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Abstract

Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ
development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using
observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and
matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN
inference. The GRNs were assembled based on w2,000 pieces of experimental genetic perturbation evidence from
manually reading w150 primary research articles. Each piece of perturbation evidence records the qualitative change of the
expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of
tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely
allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these
unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive
interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression
profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is
possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and
specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction.
Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific,
suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides
essential datasets and empirical evidence to guide the development of new GRN inference methods for mammalian organ
development.
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Introduction

Developmental biology, especially in the context of mammalian

development, is the study of growth, differentiation, patterning

and regeneration of cells, tissues and organs [1]. It is remarkable

that all cells in a multicellular organism contain the same genome

yet they express different sets of genes, and respond differently to

the same genetic or signalling perturbation, in a highly regulated

manner. It is increasingly clear that there is a need to fully unravel

cell type-specific gene regulatory networks (GRNs) in order to

understand the complex mechanisms underlying many develop-

mental processes [2–4]. To achieve better understanding of

complex genetic causes in organ development and diseases, we

need to take a systems approach that interrogates causal genetic

regulatory relationships (e.g., conditional knockout of Pax9
reduces the expression of Msx1 [5]). Therefore in this study we

mainly focus on the inference of causal GRNs in which each node

represents a gene, and each edge represents a causal regulatory

relationship between two genes.

The identification of causal gene regulatory relationships has a

long history in the study of mammalian organ development,

despite being primarily driven by hypothesis-based candidate gene

investigations. Over the last half a century, developmental

biologists have often used low throughput in vivo techniques such

as in situ hybridization and immunohistochemistry to accurately

detect spatio-temporal changes in gene expression in response to

targeted gene knock-out, knock-down or over-expression experi-

ments. By summarising the results of many of these experiments,

we can incrementally infer reliable causal GRNs. A classic

example of this is Eric Davidson’s work on constructing and

analysing GRNs in sea urchin and other animals [3,4].

With the increasingly widespread availability of genome-wide

expression profiling technologies, such as microarray and next-

generation sequencing, we are now able to measure the expression

levels of almost all the genes in the genome simultaneously. This

gave rise to the tantalising prospect that we could infer GRNs from

expression profiles [6,7]. Although correlation between two genes

does not imply causation, the converse is commonly implicitly
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assumed by many algorithms — that causal gene regulation leads

to observable gene co-expression. This assumption implies that if

one can properly remove non-causal edges from a network

constructed on measures of gene co-expression, the remaining

edges are likely causal [8,9]. In other words, many people

attempted to infer a GRN from gene co-expression data alone

without explicitly making use of gene perturbation experimental

data [10]. Even though the developers of these methods were likely

aware of the underlying assumptions and limitation on interpret-

ing a GRN inferred from gene co-expression data, it is quite

possible that the end-users might treat each edge in the inferred

GRN as having a causal regulatory role.

Large-scale community challenges, such as the Dialogue for

Reverse Engineering Assessments and Methods (DREAM), have

been conducted to evaluate GRN inference methods using in silico
simulated data or a number of known GRNs in bacteria or yeast.

Many approaches perform better than random when comparing

to ‘gold standard’ perturbation experiments, although distinguish-

ing true from false positives in even the most confident predictions

from the best performing algorithms is infeasible given the total

search space, usually several orders of magnitude larger [11].

Ongoing evaluations of the DREAM challenge have shown that

although network inference is partially achievable in prokaryotic

organisms, inference in eukaryotic organisms still remains a major

challenge [12,13].

We note that several methods have been designed to infer causal

networks based on perturbation data and have been applied to

study mammalian development. Wagner showed that theoretical-

ly, if there is no noise and missing value in the data, it is possible to

infer a causal GRN of n genes in O(n2) steps [14]. Nonetheless,

real data contains noise and missing values. More sophisticated

methods must be used. Nested effects models [15,16] and methods

based on deterministic effects propagation networks [17,18] are

effective at reconstructing the causal network between genes for

which systematic (genome-wide) perturbation experiments exist.

