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Introduction
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID are 2 debilitating 
chronic illnesses that have garnered attention for their complex and overlapping clinical presentation (1). 
Both illnesses are characterized by postexertional malaise, severe fatigue, and cognitive dysfunction with 
significant effects on quality of  life (QoL). The global prevalence of  ME/CFS is estimated to be between 
0.4% and 2.5%, and it is believed that the prevalence is likely to increase following the COVID-19 pan-
demic, while the prevalence of  long COVID is estimated to affect between 5% and 43% of  SARS-CoV-2 
infections (2, 3). These illnesses are further burdened by the absence of  a validated biomarker to differenti-
ate between ME/CFS and long COVID to provide diagnostic assistance. Both ME/CFS and long COVID 
pose significant public health concerns with great economic effects.

Several of  the hypothesized mechanisms for ME/CFS and long COVID pathogenesis share common-
ality including immune dysregulation, neuroinflammation, microbiota dysbiosis, and impaired energy pro-
duction (4). In conjunction with the overlapping symptomatology, there is much debate on whether ME/
CFS and long COVID are different conditions or the same. Immune dysregulation is a key feature of  the 
pathogenesis of  ME/CFS and long COVID (5). The immune system maintains homeostasis and defends 
the host against pathogens and other insults. However, prolonged exposure to antigens, inflammatory medi-
ators, and cellular stressors can result in a phenomenon known as immune exhaustion. Immune exhaus-
tion is characterized by the progressive loss of  effector functions and increased expression of  inhibitory 
receptors on immune cells (6, 7). This is exemplified by the upregulation of  checkpoint molecules such as 
programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and T cell immunoglobulin 
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and mucin domain protein 3 (TIM-3) on the surface of  T lymphocytes and NKG24 on NK lymphocytes. 
These checkpoint molecules work to dampen immune responses and promote immune tolerance.

In long COVID, dysregulated immune responses are characterized by persistent inflammation, elevated 
proinflammatory cytokines, lymphopenia, and dysfunctional T cell responses (3). Specifically, immune pro-
filing in long COVID reported elevated human leukocyte antigen (HLA), major histocompatibility com-
plex class II (MHC-II) expression cells, increased exhausted CD4+ and CD8+ T cell subsets, reduced memo-
ry T cell numbers, and cytokine alteration (8). In ME/CFS, studies have reported altered cytokine profiles, 
abnormal T cell function, and impaired NK cell cytotoxicity (9–12). Previous research employing flow 
cytometry has found elevated exhausted T cell phenotype (CD4+PD-1+) in ME/CFS (13, 14). HLA alleles 
were found to be associated with the pathogenesis of  ME/CFS (15), while single nucleotide polymor-
phisms (SNPs) in CTLA4 were associated with postinfectious onset (16). To the authors’ knowledge, there 
have been no investigations into immune exhaustion using concurrent ME/CFS and long COVID cohorts.

Understanding the commonalities and differences in immune disturbances across ME/CFS and long 
COVID is critical to elucidate the pathogenesis behind these conditions. The identification of  overlap-
ping immune abnormalities provides valuable insights that may inform future diagnostic and therapeu-
tic approaches. Immune exhaustion, a state of  functional impairment and reduced responsiveness, has 
emerged as a potential contributing factor of  both ME/CFS and long COVID. Therefore, this investigation 
aimed to elucidate transcriptome changes associated with immune exhaustion concurrently in patients 
with ME/CFS or long COVID.

Results
Participants. This current study included n = 18 healthy controls (HC), n = 14 participants with ME/
CFS, and n = 15 participants with long COVID. There were no significant differences between participant 
cohorts for age, sex, or highest level of  education achieved (Table 1). Body mass index (BMI) differed 
significantly between cohorts (adjusted P value [Padj] = 0.021), whereby HC reported a significantly lower 
BMI compared with participants with long COVID (P = 0.016). Full blood count was determined for all 
participants. The number of  monocytes (P = 0.049) and basophils (P = 0.030) differed significantly between 
groups. The number of  monocytes was significantly higher in HC and participants with long COVID com-
pared with those with ME/CFS; however, significance was lost following Bonferroni corrections for multi-
ple comparisons. Basophils were significantly higher in HC compared with those with ME/CFS; however, 
significance was lost following Bonferroni corrections for multiple comparisons. All QoL variables differed 
significantly between cohorts. For all 36-item short-form health survey (SF-36) domains, participants with 
ME/CFS or long COVID reported significantly lower QoL compared with HC. For all World Health 
Organization (WHO) Disability Assessment Schedule (DAS) domains, participants with ME/CFS or long 
COVID reported significantly higher levels of  disability compared with HC. No significant differences were 
reported between participants with ME/CFS and participants with long COVID, excluding the WHODAS 
Self-Care domain, in which patients with ME/CFS reported more difficulty (Padj = 0.048). No participant 
with long COVID reported multiple SARS-CoV-2 infections at the time of  sample collection. All par-
ticipants reported any previous or current diagnoses. Reported comorbidities included fibromyalgia (n = 
2) and postural orthostatic tachycardia syndrome (POTS, n = 3) in people with ME/CFS. A history of  
post–Epstein-Barr virus chronic fatigue was reported by n = 2 people with long COVID; however, reported 
chronic fatigue had resolved prior to SARS-CoV-2 infection. Irritable bowel syndrome (IBS) was reported 
by n = 2 people with long COVID and n = 2 people with ME/CFS. All clinical characteristics and demo-
graphics of  participants are summarized in Table 1.

