of an error introduced by the programmer (Lanubile et al., 1998).

Common terminologies used in the software testing field are summarised in Table1.

A PUT may fail because of incorrect implementation of the algorithm (i.e., the verification problem),

or a mismatch between the algorithm and the intended behaviour (i.e., the validation problem). In other

words, verification asks, “Are we building the software right?” whereas validation seeks to answer,

“Are we building the right software?”. In addition to the limitations of the algorithm and

implementation, failure can also be caused by incorrect expectations of the intended use of a program

(Joppa et al., 2013), and runtime hardware or system failure. For the rest of this review, we mainly

focus on methods that test the limitations of the implementation of the program, i.e., verification, but

some ideas can be extended to validation as well.

Why is bioinformatics software testing difficult?

There are two main challenges in testing scientific software, especially bioinformatics software: the

oracle problem and the test case selection problem.

 4

The oracle problem In dynamic software testing, an oracle is a mechanism that decides if the

output of the PUT is correct given any possible input. This mechanism is most useful if it is

computationally simpler than the algorithm of the PUT. For example, for a program that implements a

sorting algorithm with complexity of O(nlogn) for sorting n numbers, a possible oracle is to use a

simple O(n) algorithm that traverses through the output sorted sequence to check the condition: the

number in the (i+1)th position is always greater or equal to the number in the ith position. When such a

test oracle exists, we can apply a large number and variety of test cases to test the PUT since the

correctness of the output can be verified using the oracle. Without a tangible oracle, the choice of test

cases is greatly limited to those special test cases where the expected outputs are known or there exists

a way to easily verify the correctness of the testing results. In particular, an oracle problem is said to

exist when: (1) "there does not exist an oracle" or (2) "it is theoretically possible, but practically too

difficult to determine the correct output" (Chen et al., 2003; Weyuker, 1982). The existence of a

practical oracle is essential when performing systematic program testing. Many bioinformatics

programs suffer from the oracle problem since they often deal with large input and output data, and

implement complex algorithms. Consider the situation of the molecular dynamic simulator or a short

read sequence aligner. In both cases, the correctness of the output is very hard to verify.

The test case selection problem In dynamic software testing, the main approach is to execute a set

of test cases. If a failure is detected after executing a test case, a fault is identified. However, not all test

cases can trigger a failure even if the PUT contains one or more faults. Therefore, an effective software

testing strategy often aims to identify the smallest set of test cases that reveals as many different faults

as possible. A test case is simply an input drawn from the input space of the software. Many

bioinformatics programs have a large input space, and it is often computationally challenging to

automatically survey this space efficiently to identify the most failure-revealing test cases. This is the

test case selection problem. A good software testing methodology often makes use of some knowledge

of the likely position of failure-causing input to select potentially fault-revealing input as test cases.

Software testing methodologies

Many methods have been developed in the software testing field. Many of them are designed to

address the oracle and the test case selection problems. In the following sections we review several

testing methods that are commonly used in the area of scientific computing, with a focus on their

advantages and limitations. This is not an extensive list of methods, but rather a selection of methods

that illustrate important concepts and considerations when developing a software testing strategy.

These methods are illustrated in Figure 1 and summarised in Table 2.

Special test case testing

Special test case testing is perhaps the most widely used approach in software testing. In special test

case testing, the program’s functionality is tested over a predefined set of (input, output) pairs known

as the special test cases, which can be used to verify the correctness of the program. For example, to

test the correctness of the program P that computes sin(x) for any given x, some values like x = π / 2

 5

and x = π / 6 can be considered as special cases since the result of P for these inputs is well known (1

and 0.5, respectively). Special test case testing is a useful strategy for performing testing in the absence

of an oracle. The method has the advantages of being intuitive and easy to implement. Using this

approach, any inconsistency between the program’s output and the expected output is considered to be

a failure, which directly suggests an underlying fault. Nonetheless, the biggest limitation of the

approach is that the choice of test cases is often very limited, which prohibits the application of more

systematic testing strategies. It does not solve the oracle problem or the test case selection problem, but

it serves as a good point of reference for a comparison with other testing methodologies.

