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Abstract 

CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional 
(3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are frequently mutated in cancer. Our 
previous study identified a small subclass of CTCF-BSs that are resistant to CTCF knock down, termed persistent CTCF binding sites (P-CTCF- 
BSs). P-CTCF-BSs show high binding conservation and potentially regulate cell-type constitutive 3D chromatin architecture. Here, using ICGC 

sequencing data we made the striking observation that P-CTCF-BSs display a highly elevated mutation rate in breast and prostate cancer when 
compared to all CTCF-BSs. To address whether P-CTCF-BS mutations are also enriched in other cell-types, we developed CTCF-INSITE—a tool 
utilising machine learning to predict persistence based on genetic and epigenetic features of e xperimentally -determined P-CTCF-BSs. Notably, 
predicted P-CTCF-BSs also show a significantly elevated mutational burden in all 12 cancer-types tested. Enrichment w as e v en stronger for 
P-CTCF-BS mutations with predicted functional impact to CTCF binding and chromatin looping. Using in vitro binding assa y s w e v alidated that 
P-CTCF-BS cancer mutations, predicted to be disruptive, indeed reduced CTCF binding. Together this study re v eals a ne w subclass of cancer 
specific CTCF-BS DNA mutations and provides insights into their importance in genome organization in a pan-cancer setting. 
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Introduction 

The CCCTC-binding factor (CTCF) is an 11-zinc finger DNA-
binding protein ubiquitously expressed in eukaryotes. CTCF
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ubstantial heterogeneity amongst the vast number of CTCF
inding sites (CTCF-BSs), including variable binding affinity,
ell-type specificity, conservation between mammalian species,
resence of an upstream binding motif and involvement in
hree-dimensional (3D) chromatin structures ( 1 ,3–5 ). By inter-
cting with the cohesin complex ( 6 ,7 ), CTCF plays a crucial
ole in regulating 3D genomic organization through which it
an influence gene expression via various mechanisms, includ-
ng regulating enhancer-promoter looping ( 5 ,8–11 ), demarca-
ion of active and repressive domains ( 12–14 ), and mediating
he boundary formation between consecutive topologically as-
ociating domains (TADs) ( 12 ,15 ). Loss of CTCF binding has
een shown to result in structural re-organization of the 3D
enome ( 16–20 ) and, in some cases, changes to gene expres-
ion ( 16–18 ,20 ). 

Previously, we and others have shown potent CTCF knock-
own results in wide-spread loss of CTCF binding at sites,
ere termed lost CTCF binding sites (L-CTCF-BSs); in con-
rast a small subset of CTCF binding sites remain persis-
ently bound, here termed persistent CTCF binding sites (P-
TCF-BSs) ( 18 , 21 , 22 ). Interestingly P-CTCF-BSs displayed
istinct genetic and epigenetic properties compared to L-
TCF-BSs, including stronger binding intensity, cell-type con-

titutive binding and high enrichment at chromatin loop an-
hors and TAD boundaries ( 18 ). Moreover, we found that
RISPR mediated loss of P-CTCF-BSs at the Kallikrein lo-

us boundary in prostate cancer cells resulted in reduction
f 3D chromatin looping and coordinate upregulation of
enes ( 18 ). 

CTCF-BSs are among the non-coding DNA sequences that
re frequently mutated in cancer ( 23 ,24 ). CTCF-BS muta-
ions can also reduce the ability of CTCF to bind ( 25 ) which
an destabilize the 3D genome, including loss of looping and
oss of insulation of domain boundaries which can result in
ncogenic gene activation ( 26 ,27 ). CTCF-BS mutations have
een linked to development of gastrointestinal cancers and
elanoma ( 28 ,29 ), however, the vast majority of CTCF-BS
utations are unexplored. 
In this study, we investigated whether the P-CTCF-BS sub-

lass of CTCF-BSs are more frequently mutated and whether
his is a pan-cancer phenomenon since their binding is highly
onserved across varied normal and cancer cell-types. We em-
loyed machine learning approaches to predict CTCF bind-
ng persistence to knockdown. Using experimentally defined
-CTCF-BSs, we evaluated genetic and epigenetic features
hat explain CTCF binding persistence. We evaluated 15 fea-
ures in determining binding persistence and created a com-
utational tool, called CTCF-INSITE (IN-Silico Investigation
f persisTEnt binding), which predicts P-CTCF-BSs in silico.
sing CTCF-INSITE, we generated persistence metrics for
NCODE CTCF ChIP-seq data from various normal tissue

ypes, which enabled analysis of the mutational burden at P-
TCF-BSs from International Cancer Genome Consortium

ICGC) sequencing data from matched tumour types. We ver-
fied that candidate P-CTCF-BS cancer mutations predicted
o be disruptive also reduced CTCF binding in in vitro as-
ays. We discovered that mutations at P-CTCF-BSs are highly
nriched across 12 different cancer types relative to L-CTCF-
Ss. We further found that P-CTCF-BS mutations are signif-

cantly associated with loop disruption suggesting these mu-
ations may play a role in dysregulation of the 3D genome in

ancer. 