Participants with ME/CFS or long COVID were required to report on the symptom they regularly 
experience, with focus on the past 30 days’ frequency (how often they experienced the symptom), and 
severity (very mild to very severe) of  symptoms. The occurrence of  symptoms enabled the determination 
of  case criteria fulfilled. All participants with ME/CFS met the Canadian Consensus Criteria (CCC), 
excluding 1 participant who reported an improvement in cognitive disturbances since a prior appointment 
with the Neuroimmunology and Emerging Diseases (NCNED) and fulfilled Fukuda criteria, thus demon-
strating the fluctuating nature of  the illness. All participants with long COVID fulfilled the WHO working 
case definition for “Post COVID-19 Condition.” There were no significant differences in the prevalence of  
symptoms between ME/CFS and participants with long COVID. The prevalence of  symptoms is reported 
in Table 2.
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Table 1. Participant demographics, full blood analysis, and quality of life

HC ME/CFS Long COVID P value

Age 41.83 ± 3.12 39.857 ± 3.27 45.47 ± 3.15 0.565
Sex n (%)

Male 5 (27.8) 3 (21.4) 4 (26.7) 0.913
Female 13 (72.2) 11(78.6) 11 (73.3)

BMI 22.51 ± 0.54A 24.62 ± 1.33 25.85 ± 0.81A 0.021
Education n (%)

Primary school 0 (0.0) 0 (0.0) 0 (0.0) 0.201
High school 1 (5.6) 4 (28.6) 2 (13.3)

Undergraduate 5 (27.8) 2 (14.3) 8 (53.3)
Postgraduate 9 (50.0) 6 (42.9) 3 (20.0)

Other 3 (16.7) 2 (14.3) 2 (13.3)
Employment n (%)

Full time 8 (44.4) 2 (14.3) 10 (66.7) <0.001
Part time 3 (16.7) 2 (14.3) 0 (0.0)

Casual 2 (11.1) 1 (7.1) 3 (20.0)
Unemployed (other) 5 (27.8) 0 (0.0) 2 (13.3)
Unemployed (illness) 0 (0.0) 9 (64.3) 0 (0.0)

Full blood count analysis
WCC (× 109/L)B 6.21 ± 0.33 5.73 ± 0.36 5.91 ± 0.27 0.498

Lymphocytes (× 109/L) 1.95 ± 0.14 1.91 ± 0.32 1.83 ± 0.13 0.939
Neutrophils (× 109/L) B 3.55 ± 0.22 3.27 ± 0.24 3.37 ± 0.23 0.508

Monocytes (× 109/L) 0.47 ± 0.03 0.37 ± 0.03 0.48 ± 0.04 0.049
Eosinophils (× 109/L) B 0.18 ± 0.04 0.15 ± 0.03 0.18 ± 0.04 0.986
Basophils (× 109/L) B 0.05 ± 0.004 0.03 ± 0.004 0.04 ± 0.02 0.025
Platelets (× 109/L) 268.44 ± 14.88 244.86 ± 12.93 278.47 ± 10.72 0.200

RCC (× 1012/L) 4.59 ± 0.10 4.56 ± 0.11 4.62 ± 0.08 0.912
Hematocrit 0.41 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.898

Hemoglobulin (g/L) 136.39 ± 2.94 138.5 ± 2.57 138.133 ± 3.17 0.927
Comorbidities

Fibromyalgia 0 (0.0) 2 (14.3) 0 (0.0) 0.085
POTS 0 (0.0) 3 (21.4) 0 (0.0) 0.023

Interstitial cystitis 0 (0.0) 1 (7.1) 0 (0.0) 0.300
IBS 0 (0.0) 2 (14.3) 2 (13.3) 0.256

Iron deficiency 0 (0.0) 1 (7.1) 0 (0.0) 0.300
Sinusitis 0 (0.0) 0 (0.0) 1 (6.7) 0.336

Sleep apnea 0 (0.0) 0 (0.0) 1 (6.7) 0.336
Chronic fatigue 0 (0.0) 0 (0.0) 2 (13.3) 0.108

SF-36B

General Health 78.39 ± 3.0A,C 30.36 ± 4.46A 42.66 ± 5.97C <0.001
Physical Functioning 98.75 ± 0.97A,C 39.64 ± 5.70A 54.0 ± 7.47C <0.001

Role Physical 95.7 ± 3.16A,C 23.21 ± 5.69A 25.83 ± 6.82C <0.001
Role Emotional 95.83 ± 2.82A 74.41 ± 7.98 51.67 ± 8.69A <0.001

Pain 96.72 ± 1.63A,C 40.36 ± 6.37A 51.17 ± 7.62C <0.001
Mental Health 83.44 ± 3.59A 58.21 ± 6.28 57.0 ± 5.11A 0.001

Vitality 71.88 ± 6.09A,C 13.39 ± 3.58A 17.08 ± 2.83C <0.001
Social Functioning 92.97 ± 3.60A,C 31.25 ± 7.61A 28.33 ± 7.26C <0.001

WHODASB

Understanding and communication 0.29 ± 0.26A,C 12.51 ± 6.59A 12.15 ± 5.90C <0.001
Mobility 0.0 ± 0.0A,C 12.15 ± 6.49A 9.55 ± 5.20C <0.001
Self-care 0.0 ± 0.0A 8.72 ± 5.74A,C 2.97 ± 2.91C <0.001

Relationships 0.14 ± 0.12A,C 10.79 ± 6.58A 16.19 ± 8.34C 0.002
Life activities 0.05 ± 0.03A,C 18.33 ± 9.54A 12.48 ± 6.86C <0.001

Participation in society 0.03 ± 0.02A,C 14.68 ± 29.26A 15.48 ± 6.79C <0.001

Categorical variables compared using χ2 test. Continuous variables compared using 1-way ANOVA. BContinuous variables compared using Kruskal-
Wallis test. A,CBetween-group comparisons returning significance after Bonferroni corrections for multiple comparisons. The sample letter symbolizes 
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Differential gene expression. Differential expression of  genes was filtered according to log fold change (FC) 
parameters –1.5 to 1.5 and a P value of  0.05, resulting in the selection of  29 genes in long COVID compared 
with HC (Table 3 and Figure 1). Of  the 29 selected genes, 15 were upregulated and 14 were downregulated. 
Downregulated genes, including HLADQA1 and HLADQB1, had the highest degree of  differential expres-
sion (log2FC = –4.81925, P = 0.009, and log2FC = –4.34154, P = 0.0102, respectively). Of  the upregulated 
genes, KIR2DL5A/B had the highest degree of  change with log2FC of  2.54102 (P = 0.0005).