N-version programming

In N-version programming (NVP), the correctness of a program is checked by comparing the outputs

generated by multiple independent implementations of the same algorithm (or the same general

requirement) against the same set of inputs (Chen and Avizienis, 1978). It is expected that the outputs

obtained from these implementations will be the same for all test cases. At the end of a test round, a

tester can conclude whether the outputs are concordant or discordant. To increase the effectiveness of

this method, it is recommended that different developers implement these different versions (Chen and

Avizienis, 1978; Knight and Leveson, 1986). For example NVP was used to discover the low

concordance of variant calling results produced by five commonly used variant calling pipelines

(O’Rawe et al., 2013). Compared to the use of simple test cases, one major advantage of N-version

programming is that it enables any input to be used as a test case. In other words, this method can

perform software testing on the entire input domain without the need of an oracle. This approach is

readily implementable if multiple versions of the same program already exist. The main disadvantage

of this approach is that it cannot decide which individual version/program contains a fault if the outputs

of multiple versions do not agree. Also, this approach is expensive and may not always be feasible in

practice.

Metamorphic testing

Metamorphic Testing (MT) alleviates the oracle problem by using some problem domain-specific

properties, namely metamorphic relations (MRs), to verify the testing outputs. The central idea is that

although it is impossible to directly test the correctness of any given test case, it may be possible to

verify the expected relationships of the outputs generated by multiple executions of a program over the

source and follow-up test cases by comparing their corresponding outputs against the MRs (Chen et al.,

1998; Zhou et al., 2004). In other words, MT tests for properties that users expect of a correct program.

If a MR is violated, for any pair of source and follow-up test cases, the tester reports a failure in the

program. MT has been successfully applied to test many different types of software, such as numerical

programs (Zhou et al., 2004), embedded software (Kuo et al., 2011), analysis of feature models

(Segura et al., 2010), machine learning (Murphy et al., 2008; Xie et al., 2011), testing service oriented

applications (Chan et al., 2007), and big data analytics (Otero and Peter, 2015).

 6

A simple and classical example of MT is to test the correctness of an implementation of a program that

computes the sin(x) trigonometric function, using some well-known mathematical properties of the

function as MRs (Table 3). These MRs express the expected relationships between outputs from the

source test cases (left side of the equations), and outputs from the follow-up test cases (right side of the

equations). For example, we may design a source test case of x1=1.345. Based on MR2, a possible

follow-up test case is x2=1.345+π. The output of the source and follow-up test cases are then compared

to check whether MR2 is satisfied, i.e., sin(x1)=-sin(x2). It should be noted that this follow-up test case

can then be used as a source test case to generate additional follow-up test cases, such as x3=1.345+2π.

As illustrated in the sin(x) example, an MR is used for two purposes: (1) to generate additional follow-

up test cases by modifying the source input, and (2) to check the relationship between the outputs

produced by the execution of the source and follow-up test cases. It should be noted that in general

many follow-up test cases can be derived from a single source test case input based on one MR. It is

important to note that satisfying an MR does not necessarily imply the program is correct. Nonetheless,

violation of an MR does imply the presence of a fault.

Compared to NVP, MT can directly test an individual program without the need to compare to other

independently developed programs. Also, test cases can possibly be drawn from the entire input space,

if there is no special restriction placed on the MRs. Not all MRs have the same effectiveness to reveal

failures in a program. Recent empirical evidence suggests that a small number of MRs may be

sufficient to create an effective test, given that the MRs are diverse (Liu et al., 2014). The main

challenge in applying MT for automated testing includes identification and selection of effective MRs,

and generation of diverse test cases based on the MRs.

Random testing

If an oracle exists or if the correctness of the output can be evaluated by techniques such as NVP or

MT, one can select any input as a test case. In this case, the main challenge is to develop a mechanism

to select a set of inputs to be used as test cases – the test case selection problem. The main idea of the

problem is to identify the smallest set of test cases that can reveal the maximum number of faults in a

program.

Arguably, the simplest method for selecting test cases is to select them randomly from the input space.

This is the basic idea of Random Testing (RT). This approach starts by identifying the input domain,

then randomly samples test cases independently from the input domain. These randomly chosen test

cases are then executed by the PUT, and the results are checked by an oracle or other mechanisms

(Hamlet, 1994). RT is perhaps the simplest and most intuitive approach of test case selection, and it is

often used as the ‘reference’ when investigating the performance of test case selection methods.

The advantage of this approach is that it is much easier to implement than carefully ‘hand picking’

special test cases. It is generally quick to generate a large number of random test cases that cover the

 7

input space widely in an automated fashion. Hook and Kelly conducted an experiment to compare the

effectiveness of 105 hand-picked test cases and 1,050 random test cases from the valid input space

(Hook and Kelly, 2009). Surprisingly, they found that randomly picked test cases was more effective

than hand-picked test cases (Gray and Kelly, 2010). Their results suggest that random test case

selection, especially when it is combined with some ‘hand-picked’ test cases, could be an effective

technique for revealing failures (Gray and Kelly, 2010).