These algorithms are not the main focus of this study. We mainly

focus on assessing the underlying assumption behind the

algorithms that make use of gene co-expression data alone. Two

such popular expression-based GRN inference algorithms are

GENIE3 [19] and ARACNE [20].

A fundamental question arises, ‘Can we reverse engineer

mammalian developmental causal GRNs from a collection of

gene expression profiles?’. In addition, ‘How much can alternative

data types contribute?’ To fully address this question, we will need

high quality causal GRNs for comparison, but there is currently no

gold standard for mammalian GRNs. Nonetheless, we have

observed that there is a vast amount of experimentally validated

genetic or molecular perturbation data in the published literature,

but these data remain largely computationally inaccessible —

mostly buried in figures, tables or text in developmental biology

papers. Indeed it is exactly this type of data that is most often used

as a gold standard for validation of predicted regulatory

relationships and construction of high quality causal GRNs

[11,13,21,22].

Methods

Data summary
In this study, we assembled two manually-curated mouse GRN

datasets (embryonic development of tooth and heart), summarising

experimental evidence for causal regulation (or lack of causal

regulation) between 1,177 pairs of regulator-target gene pairs, and

a compendium of matching microarray expression profiles, to

systematically investigate the difficulties of GRN inference in

mammalian cells, especially in the context of organ development.

The tooth GRN and microarray dataset was downloaded from

ToothCODE, and the data were generated to study epithelial-

mesenchymal interactions during early tooth organogenesis [23].

It contains over 1,500 pieces of genetic perturbation evidence from

120 primary research papers, and 105 matching microarray

profiles (Table 1). Using a similar curation approach, we

specifically assembled the heart dataset for this study. We

manually collected over 700 pieces of genetic perturbation

evidence from 43 published primary research papers on in vivo
mouse cardiac development. We complemented this with 86

microarray expression profiles from the GEO database. The

curated perturbation dataset, the assembled microarray data, and

the inferred cardiac development network (see below for more

details on inference of mode of regulation) can be accessed

through our newly developed interactive web resource, Cardiac-

Code (Figure 1). It was built on an SQL database and interfacing

with javascript and HTML5 through PHP. The network

visualisation was supported by the cytoscape.js plugin (Figure 1).

The tooth and heart GRN and microarray gene expression datasets

are available via ToothCODE (http://compbio.med.harvard.

edu/ToothCODE/) and CardiacCode (http://CardiacCode.

victorchang.edu.au/).

Manual curation of genetic perturbation evidence from
the literature

We recorded genetic perturbation experimental evidence from

primary research papers. Each piece of evidence consists of 11

crucial pieces of information: regulator gene; target gene;

perturbation performed on the regulator (+ or 2); effect on the

expression of the target gene (up-regulated, no change, down-

regulated); species; developmental stage; tissue in which the

perturbation was performed; tissue in which the expression of

the target gene was measured; measurement technique; type of

molecule measured (mRNA or protein); citation. If we were not

confident about any of these pieces of information, the evidence

was discarded. We further recorded the experimental context and

additional information where it was available, including the

genotype and phenotype of the perturbed mouse embryo.

Inferring mode of regulation of a regulator-target pair
In this study, we only consider experimental evidence that

comes from an in vivo embryonic mouse model (i.e., not in

cultured cells, or not in adult tissues), and was measured by in situ
hybridisation, qRT-PCR, or similar well-established expression

measurement techniques.

The regulator and target genes in each piece of experimental

evidence form a regulator-target-pair (RTP). We define three possible

modes of regulations for each RTP: activating, no interaction, and

inhibiting. An edge is placed between two nodes in a GRN if its mode

of regulation of the corresponding RTP is activating or inhibiting. We

do not distinguish between direct and indirect interactions in this

study, instead focusing solely on observable functional regulatory

relationship between a regulator and a target gene. Since each RTP

may be supported by multiple pieces of evidence, and they may not

always be in total agreement, it is important to infer the mode of

regulation of each RTP using a principled means.