 

Materials and methods 

Datasets 

Experimentally-determined P-CTCF-BSs 
CTCF ChIP-seq data from 3 cell lines, LNCaP, IMR-90 and
MCF7, were used to define P-CTCF-BSs. LNCaP and IMR-90
data were previously generated in-house ( 18 ). MCF7 data was
obtained from an independent study ( 7 ). All cell lines had been
subjected to two transfection conditions: 1. CTCF RNAi 2.
non-targeted RNAi, as control. Transfections were conducted
for a period of 144 hours for LNCaP and IMR-90, and 48
hours for MCF7. CTCF knockdown was confirmed by west-
ern blot ( 7 ,18 ). After transfection, samples were processed
through immunoprecipitation and sequenced using the Illu-
mina Genome Analyzer II (40bp; paired-end) or HiSeq 2500
(50–75bp, single-end). P-CTCF-BSs were identified by com-
paring the CTCF ChIP-seq peaks remaining in the knockdown
versus those lost from control samples from the same cell line,
respectively (see Khoury et al. for method details ( 18 )). Dif-
ferent knockdown efficiencies were achieved: 11% of 25602
CTCF-BSs were identified as P-CTCF-BSs for LNCaP, 23%
of 20179 for IMR-90 and 33% of 37472 for MCF7, possibly
due to differences in knockdown stringencies. 

Public ChIP-seq data 
The 90 public tissues and cell line CTCF ChIP-seq data were
downloaded from ENCODE ( 30 ) and NCBI. Data sources are
summarized in Supplementary Table S1 . We used the unper-
turbed CTCF ChIP-seq data as input for prediction of persis-
tent binding. 

Public ChIA-PET data 
CTCF ChIA-PET data for GM12878 ( 31 ) as well as
RAD21 ChIA-PET data for LNCaP and MCF7 were down-
loaded from ENCODE with accession codes provided in
Supplementary Table S1 . The latter two cell lines contain a
much smaller number of inter Paired-End Tags (PETs) com-
pared to GM12878 ChIA-PET. 

Public WGS data 
The high-coverage WGS of GM12878 is available from
platinum genome project at https://hgdownload.soe.ucsc.edu/
gbdb/ hg19/ platinumGenomes/ . The high-coverage WGS for
LNCaP and MCF7 ( 32 ) were generated in house. Variants
were identified using GATK HaplotypeCaller with the follow-
ing parameter, in_base_quality_score of 10. 

Cancer mutations 
Summary data of simple mutations (i.e. SNV and indels) iden-
tified from WGS were downloaded from ICGC by setting
‘Donor Analysis Type’ to WGS from the ICGC data portal at
https:// dcc.icgc.org/ search . Quality controls were performed
at the cohort and individual levels. More specifically, cohorts
with a substantially smaller number of mutations per individ-
ual were filtered. These are likely to be Whole Exome Sequenc-
ing data, but mis-labelled, as the mutations map to exome an-
notations. Individuals with a very high number of mutations
were also removed because they are likely to have distinct can-
cer aetiologies but the sample size is too small to address this.
The Interquartile Range (IQR; IQR = 75th–25th quartile) ap-
proach was used to identify and filter out outliers, which are
< 25th quantile—1.5IQR or > 75th quantile + 1.5IQR. This

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://hgdownload.soe.ucsc.edu/gbdb/hg19/platinumGenomes/
https://dcc.icgc.org/search
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two-step QC resulted in 24 cohorts and 3218 patients to use
in our study. Mutations from cohorts of the same cancer type
were then merged together into 12 solid cancer types. The
sample size per cancer type varied quite substantially from 30
for colon to 686 for breast. The summary of datasets can be
found in Supplementary Table S2 , including the assignment of
cohorts to cancer groups and sample size after QC. 

Pairing ICGC cancer types to ENCODE ChIP-seq tissue types
Healthy tissue CTCF ChIP-seq data were used from ENCODE
for all cancers, except for melanoma and kidney. CTCF ChIP-
seq data from melanoma cell line, COLO829, and differen-
tiated nephron progenitor cells were used for melanoma and
kidney analyses, respectively ( Supplementary Table S2 ). 

Prediction of P-CTCF-BSs 

Features 
We investigated 15 distinct features (Figure 1 ) for the cell lines
LNCaP, IMR-90, and MCF7. Six were genomic features, mea-
suring the relative positions to different genic domains, includ-
ing promoter, 5 

′ UTR, 3 

′ UTR, exon or intron, and proximity
to transcriptional start site (TSS). The genomic domain an-
notation was downloaded from UCSC ( 33 ). Two features re-
lated to chromatin interactions were considered: (i) proxim-
ity to TAD boundaries ( 18 ) and (ii) frequency of overlap with
chromatin loop anchors. Two features related to binding affin-
ity were included, namely (a) fold enrichment from MACS2
( 34 ) and (b) motif score from DeepBind ( 35 ). Additional fea-
tures were replication timing quantified using Repli-Seq from
a previous study ( 36 ), conservation score measured as Ge-
nomic Evolutionary Rate Profiling (GERP) ( 37 ) from UCSC
( 33 ), number of CpG sites found at the CTCF core motif, and
constitutive binding defined as the frequency of a CTCF peak
found in a reference panel of 40 tissue and cell line ChIP-
seq data in ( 3 ). Replication timing data was standardized to
a value between 0 and 100 at a 1kb resolution. The replica-
tion timing score for a CTCF peak was calculated as the mean
value of the overlapping intervals. Similarly, the conservation
score for a peak was calculated as the mean value of the GERP
scores. 