RT has some limitations. Most notably, this method does not ‘select’ test cases per se. It simply

generates test cases randomly from the input domain. This method does not use any information about

the program structure, execution path, structure of the input domain, or knowledge of common faults.

Therefore, it is conceivable that many “good” test cases (such as boundary conditions) are ignored.

One solution suggested to overcome this issue is to use RT along with other testing methods such as

special case testing and keep track of executions in branches of the program. Another limitation of this

method relates to its dependency on an oracle to verify the output of program for random input.

Therefore it cannot be used for testing programs in which a practical oracle does not exist.

Adaptive random testing

Adaptive Random Testing (ART) is a simple approach that takes advantage of the simplicity of RT,

and incorporates additional information about the failure-causing input regions to minimise the number

of test cases required to detect the same number of failures. The main observation is that failure-

causing inputs are not randomly distributed in the input space, but are usually clustered together to

form distinct failure regions (Chan et al., 1996). Chan et al. categorised failure-causing inputs into

three types of patterns: block pattern, point pattern and strip pattern (Figure 2) (Chen et al., 2004). In

block or strip patterns, all the failure-causing inputs are clustered in one or a few regions in the input

space. In contrast, point pattern consists of possibly many distinct failure-causing inputs that are

scattered across the whole input domain. They found that most of real-life failure-causing inputs in

programs form block or strip patterns, which means failure-causing inputs tend to cluster together in

the input space. The implication is that non-failure regions are also contiguous; therefore after the

execution of a non-failure-causing input xi, one should select a random test case that is the furthest

away from xi in the input space. This is the basis of ART (Chen et al., 2005, 2010).

The simplest implementation of ART, the fixed size candidate set (FSCS) approach, involves first

generating a random set of candidate test cases in the input domain. At first, one test case is randomly

selected for execution. If execution of this test case does not cause any failure, the candidate test case

which is most different from the executed test cases is selected for the next execution, and so on. This

process continues until a pre-defined number of failures are discovered or until all the input test cases

have been successfully executed. ART provides a simple and rational approach to automatically

generate diverse test cases.

 8

Theoretical and empirical studies have shown that ART can be up to 50% more effective than

traditional RT in terms of failure detection ability (Chen and Merkel, 2008). The improved

effectiveness stems from utilising the knowledge of the most likely failure-causing patterns of a

program. The additional computation involved in selecting the next test cases can be reduced by

various method, so ART remains a practical method for performing testing in real life (Chen et al.,

2010). One challenge of ART is that it requires a meaningful distance metric to be defined in the input

space, which may be non-trivial for programs that take non-numerical inputs.

In vivo testing: Continuous software testing in an operational environment.

In vivo testing has been introduced to perform software testing not only at the testing stage of the

software development cycle, but also in the software deployment stage when the program is being

executed in its operational environment (Chu et al., 2008; Murphy et al., 2009b). Since not all faults

can be revealed using test cases in the software development stage, concurrent software testing on user

input data while the software instance is running on the users’ machines is an effective solution to

detect more hidden faults. Similarly, in bioinformatics software, testers might not be familiar with

some specific uses of the bioinformatics programs and their test cases may not identify all test faults in

the software correctly.

In this method, the code for executing the test cases is embedded inside the main source code of the

program. Therefore, testing is executed in parallel to the execution of the real input from the users in an

independent duplicated environment (Murphy et al., 2009b). This feature allows software testers to test

their program using real inputs as test cases under realistic parameters and hardware environments. In

vivo testing has three main advantages. Firstly, it can detect faults that may otherwise be hard to detect

in a ‘clean state’ in a testing environment. Secondly, in vivo testing can guarantee that the testing

process will be continued even after the software is released. Finally, inputs collected from the real

world scenarios have a better chance of revealing faults than randomly chosen inputs (Dai et al., 2010).

Cloud-based software testing

The cloud platform is the latest revolution in information technology which provides on-demand access

to a large and scalable amount of computing and storage resources without limiting developers to

specific hardware restrictions (Parveen and Tilley, 2010). This feature can be beneficial to reduce

execution time of testing, especially in terms of automated software testing (Riungu-Kalliosaari et al.,

2012).