A total of  14 genes was selected as differentially expressed between patients with ME/CFS com-
pared with HC (Table 4 and Figure 2, A and B). Of  the 14 genes, 5 genes were upregulated and 9 
genes were downregulated. Downregulated genes, including IFNA4/7/10/17/21, IGHG1, and IFNA6, 
had the highest degree of  differential expression (log2FC = –2.42502, P = 0.0005; log2FC = –2.24777, 
P = 0.000008; and log2FC = –2.20172, P = 0.0009, respectively). Of  the upregulated genes, CEACAM3 
had the highest degree of  change with a log2FC of  1.83403 (P = 0.0014). Hierarchical clustering grouped 
mRNA expression and samples according to similarity in expression patterns. Interpretation of  the heat-
map demonstrates similarities within ME/CFS and long COVID cohorts and similarities in expression 
patterns, except for a few samples (Figure 2A). Overlapping genes can be found in Figure 3, A and D. 
The full data set outputs can be found in Supplemental Data 2 (supplemental material available online 
with this article; https://doi.org/10.1172/jci.insight.183810DS1.)

Gene set analysis. The change in regulation within each gene set relative to the baseline was described 
using gene set analysis (GSA); both undirected enrichment score (UES) and directed enrichment score 
(DES) for the top 15 gene sets are presented in Table 5. Differentially expressed genes in long COVID 
were associated with PD-1 signaling (UES = 1.7782, DES = –1.742), IL-6 signaling (UES = 1.6638, 
DES = 0.9619), TGF-β signaling (UES = 1.6145, DES = 1.2819), antigen presentation (UES = 1.589, 
DES = –0.6682), mitogen activation protein kinase (MAPK) signaling (UES = 1.5361, DES = –0.4939), 
and mTOR signaling (UES = 1.4928, DES = 0.3127). In ME/CFS, GSA identified enrichment of  gene 
sets including peroxisome proliferator–activated receptors (PPAR) signaling (UES = 1.9043, DES = 
–1.4736), fatty acid metabolism (UES = 1.7918, DES = –1.5557), NK receptors (UES = 1.7526, DES = 
–1.3492), glycolysis and glucose import (UES = 1.7244, DES = –1.5434), anergy (UES = 1.6924, DES = 
1.4338), B cell exhaustion (UES = 1.6487, DES = –1.5374), and epigenetic modification (UES = 1.5496, 
DES = 0.9327).

comparisons between 2 cohorts. The WHODAS domain for participation in work/school was omitted given the high number of participants reporting 
unemployment due to illness. Data are presented as mean ± SD and n (%). HC, healthy control; ME/CFS, myalgic encephalomyelitis/chronic fatigue 
syndrome; BMI, body mass index; WCC, white cell count; RCC, red cell count; SF-36, 36-item short-form health survey; WHO, World Health Organization; 
DAS, disability assessment schedule.

Table 2. Symptom prevalence of ME/CFS and long COVID

Symptom ME/CFS Long COVID P value
Postexertional malaise 14 (100.0) 11 (73.3) 0.100
Cognitive disturbances 13 (92.9) 13 (86.7) 1.000

Pain 14 (100.0) 12 (80.0) 0.224
Sleep 14 (100.0) 13 (86.7) 0.483

Neurosensory, perceptual, and motor 
disturbances

14 (100.0) 13 (86.7) 0.483

Immune 12 (85.7) 9 (60.0) 0.215
Respiratory 8 (58.1) 8 (53.3) 1.000

Gastrointestinal 14 (100.0) 11 (73.3) 0.100
Urinary disturbances 8 (57.1) 3 (20.0) 0.060

Cardiovascular manifestationsA 13 (92.9) 12 (80.0) 0.512
Thermoregulatory disturbances 11 (78.6) 7 (46.7) 0.128

Data presented as n (%) for those reporting experiencing the symptom. ACategorical variable comparisons completed 
by χ2 test. All other variables compared using Fisher’s exact test. ME/CFS, myalgic encephalomyelitis/chronic fatigue 
syndrome.
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Overlapping gene sets included chemokine signaling (long COVID: UES = 1.6212, DES = –1.4999; 
ME/CFS: UES = 1.9815, DES = –1.8727), type I IFN signaling (long COVID: UES = 1.5237, DES = 
–0.7452; ME/CFS: UES = 1.8554, DES = –1.5052), type II IFN (long COVID: UES = 1.5971, DES = 
0.092; ME/CFS: UES = 1.7313, DES = –0.8088), TNF signaling (long COVID: UES = 1.6121, DES = 
1.1078; ME/CFS: UES = 1.5776, DES = 0.7148), CTLA4 signaling (long COVID: UES = 1.5185, DES 
= –0.7578; ME/CFS: UES = 1.7201, DES = –1.1482), DAP12 signaling (long COVID: UES = 1.4937, 
DES = 1.115; ME/CFS: UES = 1.5637, DES = 1.1961), Janus kinase/signal transducers and activators of  
transcription (JAK/STAT) signaling (long COVID: UES = 1.594, DES = 0.978; ME/CFS: UES = 1.6042, 
DES = 0.3461), and other IL signaling (long COVID: UES = 1.5995, DES = –0.7734; ME/CFS: UES = 
1.7592, DES = –1.078).

Cell type abundance. The abundance of  cell populations was determined according to the expression of  
cell marker genes using Rosalind Bio. Hierarchical cluster analysis observations demonstrate heterogeneity 
within cohorts (Figure 4A). The abundance of  exhausted CD8 cells was significantly lower in ME/CFS 
compared with HC (Padj = 0.0147). There were no significant differences in normal CD8 T cells reported. 
Furthermore, the abundance of  Tregs was significantly lower in ME/CFS compared with long COVID (Padj 
= 0.0375) (Figure 4B). No other significance was reported; remaining abundance scores for cell types are 
shown in Supplemental Data 3.