Prediction model 
We used the above features to create two types of machine
learning models, namely a logistic regression model (R pack-
age stat v3.6.3) and a random forest model (R package ran-
domForest v4.6) ( 38 ). The experimentally-determined L- / P-
CTCF-BSs from LNCaP, were split into training and testing
datasets in a 9:1 ratio. The testing dataset was then used for
an in-sample validation of the performance measured in Area
Under the Curve (AUC) and the Area Under the Precision-
Recall Curve (AUC-PR). Splitting was iterated 100 times to
generate standard errors for the A UC and A UC-PR metrics.
Five-fold cross-validation was used to fine-tune the ‘mtry’ pa-
rameter for the RF model, which represents the number of
predictors sampled for splitting at each node ( 38 ). This anal-
ysis identified the optimal value as 3. In addition to the in-
sample test (i.e. splitting a dataset into two for training and
testing), models were tested on out-of-sample by assessing the
models on a separate dataset, P- / L- CTCF-BSs from IMR-90.
Note that chromatin looping and replication timing are un-
available for IMR-90 (and are generally unavailable for other
public data sets); therefore, we used 13 features instead of 15
to create the models for this out-of-sample test. We also cre- 
ated the CTCF-INSITE tool with these 13 features. 

Prediction 

Both models output the probability for a CTCF-BS to main- 
tain persistent binding, described as ‘persistence’ in silico . We 
applied the RF model to predict the persistence of the binding 
sites from ENCODE CTCF ChIP-seq data. A CTCF-BS was 
defined as persistent if that site demonstrated greater persis- 
tence than a pre-defined threshold. Herein, varying thresholds 
were used to derive P-CTCF-BSs at different stringencies. 

Calling ChIP-seq peaks 

The raw sequencing data of the immunoprecipitated sam- 
ple and the matched control sample (the input sample with- 
out immunoprecipitation) were processed through standard 

pipelines: adaptor trimming using Trim Galore v0.6.6; align- 
ment to hg19 reference using Bowtie v1.3.0 ( 39 ) and peak 

calling using MACS2 v2.2.7 ( 34 ) with paired immunoprecip- 
itated and control samples, a fixed shift size of 200 bp and 

a q -value cutoff of 0.05 (i.e. macs2 –nomodel –extsize 200 

–qvalue 0.05). Peaks identified from MACS2 ( 34 ) were an- 
notated with genomic location, fold enrichment and adjusted 

p -value. Any peaks overlapping the ENCODE Blacklist from 

UCSC ( 40 ) were excluded due to poor mappablity. The size of 
the peaks ranged from 200 bp to 2000 bp. 

Allele-specific binding analysis based on ChIP-seq 

data 

Heterozygous loci (either germ-line or somatic) were identi- 
fied from WGS data for LNCaP and GM12878. Allelic read 

depths from ChIP-seq data were then used to quantify the de- 
gree of allele-specific binding, as described in Tang et al. ( 41 ).
The data processing pipeline for ChIP-seq data is the same as 
described above, except for mapping to a masked hg19 ref- 
erence genome. Specifically, common SNPs from dbSNP v151 

( 42 ) were masked as ‘N’ to avoid mapping biases towards the 
alternative allele. GATK CollectAllelicCounts (v4.2.3) ( 43 ) 
was used to extract allelic read counts while filtering those 
with read depth < 5. Low-mappability and imprinted control 
regions were excluded to avoid confounding effects. Indels 
were excluded as required by GATK CollectAllelicCounts. A 

binomial test was performed to assess the significance of al- 
lelic imbalance, i.e. read depth of A1 ∼ Binomial (total read 

depth, 0.5). 

Calling chromatin loops based on ChIA-PET data 

ChIA-PET data was processed through the CHIA-PIPE 

pipeline ( 44 ) which automated analyses including the adap- 
tor trimming, linker identification, alignment using BWA mem 

and aln ( 45 ), loop calling by clustering PETs, calling for TF 

binding sites using (SPP or MACS2 v2.2.7 ( 34 )), loop call- 
ing refinement based on the binding sites and identification 

of allele-specific loops. Briefly, a loop was defined as a lo- 
cus with ≥ 3 supporting intra-ligated PETs (with an insertion 

size > 8 kb) which were clustered within < 1000 bp from each 

other. Loop calling was then refined by confirming that one or 
both loop anchors contained a CTCF-BS. Loop anchors were 
identified at a < 1 kb resolution ( Supplementary Figure S1 ). 

To enable analyses of allelic bias in looping, we made two 

modifications to CHIA-PIPE, (i) aligning reads to a masked 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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g19 reference genome for common SNPs and (ii) remov-
ng self-ligated PETs with insertions < 8 kb when counting
eads mapped to either allele at a heterozygous site. The lat-
er modification is introduced because the self-ligated PETs
an confound allele-specific binding with allele-specific loop-
ng. Similar to the allelic binding analysis, we filtered low-
appability and imprinted control regions, used GATK Col-

ectAllelicCounts (v4.2.3) ( 43 ) to extract read counts and per-
ormed significance testing using a binomial test, i.e. read
epth of A1 ∼ Binomial (total read depth, 0.5). An imbal-
nce in allelic read depths demonstrates differential loop-
ng between alleles. We examined loops mediated by CTCF
hrough analyses of allelic biases using ChIP-seq and CHIA-
ET data for GM12878. The LNCaP and MCF7 ChIP-
ET data were not deep enough for such allele-specific
nalysis. 