First, we removed all RTPs that have opposite regulatory

evidence in any tissues or time points — i.e., observing both

‘activating’ and ‘inhibiting’. Afterwards, we used a probabilistic

model to integrate the occasionally noisy data D~fd1,d2,:::,dkg
and estimate the mode of regulation M~fact,no,inhg for each

RTP. This method was first proposed by [23]. We specified a

likelihood model L(M; D) for each RTP,

Causal GRN Inference
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L(M; D)~ P
k

i~1
P(di DM)

We then specified the likelihood model of observing each piece

of evidence given the mode of regulation, P(di DM~mj)~pij , as a

conditional probability matrix that describes the likelihood of

observed experimental evidence for i~fpositive, no, negativeg
(rows of the matrix) given the true mode of interaction

j~factivating, no, inhibitingg (columns of the matrix),

pij~

a 1
2

(1{a) (1{a)(1{b)

(1{a)b a (1{a)b

(1{a)(1{b) 1
2

(1{a) a

2
64

3
75

where k is the number of pieces of evidence corresponding to a

RTP, a represents the probability of a correct experimental

observation and b represents the probability of an incorrect

experimental observation due to insensitivity of the detection

technology. Here we used a~0:9 and b~0:9, but our results are

not sensitive to reasonable changes in these parameters [23].

The inferred mode of regulation is the mode M that maximises

the likelihood function L(D; M).

Microarray preprocessing
The tooth (Illumina MouseWG-6 v2.0) microarray gene expres-

sion data were downloaded from GEO (GSE32321) [23]. The heart

(Affymetrix Mouse Genome 430 2.0) microarray data were

assembled from multiple studies from GEO (Table S1). The

assembled heart microarray profiles were quality checked, RMA

normalized and log2 transformed (Figure S1, S2). In both datasets,

low signal probes were removed (mean probe expression v7:14
(Illumina) and v5:6 (Affymetrix) respectively). For differential gene

expression analysis, we use the limma package [24] to determine

statistically significantly up- or down-regulated genes (Benjamini-

Hochberg adjusted p{valuev0:01). For inference of GRNs from

microarray data, we use the 5000 most variable probes and all of the

probes that matched regulator or target genes in our corresponding

literature datasets were retained for further analysis.

Network inference based on gene expression
Correlation. Correlation coefficients (Pearson and Spear-

man) were calculated on the subset of probes that matched the

RTPs in the corresponding dataset. A representative correlation

cut-off of 0.5 was used to define co-expression of the two genes

represented by the two probes.

Mutual information. We use the minet R package [25] to

calculate mutual information between the probes for all the RTPs.

ARACNE. We use the ARACNE algorithm [20,26] as

implemented in minet. Default settings were used, including

‘eps = 0’ for ARACNE to avoid prematurely throwing edges away.

GENIE3. The GENIE3 [19] algorithm was run using the R

code provided by the authors. The random forest training step was

parallelised using the foreach and doParallel libraries to improve

efficiency on multi-core processors. In an attempt to standardise the

network sizes between methods, the number of edges retrieved by

the most unrestricted ARACNE adjacency matrix in each analysis

was used to determine how many edges to retrieve from the GENIE3

weight matrix.

Network inference based on other molecular networks
Protein-protein interactions. Protein-protein binding data

was collected using the ‘iRefR’ R package [27]. Both human and

mouse interaction data were used, resulting in a network of

448147 edges.

Pathway Commons data. Pathway information was down-

loaded from Pathway Commons (http://www.pathwaycommons.

org/). Mouse and human specific edges were downloaded in.SIF

format, giving 35088 and 392309 unique RTPs respectively.

Calculating sensitivity and specificity of edge inference in
GRNs

All of the networks, including those generated from the curated

literature data and those inferred from other data sources, were

encoded into graph structures using the ‘igraph’ R package [28].

Overlap of edges between two networks was calculated using the

Table 1. Summary of tissue and time specific regulatory actions.