Pathways and disease functions. Ingenuity Pathway Analysis (IPA) was used to determine the association of  
differentially expressed genes with biological functions and canonical pathways for both ME/CFS and long 

Table 3. Differential gene expression in participants with long COVID

Gene name FC log2FC P value
Upregulated

CEACAM1 1.9039 0.9289 0.0139
CEACAM3 3.5210 1.8160 0.0012
MAP3K8 1.5058 0.5905 0.0010

FCAR 1.5777 0.6579 0.0212
IL10 2.1889 1.1302 0.0307

MMP9 2.2512 1.1707 0.0077
PIK3R1 1.5256 0.6093 0.0003

TNFAIP3 1.8426 0.8817 0.0004
IL1R2 2.4389 1.2862 0.0186

SOCS3 1.9019 0.9275 0.0009
ICOSLG 1.5529 0.6350 0.0031

HEY1 2.480 1.3103 0.0149
CYP26C1 1.9692 0.9776 0.0210

KIR2DL5A/B 5.820 2.5410 0.0005
CXCL1/2/3 1.9927 0.9948 0.0242

Downregulated
TNFRSF17 –1.7424 –0.8011 0.0457

CISH –1.5439 –0.6266 0.0494
FZD2 –2.0105 –1.0076 0.0231

HLADQA1 –28.2318 –4.8192 0.009
HLADQB1 –20.2737 –4.3415 0.0103

IGHG1 –3.9649 –1.9873 0.0003
IGHG2 –2.0517 –1.0368 0.0164
IGHG3 –2.2607 –1.1768 0.0069
IGHG4 –2.2708 –1.1832 0.0085
IGKC –1.8143 –0.8594 0.0170

RRAS –1.5857 –0.6651 0.0034
CCL2 –2.6947 –1.4301 0.0158
CCR2 –1.5659 –0.6471 0.0072

HLA-DRB1/3 –1.5419 –0.6247 0.0298

Data extracted from Rosalind Bio. Descriptions extracted from the NIH National Library of Medicine Gene database. FC, 
fold change.
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COVID cohorts when compared with HC (Table 6). The top 5 biological functions in long COVID include 
abnormal morphology of  lymphocytes (P < 0.0001), activation of  leukocytes (P < 0.0001), immediate 

Figure 1. Differentially expressed genes in long 
COVID. (A) Volcano plot displaying statistical 
significance (log10[P value] on the y axis and log2 
fold change on the x axis). Selected genes meeting 
filter criteria are presented as those downregulated 
(≤-1.5) and those upregulated (≥1.5). (B) Heatmap 
of selected genes representing log2 normalized 
expression values from –8 to 6. Red indicates high 
levels of expression, while blue indicates low levels 
of expression. Clusters are organized according to 
upregulated or downregulated genes by participant 
cohort. HC, healthy control.
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hypersensitivity (P < 0.0001), activation of antigen-presenting cells (P < 0.0001), and lack of lymphocytes (P < 
0.0001). Only 2 of the abovementioned biological functions overlap with the ME/CFS cohort: the activation of  
leukocytes (P < 0.0001) and the activation of antigen-presenting cells (P < 0.0001). The remaining top biological 
functions in ME/CFS include the formation of rosettes (P < 0.0001) (cell type not specified), immune response 
of cells (P < 0.0001), and activation of myeloid cells (P < 0.0001).

Top 5 canonical pathways differed between long COVID and ME/CFS, excluding the macrophage 
alternative activation signaling pathway (P < 0.0001 and P < 0.0001, respectively). Canonical pathways iden-
tified in long COVID included antigen presentation (P < 0.0001), autoimmune thyroid disease signaling (P 
< 0.0001), allograft rejection signaling (P < 0.0001), and B cell development (P < 0.0001). Meanwhile, IL-12 
signaling and production in macrophages (P < 0.0001), primary immunodeficiency signaling (P < 0.0001), 
role of  macrophages, fibroblasts and endothelial cells in rheumatoid arthritis (P < 0.0001), and neutrophil 
extracellular trap signaling pathways (P < 0.0001) were reported in ME/CFS. HLA-DQA1, HLA-DQB1, and 
IGHG1 were found to be pivotal in the top biological pathways and diseases in long COVID, which over-
lapped with ME/CFS with the addition of  IGHG3, CCL2, CEACAM3, and IFNA6. Overlapping pathways 
and disease function were observed in Figure 3, B and C. The complete pathways and disease function out-
put can be found in Supplemental Data 4.

Network analysis. Interaction network analysis was performed using IPA. This analysis demonstrates 
the interactions between molecules and the data set imported. One network was identified for long COVID 
(Figure 5), while 2 networks were identified for ME/CFS (Figure 6, A and B), of  which network 1 (Figure 
6A) obtained the highest score of  18. Network analysis in long COVID was associated with categories 
and disease or functions including gastrointestinal disease (chronic colitis, P < 0.0001), humoral immune 
response and protein synthesis (quantity of  IgG1, P < 0.0001), immunological disease, injury or abnor-
malities (immediate hypersensitivity, P < 0.0001), and cell morphology and abnormalities (morphology 
of  lymphocytes, P < 0.0001). Analysis for the highest scoring network in ME/CFS was associated with 
cellular assembly and organization (formation of  rosettes, P < 0.0001), cellular development, hematolog-
ical system development and function (maturation of  Th cells, P < 0.0001), and cell-to-cell signaling and 
interactions (activation of  antigen presenting cells, P < 0.0001). Network analysis outputs can be found in 
Supplemental Data 4.