inding motif analyses 

ositioning of the CTCF core motif in a ChIP-seq peak 

FBSTools (R package v1.24.0) ( 46 ) and the 19 bp CTCF core
otif from JASPAR (ID: MA0139.1) ( 47 ) were used to iden-

ify the binding location within in a ChIP-seq peak ranging
rom 200 to 2000 bp. 

eepBind 

eepBind (v0.11) ( 35 ) software scores binding affinity for a
iven DNA / RNA sequence. A motif score was calculated for
ach ChIP-seq peak region. Notably, DeepBind uses multiple
re-calculated motifs, rather than one motif and provides a
ombined score for the binding affinity in silico . It does not
rovide the position of a particular motif found in a sequence.
cores from DeepBind can be negative values, which reflects
ow unlikely the binding is. DeepBind has a limitation of se-
uence length < 1000 bp, so peaks > 1000 bp were trimmed
t both ends to fit within this range. 

inding score 
he sequences for peak regions (denoted by its chromosome,
tart and end positions) were obtained from the hg19 refer-
nce genome. DeepBind was then used to determine the score
or the sequence which is referred to as the reference score.

hen there was a mutation at the peak, the reference sequence
as altered in accordance with the mutation, i.e. changing the
riginal base to a new base. A mutation score was then cal-
ulated based on the mutated sequence. If multiple mutations
ere found within a single peak, the mutation score that led

o the biggest change was retained i.e. only the impact of a
ingle variant was considered, and potential compounding ef-
ects were disregarded. 

luorescence polarization DNA binding (FPDB) 
ssay 

TCF plasmids 
lasmid 6xHis-SUMO ZF1-11 CTCF kindly provided by Dr
eter Jones, was cloned from the following plasmids: CTCF
F1–11 (pXC1441), a gift from Drs Xiaodong Cheng and

ohn Horton (MD Anderson) and pDONR223 CTCF WT a
ift from Drs Jesse Boehm, William Hahn, and David Root
Addgene plasmid # 81789). The CTCF ZF1-11 fragment
as cloned into pSUMO vectors for expressing 6xHis-SUMO

agged CTCF proteins, as described in Thomas et al. ( 48 ). 
Protein expression 

Tagged human CTCF ZF1-11 protein was expressed in the Es-
c heric hia coli strain BL21-CodonPlus (DE3)-RIPL (230280,
Agilent) and colonies were grown on agar plates contain-
ing ampicillin (100 μg / ml) and chloramphenicol (25 μg / ml)
overnight. Colonies were inoculated into 8 L of LB medium
containing ampicillin (100 μg / ml), chloramphenicol (25
μg / ml) and 25 μM ZnCl2 and cultured for 4–5 h at 28˚C to
OD 600 of ∼0.8 and cooled to 16˚C. Protein expression was
induced with 0.1 mM isopropyl- d -1-thiogalactopyranoside
(IPTG) overnight at 16˚C. Cells were harvested by centrifu-
gation at 4000 × g for 20 min at 4˚C. 

Protein purification 

Cell pellets were resuspended in 150 ml of lysis buffer (20 mM
Tris–HCl (pH 8.0), 25 mM imidazole, 1 M NaCl, 5% (v / v)
glycerol, 0.5 mM Tris (2-carboxyethyl) phosphine hydrochlo-
ride (TCEP), 25 μM ZnCl 2 ) with 1 mM phenylmethanesul-
fonylfluoride (PMSF). Resuspended cells were lysed in a cell
disrupter (Constant Systems) and clarified by centrifugation
at 12 100 × g at 4˚C for 40 min. The clarified supernatant
was DNase treated before being loaded onto 6 ml of Ni-
NTA Agarose (QIAGEN), pre-equilibrated with lysis buffer
and washed with 5 × column volumes of washing buffer (20
mM Tris–HCl (pH 8.0), 50 mM imidazole, 1 M NaCl, 5%
(v / v) glycerol, 0.5 mM TCEP, 25 μM ZnCl 2 ). Bound proteins
were eluted with elution buffer (20 mM Tris–HCl (pH 8.0),
250 mM imidazole, 1 M NaCl, 5% (v / v) glycerol, 0.5 mM
TCEP, 25 μM ZnCl 2 ). Pooled protein was subsequently con-
centrated and loaded onto a Superdex 200 16 / 600 column
(GE28-9893-35, Cytiva) pre-equilibrated with size-exclusion
buffer (20 mM Tris–HCl (pH 8.0), 1 M NaCl, 5% (v / v) glyc-
erol, 0.5 mM TCEP, 25 μM ZnCl 2 ). The protein eluted at a
volume of 78 ml. Peak fractions were pooled, concentrated,
and flash-frozen in 25 μl aliquots. 

FPDB assay 
Double-stranded DNA oligos were purchased from IDT (se-
quences are shown in Supplementary Table S3 ). The strand
containing the CTCF motif was labeled with 6-carboxy-
fluorescein (FAM). Double-stranded oligos were diluted in
DNA binding buffer (20 mM Tris–HCl (pH 7.5), 300 mM
NaCl, 5% (v / v) glycerol, and 0.5 mM TCEP) and each oligo
(5 nM) was incubated for 15 min at 25˚C with a serial di-
lution of CTCF protein in the range of 0.0005–1 μM. Trip-
licate protein serial dilutions were set up for each oligo in a
384-well black assay plate (#3575, Corning). The plates were
read on a PHERAstar FS (BMG LABTECH). Polarisation and
anisotropy values were determined by the instrument (excita-
tion at 485 nm and emission / polarisation at 520 nm). Delta
anistropy was calculated by subtracting the anisotropy value
for the lowest protein concentration from all concentrations. 