Cloud testing is one of the applications of cloud computing, and is poised to take software testing to the

“next level” (Candea et al., 2010). Testing as a Service (TaaS) is one of the outcomes of cloud testing

that is considered to provide on-demand software testing activities for given computer programs based

on the cloud infrastructure (Gao et al., 2011). TaaS can be used for different purposes, such as testing

of Service as a Service (SaaS) applications; testing of the cloud which provides testing to assure

functionality of the cloud from an external and end-user perspective; testing inside a cloud, which

 9

provides testing cloud infrastructures and the integrations of different components of cloud along with

management and security testing; and finally testing applications over a cloud, which provides a

service for software developers to test a specific software applications using the highly scalable and

distributed environment offered by the cloud (Gao et al., 2011).

Cloud based testing provides several benefits compared to traditional software testing. Firstly it enables

large scale and on-demand testing with a large number and variety of input data using many compute

instances in a short period of time. This facility alleviates the need to invest in large high performance

computing infrastructure for testing, and also allows us to request different hardware or operating

system environments for testing, which enables testing in a realistic situations. Moreover software

testing may need a considerably large amount of disk space and storage, and an isolated environment to

perform the testing (Parveen and Tilley, 2010). For instance, in vivo testing may require independent

disks or virtual machines to execute the program against test cases with different configurations in

parallel without affecting each other’s program state.

The cloud platform also provides several advantages in comparison with conventional platforms and

systems. Firstly, it provides an on-demand and online access for users, which is cost-effective and users

will not be charged when they are not using the resource (Buyya et al., 2009). Secondly, the cloud can

be accessible from anywhere and enables collaboration between developers and users access from

different locations. Finally, the cloud is adaptive and scalable; this means it can provide scalable

hardware resources for different tasks that can be helpful to reduce the cost of information technology

(Leavitt, 2009). We anticipate that the next generation of software testing using TaaS will become

more popular as it provides easier and more comprehensive software testing for software developers.

Besides all of the benefits of the cloud, the scalability feature itself in the cloud can pose a great

challenge and an underestimate of the scale ratio could lead to heavy costs. This issue could become

worse if the scalability ratio for scaling up or reducing hardware resources is incorrectly estimated with

an automated algorithm. Latency of network data transfer is another issue that reduces the transfer and

access speed during tests. This is due to the nature of remote existence of cloud. Latency becomes

more important when the testing environment or task depends on another system from a different

region or outside of cloud (Leavitt, 2009).

Mutation analysis: Evaluation of the effectiveness of software testing methodologies

Mutation analysis was introduced to quantify the effectiveness of testing methods (Hamlet, 1977). The

main idea of mutation analysis is the generation of mutants by injecting artificial faults into the

program’s source code, which can be compiled and executed. Mutants are generated using simple

syntactic rules, known as mutation operators. It is important to check that the mutant can generate

different outputs compared to the original program when given the same inputs. If the mutant and the

original program produce the same outputs given the same inputs, this mutant is considered as an

 10

equivalent mutant. An equivalent mutant may arise due to having the seeded fault in a section of the

program that cannot be reached by the execution path. The following discussion involves the analysis

of non-equivalent mutants. In general, a non-equivalent mutant should satisfy three characteristics:

reachability, necessity and sufficiency (DeMilli and Offutt, 1991). Reachability means the mutated part

of the program should be accessible in the program flow. Necessity means the mutated part of the

program should produce a different internal states compared to the original version. Finally, sufficiency

means that the error should be propagated to the program output.

Once a set of non-equivalent mutants is generated, a set of test cases, generated by a testing

methodology, is applied to test the mutants. We can then determine how many test cases reveal a fault

in the mutants. A mutant that is identified by a test method to contain a fault is called a killed mutant,

whereas a mutant that is not detected to contain a fault is called an alive mutant. The proportion of the

killed mutants to all non-equivalent mutations is called the mutation score. The process of generating

mutants can also be either manual or automated (Jia and Harman, 2011), and the process of testing

mutants can be automated.

Applications of software testing in bioinformatics

During our review of the bioinformatics literature, we only found several reports that attempt to adopt

state-of-the-art software testing methods to verify or validate bioinformatics software, including reports

from the authors of this review. Here we summarise some of their results.

Biological Network Simulators Bergmann and Sauro performed a comparison of twelve biological

network simulators that are compatible with Systems Biology Modeling Language (SBML). In their

study, they simulated the same 150 curated SBML models from the BioModels database using the

twelve simulators and compared their results. Their approach is akin to N-version programming. They

showed that only six packages could return the result for all their models (all other packages failed to

simulate some of the models). They also observed that among all the simulators, only two of them had

complete agreement with each other across all models (Bergmann and Sauro, 2008). In a separate

study, Evans et al. developed a test suite for testing stochastic simulators (Evans et al., 2008). Their

approach is essentially special test case testing – they evaluated the simulation output from multiple

executions, and checked that the outputs from these distribution fell within the expected range of

values. They showed that this test suite could be very helpful for simulator developers to test the

correctness of their implementations. Chen et al. used MT to test a gene network simulator, GNLab

(Chen et al., 2009). They identified ten MRs for this program. In this study, they found violation of one

MR, which specified that adding a new edge with zero weight should not affect the simulation results.