Data type Feature Tooth (ToothCODE) Heart (this study)

# Evidence 1518 710

# Paper (years) 120 (1993–2011) 43 (1994–2013)

# Regulators 109 32

Curated perturbation data

# Targets 160 129

# RTP1 897 280

# - Activating RTP 325 164

# - Inhibiting RTP 117 36

# - No effect RTP 455 80

Platform Illumina Affymetrix

# Arrays 105 82

Microarray data

# - Time series 45 40

# - Genetic perturbation 24 30

# - Signaling stimulation 36 0

# - Phenotype difference 0 12

1RTP: Regulator-Target Pair.
doi:10.1371/journal.pone.0111661.t001

Causal GRN Inference
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functions in the ‘igraph’ package. Area under the receiver operator

characteristic curve was calculated using the ROCR R package [29].

Results

Causal gene regulation does not necessarily result in
observable gene co-expression

The assumption that a causal gene regulatory interaction should

lead to an observable correlation of gene expression between the

regulator and target is an attractive hypothesis that underlies many

GRN reverse engineering approaches. If this assumption is true

then we would expect certain trends, including an activating or

inhibiting relationship having a positive or negative co-expression,

respectively; and gene pairs that have been shown to have no

regulatory relationship should have correlation coefficient close to

zero. For each literature RTP, we calculated the Pearson and

Spearman correlation, as well as the mutual information between

Figure 1. CardiacCode is a public online resource allowing interactive visualisation of the heart GRN, and download of the heart
data collected and used in this study.
doi:10.1371/journal.pone.0111661.g001
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the two genes across all of the matched microarray profiles

(Figure 2).

In the tooth data, all RTPs, regardless of activating, inhibiting

and no effect, have no or very weak Spearman correlation

coefficients (Figure 2A). Neither do we observe a difference in

Pearson correlation or mutual information values (Figure S3A,

S4). This agrees with previous findings based on the S. cerevisiae
GRN in the DREAM challenge [13]. In the heart data, there is a

weak shift of the activating and inhibiting RTP towards higher and

lower correlation values respectively (Figure 2B). Nonetheless, the

gene co-expression patterns of the no-effect RTPs seem to be

similar to that of the activating RTPs, suggesting in practice it

would have been hard to distinguish true from false positive edges

in a GRN if it was constructed based on gene co-expression.

Common expression-based inference methods cannot
reliably recover mammalian causal GRNs

In order to investigate the usefulness of current GRN reverse

engineering approaches applied to mammalian developmental

gene expression data, we ran the GENIE3 and ARACNE

algorithms on the tooth and heart microarray datasets and

compared the resulting networks to our literature curated GRNs.

These two algorithms were chosen because GENIE3 was shown to

perform well in the recent DREAM challenge [13], and ARACNE

was developed for inferring human GRNs. In general, we found

that the algorithms did not offer a tangible improvement over

random background in terms of detection sensitivity or specificity

(Figure 3), i.e., the area under the receiver operator characteristic

curve (AUROC) is close to 0.5.

First we observed that at the first-neighbour level, neither

algorithm returned more than one or two true positives on any

dataset. Because ARACNE and GENIE3 both work by pruning

supposedly indirect edges and we do not assume that our RTPs are

all direct regulatory relationships, we also considered matching

each literature-based RTPs with 2- to 7-edge paths. Although the

true positive rate increased as expected, it was accompanied by an

almost equivalent increase in the false positive rate. Furthermore,

we found that the algorithms trained on the tooth dataset did not

perform better than the randomly permuted networks of the same

structure, and only performed slightly better than random in the

heart dataset. This slight improvement might be due to the slightly

stronger discriminatory gene co-expression signals between

activating and inhibitory RTPs (Figure 2). Nonetheless, reliable

GRN inference in both datasets is virtual impossible in practice

based on these two algorithms.