Discussion
This study investigates altered gene expression related to immune exhaustion in ME/CFS and long COVID 
concurrently. As an overview, 5 genes were significantly upregulated and 9 genes were significantly downreg-
ulated in people with ME/CFS compared with HC. In long COVID, 15 genes were significantly upregulated 

Table 4. Differential gene expression in participants with ME/CFS

Name FC Log FC P value
Upregulated

CEACAM3 3.5653 1.8340 0.0014
PIK3R1 1.7107 0.7746 <0.0001

TNFAIP3 1.7632 0.8181 0.0012
YES1 1.5536 0.6356 0.0012

SLC7A5 1.8147 0.8597 0.0002
Downregulated

EHHADH –1.9389 –0.9552 0.0003
IFNA6 –4.6002 –2.2017 0.0009
IGHG1 –4.7494 –2.2477 <0.0001
IGHG2 –2.7601 –1.4647 0.0012
IGHG3 –2.9528 –1.5621 0.0006
IGHG4 –2.9419 –1.5568 0.0009

CD200R1 –1.6738 –0.7432 0.0008
XCL1/2 –1.6050 –0.6826 0.0009

IFNA4/7/10/17/21 –5.3704 –2.4250 0.0005

Data extracted from Rosalind Bio. Descriptions extracted from NIH National Library of Medicine Gene database. FC, fold 
change.
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and 14 genes were significantly downregulated compared with HC. Seven differentially expressed genes 
overlapped between patient cohorts, suggesting the involvement of  similar molecular pathways involved in 
immune dysfunction. A greater number of  genes was identified, and 3 times the amount of  genes was upreg-
ulated in long COVID compared with participants with ME/CFS.

The analysis revealed distinct patterns of  gene expression and pathway dysregulation in both ME/CFS 
and long COVID cohorts. In ME/CFS, downregulation of  IFN signaling (IFNA4/7/10/17/21 and IFNA6) 
pathways and immunoglobulin genes (IGHG) suggests a state of  immune suppression. However, this may 
differ from previous research findings reporting elevated IFNA (17–19) and upregulated IGH variable region 

Figure 2. Differentially expressed genes 
between ME/CFS. (A) Volcano plot display-
ing statistical significance (log10[P value] 
on the y axis and log2 fold change on the x 
axis). Selected genes meeting filter criteria 
are presented as those downregulated (≤ 
–1.5) and those upregulated (≥1.5). (B) Heat-
map of selected genes representing log2 
normalized expression values from –3 to 
6. Red indicates high levels of expression, 
while blue indicates low levels of expres-
sion. Clusters are organized according to 
upregulated or downregulated genes by 
participant cohort. HC, healthy control.



9

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(20):e183810  https://doi.org/10.1172/jci.insight.183810

genes (20), contradicting the role of  autoimmunity in the pathogenesis of  ME/CFS in this cohort. Notably, 
pathways related to macrophage activation and cytokine production were significantly affected, indicating 

Figure 3. Overlapping gene expression in ME/CFS and long COVID. (A) Heatmap representing log2 normalized expression values (–5 to 5). Red represents 
higher expression, blue represents low expression, and gray represents no differential expression. Data exported from Rosalind Bio. (B and C) Heatmap of 
the top 10 canonical pathways (B) and diseases and functions (C). The darker gradient indicates greater significance. P < 0.05. Data exported from IPA. (D) 
Unique and overlapping genes. HC, healthy control.
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dysregulation of  innate responses. Regarding the occurrence of  immune exhaustion in ME/CFS, downreg-
ulation of  IFN-γ production is associated with T cell and NK cell exhaustion (7, 21–23), thus supporting 
the hypothesis on the role of  immune exhaustion in ME/CFS. This is further supported by previous data 
on the expression of  NKG2A, cytokine disturbances, and functional impairments. Cytokine dysregulation 
is commonly reported in ME/CFS; however, research findings are often contradictory (19). Increases in 
proinflammatory cytokines are reported in ME/CFS compared with HC, specifically TGF-β, TNF-α, and 
various IL types (24, 25). The results of  the present study once again highlight the heterogeneity of  ME/
CFS and emphasize the importance of  large sample cohorts to enable stratification on patient subsets.

Patients with long COVID exhibited dysregulated expression of  genes involved in antigen presenta-
tion, cytokine signaling, and immune cell activation. Lingering elevated cytokine levels, otherwise known 
as the cytokine storm, in long COVID is consistently reported (26). A triad of  IL-1β, IL-6, and TNF-α 
is associated with long COVID (27). In the present study, gene expression of  TNFAIP3 was significantly 
upregulated in both ME/CFS and long COVID, presenting potential consistency with previous research. 
Furthermore, both the upregulation (KIR2DL5A/B) and downregulation (HLADQA1 and HLADQB1) of  
genes associated with antigen presentation suggest a heightened immune response, potentially reflecting 
persistent immune activation following viral infection. Biomarkers of  exhaustion not commonly discussed 
also include the downregulation of  HLADQA1/B1 genes. Interestingly, the proportion of  HLA-expressing 
cells was found to correlate with COVID-19 severity — specifically, a lower proportion of  HLA-DR+ cells 
was reported in fatal infections (28). Conversely, a higher proportion of  HLA-DR+ cells in severe to mild 
cases of  COVID-19 was reported (29). Additionally, HLADQB1 alleles are associated with chronic infection 
(30) and viral clearance (31). The expression of  HLADQB1 serves a vital role in effective immune responses 
against viruses, and downregulation may be attributed to virally induced immune avoidance or chronic 
immune activation.