It turned out that this problem is due to a mis-specification of the algorithm.

Sequence alignment programs Short read sequence alignment programs are popular software

programs in bioinformatics, and are widely used to analyse next-generation sequencing data. Popular

alignment programs such as BWA (Li and Durbin, 2009), BOWTIE and BOWTIE2 (Langmead and

 11

Salzberg, 2012) are widely used among bioinformaticians. These programs have been tested and

evaluated using many reference test data by the developers. In a recent study by Giannoulatou et al.,

these sequence aligner programs were tested using MT (Giannoulatou et al., 2014). In their approach

they identified nine MRs. As an example, one of the MRs stated that random permutation of the input

should not affect the alignment results. Surprisingly, this is one of the MRs that was violated by one of

the aligners. This result is unexpected since the order of the input data is not supposed to affect

alignment results. None of the tested aligners satisfied all nine MRs. This result further supports the

importance of testing bioinformatics programs, especially these widely used programs that have a

potential to be used in a translational clinical setting in genomic medicine. The usefulness of

metamorphic testing for such a type of software was clearly demonstrated.

Concluding remarks

In this paper we discussed the needs of proper software testing in bioinformatics. The main problem is

related to the amount of data and complexity of algorithms in bioinformatics software, which makes it

hard to verify the output data and to select many diverse test cases. We have also reviewed several

popular and state-of-the-art software testing techniques, and discussed their applications. The key

concepts illustrated by these methods include multiple executions of the same program or related

programs, using diverse test cases in the input space, testing after deployment, and enabling scalable

and parallelised testing using cloud technology. It is important to mention that there are many other

software testing techniques (Beizer, 2002; Myers et al., 2011), but our main focus of this review was to

discuss those techniques that have been used or are suitable for testing bioinformatics programs.

Further research is required to quantify and compare the effectiveness of different methodologies, and

make software testing much more systematic and automatable. We believe additional testing activities

will improve the reliability of bioinformatics software, and therefore the reliability of scientific

research results.

Compliance with ethical standards

Funding: This work was supported in part by funds from the New South Wales Ministry of Health, a

New South Wales Genomics Collaborative Grant, an Australian Research Council Grant, and a

Microsoft Azure Research Award.

Conflict of interest: All authors (AHK, EG, TYC, MAC, ALME and JWKH) declare that they do not

have any conflict of interest.

Ethical approval: This article does not contain any studies with human or animal subjects performed
by any of the authors.

 12

Reference

Alden, K., and Read, M. (2013). Computing: Scientific software needs quality control. Nature 502,
448.

Basili, V.R., and Selby, R.W. (1987). Comparing the effectiveness of software testing strategies. IEEE
Transactions on Software Engineering SE-13, 1278–1296.

Baxter, S.M., Day, S.W., Fetrow, J.S., and Reisinger, S.J. (2006). Scientific software development is
not an oxymoron. PLoS Computational Biology 2, e87.

Beizer, B. (2003). Software testing techniques (Dreamtech Press).

Bergmann, F.T., and Sauro, H.M. (2008). Comparing simulation results of SBML capable simulators.
Bioinformatics 24, 1963–1965.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., and Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems 25, 599–616.

Candea, G., Bucur, S., and Zamfir, C. (2010). Automated software testing as a service. In Proceedings
of the 1st ACM Symposium on Cloud Computing, (Indianapolis, Indiana, USA: ACM), pp. 155–160.

Chan, F.T., Chen, T.Y., Mak, I.K., and Yu, Y.T. (1996). Proportional sampling strategy: guidelines for
software testing practitioners. Information and Software Technology 38, 775–782.

Chan, W.K., Cheung, S., and Leung, K.R. (2007). A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research (IJWSR) 4, 61–
81.

Check Hayden, E. (2013). Mozilla plan seeks to debug scientific code. Nature 501, 472.

Check Hayden, E. (2015). Journal buoys code-review push. Nature 520, 276–277.

Chen, L., and Avizienis, A. (1978). N-Version Programming: A fault-tolerance approach to reliability
of software operation. In Proc. 8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), pp. 3–9.