We found that using an absolute Pearson correlation threshold

of 0.5 identified 2871 unique RTPs from the heart data and 3528

unique RTPs from the tooth data once self loops have been

removed. From these RTPs we could reproduce 24% of our

activating and inhibitory edges from the tooth literature (true

positives), however 26% of our no-effect edges (false positives) were

also identified. In heart we observed a 42% true positive rate,

coupled with a 49% false positive rate. The overall result is the

same even if we use a different Pearson correlation cut-off, and the

overall AUROC is close to 0.5 (Figure S7). The size of the inferred

networks that must be analysed in order to retrieve the same true

positive rate as Pearson correlation was often an order of

magnitude larger than the correlation based networks. This

indicates that in practice, interpretation of the results of GENIE3

and ARACNE may be more challenging, less beneficial and less

intuitive than analysing a Pearson correlation based network,

although neither will consistently return more true positives than

false positives.

Microarray perturbation results are consistent with the
literature-curated RTPs

To examine whether the microarray data actually contain any

information for identifying causal regulatory interactions, we

investigated whether the set of differentially expressed genes from

perturbation experiments can be used to infer causal regulatory

relationships. The tooth microarray dataset contains 6 perturba-

tion experiments, including transgenic knockdowns of Msx1 and

Pax9, and exogenous stimulation of the BMP, Wnt, sonic
hedgehog and FGF pathways. Based on the pathway information

provided by [23], we identified 39 RTPs from the literature at

stage E13 that corresponded to the microarray perturbation

experiments. Encouragingly, the observed directions and fold

changes of differential expression as determined by the microarray

experiments were consistent with the regulatory relationships

predicted by the literature (Figure 4). We found that using a fairly

conservative absolute log2 fold change cut-off of 1 (i.e., 2-fold

change) would result in a edge detection sensitivity (true positive

rate) of 30%, increasing up to w70% as the cut-off is relaxed. The

false positive rate ( = 1-specificity) is consistently much lower than

the true positive rate, suggesting that it is possible to distinguish

causal gene regulation from non-regulatory ones with a reasonable

sensitivity and specificity. We repeated the analysis considering all

developmental stages, which increased the number of RTPs to

144. The trends are still visible although with increased noise

(Figure S5).

Tissue and temporal specificity is a confounding factor in
network reconstruction

We sought to investigate the extent to which different tissues

display different genetic responses to the same stimulus. Using the

ToothCODE microarray profiles on genetic perturbation exper-

iments, we found that the magnitude of tissue specific responses

varies considerably between different perturbations. First we

examined epithelial and mesenchymal tissue microarray profiles

from Pax9{={ and Msx1{={ mice (Figure 5A,B). We identified

hundreds of genes are significantly differentially expression in only

one tissue type and not the other, even in the same genetic mouse

model (FDRv0:01). Similarly, we observed that distinct sets of

genes are differentially expressed in response to the same signalling

pathway stimulation (BMP and Wnt) in dental epithelium versus

dental mesenchyme (Figure 5C,D; see also Figure S6). In addition,

we also observed many tissue and/or temporal specific causal gene

regulation in our tooth and heart literature datasets (Table S2).

These results suggest that the causal gene regulatory network

structure may be specific to individual cell or tissue types.

Therefore, it is important to consider cell-type specificity when

constructing GRNs in multicellular organisms [30,31].

Figure 2. Spearman correlation of different classes of RTP in
the tooth data (A) and the heart data (B). RTP classes are
activating (Act.), no effect (No.) and inhibitory (Inhib.).
doi:10.1371/journal.pone.0111661.g002
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The value of using perturbation data for GRN inference
It has been commonly believed that it is best to infer GRNs

using expression profiles from a broad range of diverse conditions.

To achieve such a diversity, we might collect samples from

multiple cell types, multiple genetic perturbation, or developmen-

tal time series. To investigate the relative value of using

perturbation vs. time series data, we split the heart microarray

dataset into: 1) arrays from wildtype time-series experiments; 2)

arrays from perturbation experiments. To see if the correlation

shift trends arose we plotted the Pearson correlation for each type

of RTP (Figure S3). We observed that the correlation of activating

RTPs in the perturbation subset is generally higher than that

observed in the time-series subset. The combined set seems to yield

the best result.