Downregulated IGHG genes reported in ME/CFS were also observed in long COVID. Frequency 
and function of  IGHG genes are associated with infectious immunodeficiency, allergy, autoimmunity, and 
malignancy. Interestingly, an increase in IGHG-expressing cells was detected during disease progression in 
the bronchoalveolar lavage fluid of  patients with COVID-19 (32). IgG has a central role in primary immu-
nodeficiency disorders (33). Low serum IgG levels and low levels of  IgG subclasses are correlated with 
diminished defense against pathogens. Various bacterial and viral antigens and allergens affect individuals 
with particular IGHG haplotypes (33). The investigation of  alternative IGHG genes and allele genotypes 
may elucidate their role in ME/CFS and long COVID. The decreased expression of  IGHG may indicate 
immunodeficiency in participants with ME/CFS or long COVID and may explain their susceptibility to 

Table 5. Gene set analysis for genes differentially expressed in long COVID and ME/CFS compared with HC

GSA Long COVID GSA ME/CFS
Undirected Enrichment 

Score
Directed Enrichment 

Score
Undirected Enrichment 

Score
Directed Enrichment 

Score
PD1 signaling 1.7782 –1.742 Chemokine signaling 1.9815 –1.8727
IL–6 signaling 1.6338 0.9619 PPAR signaling 1.9043 –1.4736

Chemokine signaling 1.6212 –1.4999 Type I IFN 1.8554 –1.5052
TGF-β signaling 1.6145 1.2819 Fatty Acid Metabolism 1.7918 –1.5557
TNF signaling 1.6121 1.1078 Other IL signaling 1.7592 –1.078

Other IL signaling 1.5995 –0.7734 NK Receptors 1.7526 –1.3492
Type II IFN 1.5971 0.092 Type II IFN 1.7313 –0.8088

JAK/STAT signaling 1.594 0.978 Glycolysis and Glucose 
Import

1.7244 –1.5434

Antigen presentation 1.589 –0.6682 CTLA4 signaling 1.7201 –1.1482
B cell memory 1.5393 0.5463 Anergy 1.6924 1.4338

MAPK signaling 1.5361 –0.4939 B Cell Exhaustion 1.6487 –1.5374
Type I IFN 1.5237 –0.7452 JAK/STAT signaling 1.6042 0.3461

CTLA4 signaling 1.5185 –0.7578 TNF signaling 1.5776 0.7148
DAP12 signaling 1.4937 1.115 DAP12 signaling 1.5637 1.1961
mTOR signaling 1.4928 0.3127 Epigenetic Modification 1.5496 0.9327

Data extracted from Rosalind Bio. HC, healthy control.
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secondary or prolonged infections. Previous investigations have reported that individuals with IgG defi-
ciency often complain of  fatigue and that this deficiency is associated with lower QoL (34). However, IgG 
levels were not investigated in this current investigation.

Figure 4. Cell profiles and gene expression. (A) Heatmap extracted from Rosalind Bio. Cell type Z scores for cell populations are populated for samples collected 
from ME/CFS, long COVID, and HC. (B) Comparison of cell type abundance scores extracted from Rosalind Bio; statistical analysis and the figure were completed 
using GraphPad Prism. Exhausted CD8 cells were compared using Kruskal-Wallis test with Dunn’s multiple-comparison corrections. Tregs were compared using 
1-way ANOVA with Bonferroni’s multiple-comparison test. Graphs show mean with minimum and maximum ranges. Data are presented as mean with maximum 
and minimum range. *P < 0.05. HC, healthy control; LC, long COVID.
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To the authors’ knowledge, there is limited use of  NanoString in research investigating ME/CFS and 
long COVID. Previous NanoString technology employed in ME/CFS reported protein kinase gene expres-
sion in NK cells (35). This publication reported on 37 upregulated and 55 downregulated genes associated 
with JAK/STAT and NF-κB activity in a cohort of  participants with severe ME/CFS compared with HC. 
This aligns with results of  the present study reporting significantly altered expression of  PI3KR1 in partic-
ipants with ME/CFS or long COVID. However, other protein kinase genes included within the Immune 
Exhaustion panel did not significantly differ. It should be noted that the approach to analysis differed 
between current and previous research. Previous investigations of  altered protein kinase expression or 
phosphorylation were associated with changes in overall immune cell function and linked with mediators 
of  signaling cascades such as the regulation of  calcium (35, 36).

GSA found similarities between participants with ME/CFS and long COVID, including chemokine 
signaling, type I and II IFN, IL signaling, CTLA4 signaling, DAP12 signaling, JAK/STAT signaling, and 
TNF signaling. Additionally, the identification of  shared biological functions and canonical pathways 
between ME/CFS and long COVID, such as aberrant lymphocyte morphology and leukocyte activa-
tion, highlights commonalities in immune dysregulation across these conditions. This suggests potential 
overlapping mechanisms in disease pathogenesis and provides a rationale for exploring common screen-
ing and therapeutic strategies targeting immune exhaustion pathways. In ME/CFS, a complex interplay 
between immune regulation, metabolic pathways, and metabolism may be involved in pathogenesis (4, 
5, 37). The role of  metabolic pathways in ME/CFS has been investigated. The role of  mitochondrial 
disturbances and the production of  energy is well reported (38, 39). However, the mechanisms behind 
mitochondrial disturbances are elusive, and further research is required. It is possible that the role of  mito-
chondria is greater in ME/CFS compared with long COVID. Furthermore, IL signaling, NK receptors, 
and JAK/STAT signaling highlight involvement of  cytokine-mediated immune responses, and impaired 
signaling cascades align with the literature (12, 35, 36). Moreover, enrichment of  gene sets related to B 

Table 6. Top biological functions and pathways in long COVID and ME/CFS

Long COVID ME/CFS

Functions P value Molecules Functions P value Molecules

Abnormal morphology 
of lymphocytes

<0.0001 HLADQA1, HLADQB1, 
IGHG1

Formation of rosettes <0.0001 IGHG1, IGHG3

Activation of leukocytes <0.0001 CEACAM3, HLADQA1, 
HLADQB1, IGHG1

Immune response of 
cells

<0.0001 CCL2, CEACAM3, IFNA6, 
IGHG1, IGHG3

Immediate 
hypersensitivity

<0.0001 HLADQA1, HLADQB1, 
IGHG1

Activation of leukocytes <0.0001 CCL2, CEACAM3, HLA-
DQA1, IFNA6, IGHG1

Activation of antigen-
presenting cells

<0.0001 HLADQA1, HLADQB1, 
IGHG1

Activation of antigen-
presenting cells

<0.0001 CCL2, HLADQA1, IFNA6, 
IGHG1

Lack of lymphocytes <0.0001 HLA-DQB1, IGHG1 Activation of myeloid 
cells

<0.0001 CCL2, CEACAM3, IFNA6, 
IGHG1

Pathways P value Ratio Pathways P value Ratio

Macrophage alternative 
activation signaling 

pathway

<0.0001 3/90 (0.016) Macrophage alternative 
activation signaling 

pathway

<0.0001 4/190 (0.021)