Chen, T.Y., and Merkel, R. (2008). An upper bound on software testing effectiveness. ACM
Transactions on Software Engineering and Methodology (TOSEM) 17, 16.

Chen, T.Y., Cheung, S.C., and Yiu, S. (1998). Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01, Dept. of Computer Science, Hong Kong Univ. of
Science and Technology.

Chen, T.Y., Tse, T., and Zhou, Z.Q. (2003). Fault-based testing without the need of oracles.
Information and Software Technology 45, 1–9.

Chen, T.Y., Merkel, R.G., Eddy, G., and Wong, P. (2004). Adaptive Random Testing Through
Dynamic Partitioning. In QSIC, pp. 79–86.

Chen, T.Y., Leung, H., and Mak, I. (2005). Adaptive random testing. In Proceedings of Advances in
Computer Science-ASIAN 2004. Higher-Level Decision Making, (Springer), 320–329.

Chen, T.Y., Ho, J.W., Liu, H., and Xie, X. (2009). An innovative approach for testing bioinformatics
programs using metamorphic testing. BMC Bioinformatics 10, 24.
This paper provides the first case study of using metamorphic testing to test bioinformatics
programs.

 13

Chen, T.Y., Kuo, F.-C., Merkel, R.G., and Tse, T. (2010). Adaptive random testing: The ART of test
case diversity. Journal of Systems and Software 83, 60–66.

Chu, M., Murphy, C., and Kaiser, G. (2008). Distributed in vivo testing of software applications. In 1st
International Conference on Software Testing, Verification, and Validation, pp. 509–512.

Dai, H., Murphy, C., and Kaiser, G. (2010). Confu: Configuration fuzzing testing framework for
software vulnerability detection. International Journal of Secure Software Engineering 1, 41-55

DeMilli, R., and Offutt, A.J. (1991). Constraint-based automatic test data generation. IEEE
Transactions on Software Engineering 17, 900–910.

Evans, T.W., Gillespie, C.S., and Wilkinson, D.J. (2008). The SBML discrete stochastic models test
suite. Bioinformatics 24, 285–286.

Gao, J., Bai, X., and Tsai, W.-T. (2011). Cloud testing-issues, challenges, needs and practice. Software
Engineering: An International Journal 1, 9–23.

Giannoulatou, E., Park, S.-H., Humphreys, D.T., and Ho, J.W. (2014). Verification and validation of
bioinformatics software without a gold standard: a case study of BWA and Bowtie. BMC
Bioinformatics 15, S15.

Gray, R., and Kelly, D. (2010). Investigating test selection techniques for scientific software using
Hook’s mutation sensitivity testing. Procedia Computer Science 1, 1487–1494.

Hamlet, R. (1994). Random testing. Encyclopedia of Software Engineering.

Hamlet, R.G. (1977). Testing programs with the aid of a compiler. IEEE Transactions on Software
Engineering SE-3, 279–290.

Hannay, J.E., MacLeod, C., Singer, J., Langtangen, H.P., Pfahl, D., and Wilson, G. (2009). How do
scientists develop and use scientific software? In Proceedings of Workshop on Software Engineering
for Computational Science and Engineering, 1–8.

Hook, D., and Kelly, D. (2009). Mutation sensitivity testing. Computing in Science & Engineering 11,
40–47.

Howden, W.E. (1976). Reliability of the path analysis testing strategy. IEEE Transactions on Software
Engineering, SE-2. 208–215.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990
1–84.

IEEE (2013). Software and systems engineering — Software testing — Part 1: Concepts and
definitions. ISO/IEC/IEEE 29119 1–84.

ISTQB, I. (2015). Glossary of Testing Terms. ISTQB Glossary :
http://www.istqb.org/downloads/finish/20/193.html.

Jia, Y., and Harman, M. (2011). An analysis and survey of the development of mutation testing. IEEE
Transactions on Software Engineering 37, 649–678.

Joppa, L.N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., Gavaghan, D., and Emmott,
S. (2013). Troubling trends in scientific software use. Science 340, 814–815.

Knight, J.C., and Leveson, N.G. (1986). An experimental evaluation of the assumption of
independence in multiversion programming. IEEE Transactions on Software Engineering 12, 96–109.

 14

Kuo, F.-C., Chen, T.Y., and Tam, W.K. (2011). Testing embedded software by metamorphic testing: A
wireless metering system case study. In 36th IEEEConference on Local Computer Networks (LCN),
pp. 291–294.

Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods
9, 357–359.

Lanubile, F., Shull, F., and Basili, V.R. (1998). Experimenting with error abstraction in requirements
documents. In Proceedings of Fifth International Software Metrics Symposium,, 114–121.