We have shown that there can be a slight shift in the overall

distribution of correlation values between activating and inhibiting

causal relationships, but not to the extent where a cutoff can

accurately differentiate these two classes from false positives

(Figure 2, S3). How much information can be gained by exploiting

perturbation experiments? We calculated the AUROC for

Pearson correlation of all our activating or inhibiting RTPs

compared to our no-effect RTPs, and similarly for the fold change

values observed in matching perturbation microarray experiments

(Figure S7). We clearly see that fold change from direct

perturbation experiments is a much better predictor of causal

gene regulation than Pearson correlation, with AUROCs of 0.63–

0.87 compared to 0.55 based on gene co-expression alone.

GRN inference based on protein interaction network and
other molecular pathways

Using co-expression (as determined by Pearson correlation), we

could achieve a true positive rate of 25%, but with almost a 30%

false positive rate. We found that only 3–6% of the edges in

Pathway Commons pathways or protein-protein interaction

networks overlap with activating or inhibiting RTPs, however in

all cases a similar proportion of false positives was also retrieved

(Figure 6, Figure S8). By explicitly taking into account the

perturbation design (as in Figure 4), we can significantly increase

the true positive rate while keeping the false positive rate low

(Figure 6, Figure S8).

Discussion

This study aims to evaluate the practical utility of genome-wide

expression profiles to infer causal gene regulatory networks in

Figure 3. Evaluation of sensitivity (true positive rate) and specificity (1-false positive rate) of edge discovery by GENIE3 (A–C) and
ARANCE (D–F) using the tooth and heart microarray datasets. To account for the possibility that our literature-curated RTP may represent
indirect regulatory interactions, we allow matching of a RTP with a linear path of multiple edges (x-axis). The bar chart above each plot shows the size
of the network. Dotted lines shows control background of 1,000 node-label-permuted randomised networks.
doi:10.1371/journal.pone.0111661.g003

Causal GRN Inference
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mammalian organ development. In particular, we assessed

whether it is possible to observe gene co-expression in experimen-

tally verified causal gene regulatory relationships — a common

assumption in most GRN inference algorithms [7,13]. One of the

major results from the DREAM5 challenge is that many inference

methods performed well when analysing in silico datasets and

prokaryotic (E. coli) datasets, but inference of eukaryotic GRNs (in

S. cerevisiae) is very poor regardless of which method was used

[13]. Marbach et al. (2012) attributed the reduced inference

accuracy to an increased regulatory complexity and prevalence of

post-transcriptional regulation in eukaryotes. Ensemble-based

approaches that combine multiple inference methods have been

shown to slightly improve the inference accuracy [13].

We have gathered two well validated literature-curated datasets

and matching microarray gene expression datasets to systemati-

cally evaluate the challenges of causal GRN inference. Our

datasets are unique because they contain thorough annotation of

tissue types and embryonic stages, as well as the type of regulation

observed (activation, repression and no effect), which importantly

allows us to estimate both sensitivity and specificity of inference of

GRN edges. To our knowledge this study contains the most

extensive evaluation of commonly applied GRN inference

paradigms to mammalian embryogenesis and the first quantifica-

tion of the difficulty of their application to this context. Our results

show that inference of causal GRNs for mammalian developmen-

tal systems by considering gene co-expression alone is likely not an

effective approach. Nonetheless, perhaps not too surprisingly, it is

possible to infer causal regulatory relationships with good

sensitivity and specificity if perturbation data are used. This result

supports the importance of considering these data when recon-

structing causal regulatory networks.