Antigen presentation 
pathway

<0.0001 2/39 (0.051) IL-12 signaling 
and production in 

macrophages

<0.0001 4/228 (0.018)

Autoimmune thyroid 
disease signaling

<0.0001 3/459 (0.007) Primary 
Immunodeficiency 

Signaling

<0.0001 3/61 (0.049)

Allograft rejection 
signaling

<0.0001 3/488 (0.006) Role of macrophages, 
fibroblasts and 

endothelial cells in 
rheumatoid arthritis

<0.0001 4/333 (0.012)

B cell development <0.0001 3/488 (0.006) Neutrophil extracellular 
trap signaling pathway

<0.0001 4/400 (0.01)

Data extracted from IPA. Ratio is calculated as the number of molecules in a given pathway that meet cutoff criteria, divided by total number of molecules 
that make up that pathway and that are in the reference set.
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cell development and CTLA4 signaling in long COVID suggests altered adaptive immune responses and 
immune checkpoint regulation.

Gene expression according to cell type revealed the significance of  exhausted CD8 cells and Tregs in 
ME/CFS. Suggested markers of  immune exhaustion for CD8 T cells include the upregulation of  CD38, 
CD39, TIM-3, HLA-DR, CTLA-4, NKG2A, CD107a, and PD-1 and the downregulation of  IL-2, IL-21, 
IFN-λ, and granzyme B (40–43). The upregulation of  immune checkpoints in this present study, including 
CTLA4 and PD-1, are typical features of  exhausted CD8 T cells, and this upregulation suggests reduced 
effector T cells and impaired differentiation, proliferation, and function. A previous investigation by Gil et 
al. reported that participants with long COVID or ME/CFS have dysfunctional CD8+ T cells (44).

The significant differences in gene-associated cell abundance for Tregs in ME/CFS and long COVID is 
interesting. Previous investigations reported differences in Tregs in ME/CFS compared with HC, support-
ing an increase in Tregs perhaps as a method to control an overactive immune system (14, 45). Conversely, 
other investigations have reported a significant reduction in Tregs compared with HC (46). Studies have 
shown that patients with COVID-19 have considerably fewer Tregs compared with the general population. 
While the pathophysiology of  COVID-19 appears to be influenced by Tregs, there is, however, limited 
research to comment on the role of  Tregs in the development of  long COVID (47, 48). Tregs are subsets of  
T cells that suppress the immune system. A decline in Tregs in the presence of  chronic inflammation can 

Figure 5. Network analysis in long COVID. Gene interaction network map consisting of top filtered differentially expressed genes. Genes are organized 
according to subcellular space. Network analysis score = 13.
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Figure 6. Network analysis 
in ME/CFS. Gene interaction 
network map consisting of top 
filtered differentially expressed 
genes. Genes are organized 
according to subcellular space. 
(A) Network 1 score = 18. (B) 
Network 2 score = 3.
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result in further damage; conversely, diminished Tregs may be associated with immune exhaustion. This 
is supported by research suggesting that a combined Treg depletion and programmed cell death ligand 
1 blockage results in immune exhaustion and autoimmune profiles. Tregs and PD-1 promote immune 
exhaustion, which minimizes the immunopathological collateral damage that occurs during a chronic viral 
infection (49), suggesting a potential effect in checkpoint signaling in people with ME/CFS compared 
with long COVID. This has consequences on immune regulatory and diminishing inflammatory inhibition 
resulting in continued tissue damage (50).

This current pilot investigation is not without limitations. Indeed, the small cohort sizes make it dif-
ficult to sufficiently stratify the heterogenous nature of  ME/CFS and long COVID according to clinical 
presentation. This emphasizes the need for further investigations with larger cohorts to differentiate sub-
types and identify biomarkers for patient stratification. However, in an attempt to control for potential 
confounding variables, codiagnoses of  other chronic immune conditions were excluded. It is important 
to highlight that while this current investigation raised disease pathways associated with thyroid disease, 
rheumatoid arthritis, and allograft rejection, these conditions were excluded from the present study. This 
current research serves as the basis to justify further larger investigations to elucidate immunological bio-
markers in these conditions. Furthermore, the Immune Exhaustion panel developed by NanoString biases 
expression analysis to a small selection of  genes. While NanoString technology may provide sensitive, 
reliable, and reproducible results, future analysis may consider the validation of  gene expression analysis 
using quantitative PCR.

This investigation reports transcriptome changes in participants with ME/CFS or long COVID con-
currently using the NanoString Immune Exhaustion panel. Altered gene expression indicates that both 
innate and adaptive immune responses are indicated in the pathology of  these conditions. The analysis 
demonstrates both similarities and differences between disease cohorts. Further investigations may eluci-
date varying subtypes of  patients according to immune gene expression.

Methods
Sex as a biological variable. Our study examined both male and female participants in the analysis. Sex was 
not considered as a covariate in this investigation, given the small sample size. A larger proportion of  
female participations were included in this investigation, given that females comprise the majority of  peo-
ple with ME/CFS (51).