Leavitt, N. (2009). Is Cloud Computing Really Ready for Prime Time? Computer 42, 15–20.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics 25, 1754–1760.

Liu, H., Kuo, F.-C., Towey, D., and Chen, T.Y. (2014). How effectively does metamorphic testing
alleviate the oracle problem? IEEE Transactions on Software Engineering 40, 4–22.

McCarthy, D.J., Humburg, P., Kanapin, A., Rivas, M.A., Gaulton, K., Cazier, J.-B., and Donnelly, P.
(2014). Choice of transcripts and software has a large effect on variant annotation. Genome Medicine
6, 26.

Merali, Z. (2010). Computational science: Error, why scientific programming does not compute.
Nature 467, 775–777.

Murphy, C., Kaiser, G.E., and Hu, L. (2008). Properties of machine learning applications for use in
metamorphic testing. In Proceedings of the 20th International Conference on Software Engineering
and Knowledge Engineering (SEKE), 867-872.

Murphy, C., Shen, K., and Kaiser, G. (2009a). Automatic system testing of programs without test
oracles. In Proceedings of the eighteenth international symposium on Software testing and analysis,
189–200.

Murphy, C., Kaiser, G., Vo, I., and Chu, M. (2009b). Quality assurance of software applications using
the in vivo testing approach. In Proceedings of International Conference on Software Testing
Verification and Validation, 111–120.

Myers, G.J., Sandler, C., and Badgett, T. (2011). The art of software testing (John Wiley & Sons).

O’Rawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., Bodily, P., Tian, L., Hakonarson, H., and
Johnson, W.E. (2013). Low concordance of multiple variant-calling pipelines: practical implications
for exome and genome sequencing. Genome Medicine 5, 28.
This paper provides a strong demonstration the low concordance among five widely used variant
calling pipelines, suggesting the importance of improving the quality of these pipelines.

Otero, C., and Peter, A. (2015). Research Directions for Engineering Big Data Analytics Software.
IEEE Intelligent Systems 30, 13–19.

Parveen, T., and Tilley, S. (2010). When to migrate software testing to the cloud? In Proceedings of
Third International Conference on Software Testing, Verification, and Validation Workshops
(ICSTW), 424–427.

Riungu-Kalliosaari, L., Taipale, O., and Smolander, K. (2012). Testing in the cloud: Exploring the
practice. IEEE Software 29, 46–51.

Segura, S., Hierons, R.M., Benavides, D., and Ruiz-Cortés, A. (2010). Automated test data generation
on the analyses of feature models: A metamorphic testing approach. In Proceedings of the Third
International Conference on Software Testing, Verification and Validation (ICST), 35–44.

 15

Weyuker, E.J. (1982). On testing non-testable programs. The Computer Journal 25, 465–470.

Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., and Chen, T.Y. (2011). Testing and validating
machine learning classifiers by metamorphic testing. Journal of Systems and Software 84, 544–558.

Zhou, Z.Q., Huang, D., Tse, T., Yang, Z., Huang, H., and Chen, T. (2004). Metamorphic testing and its
applications. In Proceedings of the 8th International Symposium on Future Software Technology
(ISFST 2004), pp. 346–351.

 16

Figure Legends

Fig. 1 Comparison of different testing techniques.

Fig. 2 Illustration of different types of failure-causing input patterns, with corresponding

example source codes.

 17

Tables

Table 1 Definition of commonly used terms in software testing

Key Term Definition

Validation

“The process of evaluating a system or component during or at the end of the

development process to determine whether it satisfies specified requirements.”

(IEEE, 1990)

Verification

“The process of evaluating a system or component to determine whether the

products of given development phase satisfy the conditions imposed at the start

of that phase.” (IEEE, 1990)

Quality Control “A set of activities designed to evaluate the quality of developed or

manufactured products.” (IEEE, 1990)

Quality Assurance

“A planned and systematic pattern of all actions necessary to provide adequate

confidence that an item or product conforms to established technical

requirements.” (IEEE, 1990)

Test Case

“A set of test inputs, execution conditions, and expected results developed for

a particular objective, such as to exercise a particular program path or to verify

compliance with a specific requirement.” (IEEE, 1990)

Test Suite

“A set of several test cases for a component or system under test, where the

post condition of one test is often used as the precondition for the next one.”

(ISTQB, 2015)

Test Reliability

“A test T is called reliable if it can reveal error in program P if P has

implemented incorrectly. It is important to note that it has been proven that

there is no testing strategy that can check the reliability of all programs.”