Our study place a strong emphasis on embryonic organ

development. From a practical point of view, we chose this

emphasis because of the wealth of data we have already collected

(e.g., the published ToothCODE data), the availability of a large

amount of matching published microarray gene expression data

from GEO, and the many reported successful applications of GRN

to study developmental biology problems, such as Eric Davidsons

work [1,3,4]. In this sense, the process of GRN inference should be

easier than other non-developmental GRNs. From a conceptual

point of view, the inference of developmental GRN is at least as

difficult as, if not more difficult than, the inference of other GRNs

since a useful developmental GRN will need to deal with

regulatory relationships between multiple cell types, and the

regulatory relationship between two genes may change dramat-

ically during successive developmental stages. Therefore, we

expect the lessons learned from our study will be informative to

the inference of other non-developmental GRNs.

Our tooth and heart microarray datasets each have about 100

microarray samples, containing about 30 conditions. It is

conceivable that better performance can be achieved by profiling

more samples in additional conditions. Nonetheless, we noticed

that it is practically not easy to obtain such data when studyingin
vivo gene expression patterns in embryonic animal models.

Embryonic dissection, tissue collection and processing all require

time, money and labour.

We did not extensively test the effect of microarray probe

normalisation procedure. We simply follow common practices in

microarray analysis, and ask whether this is quantitatively

sufficient to recover information for GRN construction. It is

conceivable that a more extensive enumeration of microarray

processing procedure may yield higher correspondence with the

literature network, but considering the high false positive rate

observed in our current dataset, we do not expect the major results

to change.

Figure 4. Fold changes (log2) from tooth microarray perturbation experiments that matched the perturbation evidence in the
literature show consistency with expected trends. RTPs that are inhibiting (A), have no effect (B), or are activating (C) trend to have negative,
close to zero and positive fold changes respectively. (D) shows the consistency of the literature based RTP type (Lit.) and microarray data (M.A.) as fold
change cut-off varies between 0 and 3 (both up- or down-regulation).
doi:10.1371/journal.pone.0111661.g004

Causal GRN Inference
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Figure 5. Scatter plots show the extent of tissue-specific differential expression in dental epithelium (y-axis) and dental
mesenchyme (x-axis) as a result of Pax9 knockout (A), Msx1 knockout (B), Bmp4 stimulation (C) and Wnt stimulation (D). Coloured
points represent probes of differentially responsive genes between the two tissues. Pearson correlation is also shown.
doi:10.1371/journal.pone.0111661.g005

Figure 6. Comparison of the true positive and false positive rates as determined by different network inference approaches on the
tooth dataset: Pearson correlation, Pathway Commons database, protein-protein interactions (PPI), the union of the previous three
methods and direct effect on genetic perturbation (log2 fold change cut-off or 0.5 and 1). Note: the TP and FP rates for the first 4
methods were calculated based on the subset of 686 RTPs that were represented in the microarray, PPI and pathway data. The TP and FP rates for
perturbation data were based on the subset of 39 RTPs with a regulator matching the pathway being perturbed.
doi:10.1371/journal.pone.0111661.g006
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Lessons for mammalian causal GRN inference
During the course of manually curating the literature data, we

observed that there is a vast amount of genetic or molecular

perturbation data in the published literature that largely remains

computationally inaccessible. Unlike microarray or high through-

put sequencing data, most people do not deposit the results of their

perturbation results into a centralised database such as EBI

ArrayExpress [32] or NCBI GEO [33]. Based on our experience,

an undergraduate-level biology student can read 2–3 papers a day,

and each paper contains on average 12 useful pieces of

perturbation data. In one month, a single person can curate up

to 700 pieces of perturbation data. Ultimately we would like to see

a similar centralised repository where authors and researchers

submit their own spatio-temporally annotated perturbation results

at the time of publication, but there is currently no standard for

reporting and annotating these dataset. Our experience on manual

curation has been generally very positive and rewarding.

Considering the amount of gene perturbation data that one can

obtain from simply computerising existing records, we believe this

suggests that the community of computational systems biologist

investigating mammalian disease and development should perhaps

re-prioritise their research effort, e.g., instead of focusing on

inferring causal GRNs from high throughput genome-wide

datasets, committing resources to systematic generation and

curation of relevant genetic perturbation data, and developing

algorithms to construct cell type and developmental stage specific

GRNs from these potentially sparse and noisy perturbation data.
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