Participants. All participants were recruited through the National Centre for NCNED participant 
database. People with ME/CFS were screened per the Fukuda criteria (52), CCC (53), and International 
Consensus Criteria (ICC) (54) using a comprehensive online questionnaire. Patients with ME/CFS were 
included if  they fulfilled the CCC and/or ICC case definitions and reported being diagnosed by a physi-
cian. People with long COVID fulfilled the WHO working case definition for “Post COVID-19 Condition.” 
According to this definition, long COVID occurs in individuals with a history of  probable or confirmed 
SARS-CoV-2 infection, usually 3 months from the onset of  COVID-19, with symptoms that last for at least 
2 months and cannot be explained by an alternative diagnosis (55). HC reported an absence of  disease 
and/or chronic diagnoses.

In this study, symptoms were classified in 10 subtypes: (a) cognitive difficulties (e.g., cognitive overload, 
confusion, disorientation, impaired concentration, forgetfulness, and memory problems); (b) pain (e.g., 
headaches, muscle aches, and multijoint pain); (c) sleep disturbances (e.g., unrefreshing sleep, frequent 
awakenings, prolonged sleep, and reversed sleep cycle); (d) cardiovascular symptoms (e.g., orthostatic intol-
erance, cardiac arrhythmias, heart palpitations, lightheadedness, and dizziness); (e) respiratory symptoms 
(e.g., air hunger and difficulty breathing); (f) thermostatic intolerances (e.g., subnormal body temperature, 
abnormal sweating episodes, hot flushes, and cold extremities); (g) neurosensory or perceptual symptoms 
(e.g., inability to focus vision; impaired depth perception; sensitivity to touch, light, odor, taste, sound, and 
vibration; and poor balance or coordination); (8) urinary changes (e.g., changes to urination frequency and 
urgency to urinate); (h) immune disturbances (e.g., sore throat, tender lymph nodes, and new allergies/sen-
sitivities); and (i) gastrointestinal disturbances (e.g., nausea, abdominal pain, bloating, diarrhea, and IBS).

All participants were aged between 18 and 65 years, did not report a BMI higher than 32.0 (kg/m2), and 
were nonsmokers. Participants were not included in this current study if  they reported a history of  alcohol 
abuse, cardiovascular disease, diabetes, metabolic syndrome, thyroid disease, malignancies, insomnia, ane-
mia, or other fatigue-related illnesses or if  they were pregnant or breastfeeding.
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Sample collection and preparation. Between 20 and 40 mL of  whole blood was collected from each par-
ticipant into EDTA tubes via venipuncture by a qualified phlebotomist at collection locations including 
Griffith University (Gold Coast, Australia), Royal Brisbane and Women’s Hospital (Brisbane, Australia), 
Robina Hospital (Gold Coast, Australia), Toowoomba Base Hospital (Toowoomba, Australia), Sunshine 
Coast University Hospital (Sunshine Coast, Australia), and Tweed Hospital (Tweed, Australia). EDTA 
whole blood (4 mL) was used for RBC count, WBC count, and granulocyte cell count within 4 hours of  
blood collection for each participant.

Samples were delivered to the laboratory deidentified using a unique code. Blood was used for periph-
eral blood mononuclear cells (PBMC) isolation by density gradient centrifugation at 350g using Ficoll (GE 
Healthcare) as previously described (56). PBMCs were stained with trypan blue (Invitrogen) to determine 
cell count and viability. In total, 1 × 107 PBMCs were resuspended in FBS (Invitrogen) containing 10% 
dimethyl sulfoxide for storage at –80°C until RNA extraction.

Frozen PBMCs were thawed and immediately pelleted by centrifugation at 1,000g. Total RNA was isolat-
ed from PBMC pellets (5 × 106 to 10 × 106 cells) using either Trizol or an RNeasy Mini Kit (QIAGEN) accord-
ing to manufacturer instructions. The concentration and quality of the RNA were checked using Nanodrop.

RNA expression and NanoString. Gene expression analysis of  RNA was performed using the commercial-
ly available NanoString nCounter Immune Exhaustion gene expression panel (NanoString Technologies). 
This panel contains 785 genes to elucidate mechanisms behind T cell, B cell, and NK cell exhaustion in 
disease. A full list of  investigated genes can be found in Supplemental Data 1. The quality of  the samples 
was confirmed according to binding density, fields of  view, positive controls, and negative controls. The 
range of  binding density for all samples was within acceptable ranges.

Raw gene expression data were normalized against positive and negative controls to account for back-
ground noise and platform-associated variation. Normalization and analysis were performed using Rosa-
lind Bio using geometric means of  housekeeping genes (ABCF1, ALAS1, EEF1G, G6PD, GAPDH, GUSB, 
HPRT1, OAZ1, POLR1B, POLR2A, PPIA, RPL19, SDHA, TBP, TUBB) (Supplemental Data 1). Differential 
expression is reported between ME/CFS and long COVID with HC. IPA (Qiagen Digital Insights) was 
used for the interpretation of  RNA in biological pathways and networks. The following filters were applied 
to all analyses: FC > 1.5 or < –1.5 and P < 0.05.

Statistics. Normality of  participant data was determined using the Shapiro-Wilk test. Normally distrib-
uted continuous data was compared using 1-way ANOVA corrected using Bonferroni, and nonnormally 
distributed continuous data were compared using the Kruskal-Wallis test with Dunn’s corrections. Contin-
uous data are presented as mean ± SD unless otherwise stated. Categorical variables were compared using 
the χ2 test and the Fisher’s exact test. Participant demographic data were analyzed using SPSS (version 27). 
Cell profile abundance scores were compared using 1-way ANOVA corrected using Bonferroni or the Kru-
skal-Wallis test with Dunn’s corrections using GraphPad Prism (version 10). Significance is set at P < 0.05. 
Adjusted P values (Padj) are provided unless otherwise stated.

Study approval. This project was approved by Griffith University Human Research Ethics Commit-
tee (GU:2022/666). All participants provided written consent prior to participation. Research involving 
human research participants was performed per the Declaration of  Helsinki.

Data availability. The NanoString RNA-Seq data are available at National Centre for Biotechnology 
Information Gene Expression Omnibus database under accession no. GSE275334. Values for all data 
points in graphs are reported in the Supporting Data Values file.
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