Enrichment analysis 

Permutation test 
A permutation test was used to compare the mutational bur-
den between P- and L-CTCF-BSs. The null hypothesis posits
that there is no significant difference in mutational burden be-
tween the two. Under this assumption, a background distribu-
tion of mutation counts was generated by counting the num-
ber of mutations found at each randomly-sampled subset of
all CTCF-BSs. The sampling was repeated 100 000 times with

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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each subset selected at a size equal to the number of P-CTCF-
BSs. A normal distribution was fitted to the mutation counts.
Given the observed number of mutations ( k ) at all P-CTCF-
BSs, a P -value was calculated as the proportion of subsets hav-
ing a mutation count greater or equal to k (i.e. P ( K > = k )). 

Positional enrichment 
CTCF peak regions were divided into 41 consecutive 40bp-
tiles centered at the CTCF core motif. The number of mu-
tations from all peaks were summed up for each tile. The
significance of mutational enrichment at the core motif was
calculated from a χ2 test comparing the observed number of
mutations at the core and flanking to the expected numbers
derived from the null hypothesis of no enrichment at the core
motif (i.e. uniform distribution). Under this assumption, the
expected numbers are 1 / 41 and 40 / 41 of the total number of
mutations for core and flanking respectively. 

Gene set enrichment analysis 

Gene set enrichment analysis was conducted using g:Profiler
( 49 ) software with the hallmark gene set panel from the Gene
Set Enrichment Analysis (GSEA) database ( 50 ,51 ). 

Creating gene lists 
Genes adjacent to CTCF-BSs were defined as genes located
within 1kb upstream or downstream of any CTCF-BSs of
interest. Using this approach, we generated two distinct sets
of neighbouring genes: those neighbouring P-CTCF-BSs and
those neighbouring all CTCF-BSs. 

Enrichment analysis 
Gene sets containing a significant overlap with genes neigh-
bouring P-CTCF-BSs were compared against the overlap with
genes neighbouring all CTCF-BSs (background gene set) A
gene set was significantly enriched if it met a p-value threshold
of 0.05, adjusted for multiple testing using the g:SCS method
provided by g:Profiler ( 49 ). 

Simulating mutations based on the trinucleotide 

context 

Using the SigProfilerSimulator software ( 52 ), we calculated
the trinucleotide mutational context for each patient. We sim-
ulated background mutation rate for each patient and then ag-
gregated these to create a background mutation rate at CTCF-
BSs for each cancer . The simulation was repeated 1000 times
to generate the sampling mean and variance. 

Results 

P-CTCF-BSs can be predicted from distinct genomic 

and epigenomic features 

We first evaluated the genomic and epigenomic features of
experimentally defined P-CTCF-BSs, to predict CTCF bind-
ing persistence to knockdown using machine learning ap-
proaches. We curated comprehensive molecular datasets for
LNCaP, MCF7 and IMR90 cell lines, either in-house or from
the public domain. These included Whole Genome Sequencing
(WGS), CTCF ChIP-seq, RNAi-mediated CTCF knockdown
ChIP-seq (RNAi CTCF-ChIP-seq), RAD21 or CTCF ChIA-
PET and DNA replication timing data. P-CTCF-BSs are de-
fined as the location of CTCF ChIP-seq peaks that remain
largely unchanged following CTCF-knockdown, compared to
non-targeted CTCF ChIP-seq experiments; whereas L-CTCF- 
BSs are defined as the locations where CTCF ChIP-seq peaks 
are lost ( 18 ). P-CTCF-BSs account for 11% out of 25 602 

CTCF-BSs for LNCaP, 23% out of 20 179 sites for IMR-90 

and 33% out of 37 472 sites for MCF7, potentially due to 

relative differences in knockdown conditions ( 7 ,18 ). 
We next quantified the power of previously explored 

( 18 ,21 ) and additional features in delineating P- / L-CTCF-BSs 
based on experimental data from LNCaP and MCF7 cell lines 
(Features are summarized in Materials and methods). The 
additional features include conservation score, co-location 

with chromatin loop anchors and replication timing, which 

have all been studied in relation to CTCF-BSs ( 23 ,53 ). The 
discriminating power was measured in the variance explained,
in particular, McFadden’s Pseudo r 2 from a univariant logis- 
tic regression between each feature and the classification of 
CTCF-BS . Whilst most features showed significant correlation 

with CTCF-BS classification as persistent or lost, the discrim- 
inating power varied substantially (Figure 1 A). The top three 
features: (i) fold enrichment of reads at each ChIP-seq peak 

(fold enrichment); (ii) motif score and (iii) constitutive bind- 
ing, emerged as the strongest predictors for both cell lines with 

Pseudo r 2 > 8.5% compared to r 2 < 3.5% for remaining fea- 
tures. Interestingly, whilst all three top features are measures 
of binding affinity, they were only moderately correlated with 

each other (Pearson’s r 2 < 0.1; Supplementary Figure S2 ). This 
suggests that binding affinity is a key determinant of persis- 
tence, but is only partially captured by the above features.
Note that the fold enrichment from ChIP-seq data is not a 
perfect measure of binding affinity due to technical noise such 

as the GC-bias ( Supplementary Figure S2 ). We also observed 

that significantly more P-CTCF-BSs are located at chromatin 

loop anchors, TAD boundaries, regions of late replication tim- 
ing and have higher conservation scores, compared to the L- 
CTCF-BSs. Of these features, co-location of CTCF-BSs with 

chromatin loops was the strongest predictor of persistence 
(pseudo r 2 = ∼3–6%) (Figure 1 A). 