(Howden, 1976)

Regression Testing

“Testing of a previously tested program following modification to ensure that

defects have not been introduced or uncovered in unchanged areas of the

software, as a result of the changes made. It is performed when the software or

its environment is changed.” (ISTQB, 2015)

Oracle
“A mechanism, which can systematically verify the correctness of a test result

for any given test case.” (Liu et al., 2014)

Test Oracle

Problem

“The oracle problem occurs when either an oracle does not exist, or exists but

is too expensive to be used.” (Liu et al., 2014)

Black-Box Testing

“Testing that ignores the internal mechanism of a system or component and

focuses solely on the outputs generated in response to selected inputs and

execution conditions.” (IEEE, 1990)

White-Box Testing
“Testing that takes into account the internal mechanism of a system or

component. Types include branch testing, path testing, statement testing.”

(IEEE, 1990)

 18

Test Coverage
“The degree to which a given test or set of tests addresses all specified

requirements for a given system or component.” (IEEE, 1990)

Fault

“Fault – concrete manifestation of an error within the software. One error may

cause several faults, and various errors may cause identical faults.” (Lanubile

et al., 1998)

Error

“Defect in the human thought process made while trying to understand given

information, solve problems, or to use methods and tools. In the context of

software requirements specifications, an error is a basic misconception of the

actual needs of a user or customer.” (Lanubile et al., 1998)

Failure

“Departure of the operational software system behavior from user expected

requirements. A particular failure may be caused by several faults and some

faults may never cause a failure.” (Lanubile et al., 1998)

Successful Test

“A test that cannot reveal any error in the implemented software using given

test case.” (Chen et al., 1998)

Static Testing
“Testing of a component or system at specification or implementation level

without execution of that software, e.g. reviews or static analysis.” (ISTQB)

Dynamic Testing “Testing that requires the execution of the test item.” (IEEE, 2013)

Majority of these terms are defined in IEEE Standard Glossary 610.12-1990 (IEEE, 1990) and

International Software Testing Qualification Board Glossary (ISTQB, 2015) and ISO/IEC/IEEE 29119

(IEEE, 2013).

Table 2 Comparison of advantages and disadvantages of testing techniques

Methodology Test case

selection

Test case

coverage

Testing output Requires

oracle?

Alleviates the

oracle.problem?

Special Case

Testing Predefined Limited Faulty/Not faulty No No

NVP Input space Input space Concordant/Discordant No Yes

RT/ART Random Input space Faulty/Not faulty Yes No

MT

Based on

relations

Nearly all

input space Satisfied/Not Satisfied No Yes

NVP: N-version programming; RT: random testing; ART: adaptive random testing; MT: metamorphic

testing

 19

Table 3 Metamorphic Relations for sin(x)

MR MT Relation

MR1 sin (x) = sin (x + 2𝜋)

MR2 sin (x) = -sin (x + 𝜋)

MR3 sin (x) = -sin (-x)

MR4 sin (x) = sin (𝜋 - x)

MR5 sin (x) = sin (x+ 4𝜋)

Figure 1

 20

Figure 2

This is the author’s version of a work that was accepted for publication. Changes introduced as a

result of publishing processes such as copy-editing and formatting may not be reflected in this work.

For a definitive version of this work please refer to the published source.

The final publication is available at Springer via http://dx.doi.org/10.1007/s12551-015-0177-3

Citation: Kamali, Amir Hossein and Giannoulatou, Eleni and Chen, Tsong Yueh and Charleston,

Michael A. and McEwan, Alistair L. and Ho, Joshua W K (2015) How to test bioinformatics software?

Biophysical Reviews, 7 (3). pp. 343-352. ISSN 1867-2450

	Kamali 2015_BiophysRev
	Amir Hossein Kamali1,2, Eleni Giannoulatou1,3, Tsong Yueh Chen4, Michael A. Charleston5, Alistair L. McEwan2, Joshua W. K. Ho1,3
	Keywords software testing, bioinformatics, quality assurance, automated testing, cloud-based testing
	The oracle problem In dynamic software testing, an oracle is a mechanism that decides if the output of the PUT is correct given any possible input. This mechanism is most useful if it is computationally simpler than the algorithm of the PUT. For examp...
	Metamorphic testing
	As illustrated in the sin(x) example, an MR is used for two purposes: (1) to generate additional follow-up test cases by modifying the source input, and (2) to check the relationship between the outputs produced by the execution of the source and foll...
	Mutation analysis: Evaluation of the effectiveness of software testing methodologies

	COPYRIGHT Info Kamali