We next sought to develop a computational prediction of P- 
CTCF-BSs. We used LNCaP data as a training set to develop 

logistic regression and Random Forest (RF) models to pre- 
dict P-CTCF-BSs from genomic and epigenomic data. For the 
model development, chromatin looping and replication timing 
were excluded as these datasets are not readily available for 
most cell types. The models output a probability for a CTCF- 
BS to maintain persistent binding, described as ‘persistence’ 
in silico, which is then converted to a binary outcome, persis- 
tent or not persistent, for a chosen cut-off. We assessed per- 
formance for in-sample (in which a subset of CTCF-BSs was 
left out as a validation set from the LNCaP training set) and 

out-sample tests (in which the model trained is used to pre- 
dict persistence in an independent dataset- IMR-90), measur- 
ing the Area Under Curve (AUC) and the Area Under Preci- 
sion Recall Curve (AUC-PR) (Materials and methods ) . AUC- 
PR is used since L-CTCF-BSs and P-CTCF-BSs are propor- 
tionally misbalanced. The RF model combining all features 
achieved the best performance in the out-sample test with an 

AUC of ∼0.8 compared to random guess of 0.5 and AUC- 
PR of ∼0.6 compared to random guess of ∼0.2 (Figure 1 B).
The AUC-PR was only slightly smaller than that from the 
in-sample test, showing that the RF model is robust. Perfor- 
mance using only the top three features was inferior than using 
all features for both models, showing that the remaining fea- 
tures provide additional classification power. Indeed, feature 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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Figure 1. De v elopment of CTCF-INSI TE to predict CTCF binding persistence. ( A ) Each bar sho ws the individual predictiv e po w er of a feature in 
distinguishing P- / L-CTCF-BSs. These were quantified using McFadden’s Pseudo R 

2 (scaled up by 100) derived from univariate logistic regression 
between each feature and the bi-partition of CTCF-BSs, experimentally defined from LNCaP and MCF7 cell lines. Features showing significance ( χ2 test 
P -value < 0.01) in both cell lines are marked with an asterisk (*) in their labels. ( B ) Predictive models were built using logistic regression (green bars) and 
Random Forest (blue bars) methods for all features or top three features (as identified in A) and compared with random guess (orange bars). The bar 
graphs illustrate the predictive performance as measured in AUC-PR (upper panels) and AUC (lo w er panels) for the in-sample test (left panels) and 
out-of-sample test (right panels). 
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mportance analyses from the RF model confirm that these
ontributions are not redundant ( Supplementary Figure S3 ).
e implemented both the logistic regression and RF models

nto a tool, called CTCF-INSITE (IN-Silico Investigation of
ersisTEnt binding), and a web server version can be accessed
t: https:// when.shinyapps.io/ ctcf-insight/ . In the later analy-
es we employ the CTCF-INSITE RF model as it displayed
etter performance for predicting persistent CTCF binding
n silico . 

-CTCF-BSs show a highly elevated mutation rate 

ince CTCF-BSs are among the non-coding DNA sequences
hat are frequently mutated in cancers ( 23 ), we addressed if
-CTCF-BSs display an elevated mutation rate compared to
-CTCF-BSs. We examined the relationship between persis-

ence and mutation rates by intersecting CTCF-ChIP-seq peak
egions (usually 300–400 bp in length) for LNCaP and MCF7
ith all mutations from WGS data obtained from the ICGC

sample size n = 536 and n = 686 for prostate and breast can-
ers, respectively). This revealed that a large fraction of CTCF-
hIP-seq peak regions contain ≥ 1 mutations (17% prostate

ancer and 30% breast cancer), but rarely contain ≥3 muta-
ions ( < 2%) ( Supplementary Table S4 ). Compared to peaks
ontaining L-CTCF-BSs, P-CTCF-BSs exhibited a higher mu-
ation rate of 1.34 and 1.25 times per CTCF-BS for LNCaP
nd MCF7 respectively ( Supplementary Table S4 ), and the
levated rate is highly significant ( P -value < 1 × 10 

−8 ) as
etermined by a permutation test (Materials and methods)
Figure 2 A, B). 

We performed additional tests to determine the extent that
nrichment is confounded by (i) passenger mutations, that
s mutations that occur randomly and do not contribute
o cancer or (ii) by location-specific variation of mutation
ates, for example open chromatin regions ( 54 ,55 ) and late-
eplicating regions have a significantly higher mutational rate
 56 ). First, we repeated the permutation test for mutations oc-
 

curring ≥2 or ≥3 in the ICGC cancer cohorts, as passenger
mutations are less likely to reoccur. While the extent of en-
richment at P-CTCF-BSs became weaker, it remained signifi-
cant ( Supplementary Figure S4 ). Second, to control for posi-
tional effects, we performed enrichment analyses comparing
the mutation rate at the CTCF core motif (i.e. a 40 bp region
centered on JASPAR motif MA0139.1) within the ChIP-seq
peak with that of the flanking regions (Figure 2 C, D; Materi-
als and methods). The elevated mutation rate was only present
at the core motif in both cell lines. Once again P-CTCF-BSs
displayed a highly elevated mutation rate, ∼2-fold higher at
the core compared to flanking regions ( P -value < 1 × 10 

−12 ;
Supplementary Table S5 ); compared to L-CTCF-BSs ( P -values
of 0.09 for LNCaP and 0.0006 for MCF7). We confirmed
that this increase is not due to background trinucleotide mu-
tational rate using SigProfilerSimulator (Materials and meth-
ods, Supplementary Figure S5 ). Next, we examined the CTCF
core motif using sequence logo plots with stacked bar plots
for LNCaP and MCF7, which indicate the type and frequency
of mutations for P-CTCF-BSs compared to L-CTCF-BSs (Fig-
ure 2 E, F). P-CTCF-BSs display elevated mutations at the up-
stream, downstream and 9th base of the core motif, however
such a signal was absent from L-CTCF-BSs. A clear muta-
tional profile only emerges within the P-CTCF-BSs implying
that these sites are selected for mutations. Together these re-
sults suggest that the mutational enrichment is not driven by
location-specific effects and is only partly influenced by pas-
senger mutations. 

We next sought to evaluate the robustness of CTCF-
INSITE. To do this we used CTCF-INSITE to predict P-CTCF-
BSs in LNCaP and MCF7 cells. First, we confirmed the equiv-
alence in mutational rates between the experimentally-defined
and predicted P-CTCF-BSs for prostate and breast cancer (Fig-
ure 2 G,H). Second, since the prediction model allows per-
sistence to be assessed at varying stringencies, we examined
the mutation rates at different stringencies. We found that
mutation rate increased cubically as the stringency of per-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://when.shinyapps.io/ctcf-insight/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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Figure 2. P-CTCF-BSs are mutational hotspots in prostate and breast cancers. We e v aluated the mutational burden for prostate and breast cancer at 
e xperimentally -identified P-CTCF-BSs in LNCaP ( A, C, E, G) and MCF7 (B, D, F, H) cell lines at various resolutions. (A, B) Observed number of ICGC 

prostate or breast cancer mutations o v erlapping P-CTCF-BS peak regions (red dotted line) in contrast to the background mutation count distribution. This 
distribution was generated from 100 000 peak regions randomly sampled from all CTCF ChIP-seq peaks, operating under the null hypothesis that there 
is no difference in mutational burden between P- and L-CTCF-BSs. P -values were calculated using a permutation test (Materials and methods). (C, D) 
CTCF-BS peak regions were divided into 41 consecutive 40bp intervals centered at the CTCF core motif. The dots show mutation rates calculated for 
each interval for P- and L-CTCF-BSs (red and blue, respectively). (E, F) A sequence logo plot of the CTCF core motif. Stacked bar plots show the number 
of mutations (y-axis) for each base (x-axis) at the core motif for P-CTCF-BSs (top) and L-CTCF-BSs (bottom). Coloured segments of the stacked bar plot 
correspond to different mutations, categorized by the original base and its respective mutant. (G, H) Line graphs show relative mutation rates (core vs. 
flanking regions) at P-CTCF-BSs predicted at varying stringencies using CTCF-INSITE. 
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istence increases from all CTCF-BSs to the top 10% pre-
icted P-CTCF-BSs. Third, we confirmed equivalent mu-
ational patterns can also be robustly detected using P-
TCF-BSs predicted from other prostate and breast cell lines

 Supplementary Figure S6 ). 
Finally, we examined other features that have previously

een associated with elevated mutation rates, including co-
ocation with chromatin loop anchors ( 23 , 24 , 29 , 53 ), and high
TCF ChIP-seq binding strength ( 29 ). Although both features
ere associated with high mutation rates, we found that the

nrichment was weaker than that between CTCF-BS persis-
ence and CTCF-BS mutation rates ( Supplementary Figure S7 ;
upplementary Table S5 ). CTCF-BSs overlapping loop an-
hors (18–24% of all CTCF-BSs for both cell lines) exhib-
ted a relative mutation rate of 1.4x for LNCaP and 1.98x for

CF7, which is lower than the respective 1.7 × and 3.8 × mu-
ation rates at P-CTCF-BSs predicted by CTCF-INSITE for
he top 20% most persistent CTCF-BSs (chosen as a simi-
ar proportion to all CTCF-BSs that overlap loop anchors)
 Supplementary Table S5 ). Similar enrichment was found for
TCF ChIP-seq fold enrichment in the top 20% (1.4 × and
.8 × for LNCaP and MCF7 respectively). Together our anal-
ses demonstrate that these hotspots in breast and prostate
ancer may be driven primarily by P-CTCF-BSs. 

-CTCF-BS mutations are enriched at sites of 
otential 3D genome dysregulation 

o next understand the functional importance of P-CTCF-BSs
n cancer, we examined the enrichment of functional muta-
ions at P-CTCF-BSs versus L-CTCF-BSs. We defined muta-
ions that were potentially functional as those that (i) led to
lteration in CTCF binding and (ii) were co-located at chro-
atin loop anchors and therefore could alter chromatin con-

ormation. Changes in CTCF binding can be assessed from the
llele-specific imbalance using ChIP-seq data or the difference
n allele-specific motif scores ( �score), illustrated schemati-
ally in Figure 3 A. Similarly, the impact on looping can be
ssessed from allelic analysis of ChIA-PET data (Materials
nd methods). Importantly, the ChIP-seq and ChIA-PET data
eeds to be of sufficient depth to ensure coverage at individ-
al alleles when performing allelic analysis. As public CTCF
hIA-PET data of sufficient depth in breast or prostate cell

ines was not available we performed the following analysis
sing high depth ChIP-seq and ChIA-PET data for GM12878
ells. We first compared read depths for reference and non-
eference alleles at all heterozygous sites (germline or somatic
ariants) and found a strong correlation between changes in
otif scores and biases in allelic read frequency (Spearman’s

 s 
2 = 0.41) (Figure 3 B top panel; Supplementary Figure S8 ).

pecifically, a motif score decrease of ≥2 for the non-reference
llele led to a substantial decrease in allelic read depth for
his allele. Similarly, a motif score increase ≥2 led to a sub-
tantial increase in allelic read depth. Second, we found that
score was also correlated with allelic differences in looping

Spearman’s r s 2 = 0.35) (Figure 3 B bottom panel). Moreover,
e identified 91 sites that were common to both ChIP-seq and
hIA-PET datasets that showed significant allelic imbalance

n binding; 78% of these displayed significant bias in chro-
atin looping between alleles (Figure 3 C). As the motif score

orrelates well with disrupted binding, as measured by allelic
mbalance, it can be used without the need for ChIP-seq or
hIA-PET experimental data. Taken together, this analysis re-
veals that a mutation causing | �score| ≥2 is an appropriate
cutoff to define disruptive mutations. We classified ICGC mu-
tations as ‘disruptive’ if they led to a | �score| ≥2 and identified
40.4% disruptive mutations within the P-CTCF-BS subset rel-
ative to only 26.5% disruptive mutations within the L-CTCF-
BSs (Figure 3 D; Supplementary Figure S9 ). Moreover, most of
these mutations led to a decrease in binding rather than an
increase in binding. 

To provide functional evidence that motif score accurately
predicts a disruption to CTCF binding affinity, we performed
Fluorescence Polarisation DNA Binding (FPDB) in vitro as-
says, using the recombinant truncated CTCF protein encoding
the DNA binding domain (11 zinc-finger domain; see Materi-
als and methods). We selected four candidate ICGC mutations
that Deepbind predicted to disrupt DNA binding by CTCF.
The selected oligos harboured different mutations across the
CTCF motif ( Supplementary Table S6 ) and all showed lower
binding affinity in the FPDB assay when compared to the ref-
erence oligos ( Supplementary Figure S10 ). For example, the
breast cancer mutation corresponding to the deletion of the
entire CTCF motif greatly reduced the binding affinity, with
little change in anisotropy detected even at the highest CTCF
concentration of 1 μM ( Supplementary Figure S10 ). The point
mutations, regardless of their position in the CTCF motif,
also led to substantial reduction in affinity ( Supplementary 
Figure S10 ). 

Next, we found P-CTCF-BSs, compared to L-CTCF-BSs,
were enriched for both disruptive mutations and localization
at chromatin loop anchors in both prostate and breast can-
cer (Figure 3 E, F; Supplementary Figure S9 ). Specifically, in
the prostate cancer model, 1% of CTCF-BSs (294 / 25602)
contain disruptive mutations, with a ratio of 0.33 (74 / 220)
P- to L- CTCF-BSs (Figure 3 F). This represents a signifi-
cant enrichment of P-CTCF-BS disruption ( P -value < 0.01)
compared to the background ratio of 0.25 (183 / 830) for
all mutated CTCF-BSs (Figure 3 F). We found 27% of the
disrupted CTCF-BSs were potentially functional as they
were also located at loop anchors. Remarkably, we also
found for these functional mutations there was an even
greater enrichment of P- to L- CTCF-BSs with a ratio of
1.2 (43:37). Similar enrichment of potentially functional
mutations was observed in breast cancer at P-CTCF-BSs,
with a P- / L-CTCF-BS ratio of 3.2 (223:70), compared to
the background ratio of 0.75 (1585:2113) for all mutated
CTCF-BSs ( Supplementary Figure S9 ). In contrast, at CTCF-
BSs containing disruptive mutations, but located outside of
loop anchors, the P- / L-CTCF-BS ratios, 0.17 (31:183) for
prostate and 0.85 (393: 460) for breast cancer, were not
significantly different from the background ratios (Figure
3 F; Supplementary Figure S9 ). Overall, the enrichment of
potentially functional mutations within P-CTCF-BSs sug-
gests their important role in 3D genome dysregulation in
cancer. 

Finally, we sought to establish a mechanistic relationship
between mutated P-CTCF-BSs and oncogenesis. We compiled
lists of genes that were within + / -1kb of mutated P-CTCF-
BSs in breast and prostate cancer and performed gene set en-
richment analysis (Materials and methods) to assess whether
there was enrichment of hallmark genes from the Gene Set
Enrichment Analysis (GSEA) database ( 50 ,51 ). In breast can-
cer we found enrichment of genes downregulated in response
to UV and for prostate cancer the enrichment was for the
gene set that defines epithelial to mesenchymal transition.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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Figure 3. Allelic analyses identify that functional mutations are enriched at P-CTCF-BSs. ( A ) Schematic representation of method used in (B) to 
determine differences in allelic frequencies and motif scores for reference and non-reference alleles. Created with Biorender.com. ( B ) B o xplots sho w the 
allelic difference in DeepBind motif scores (reference minus non-reference)(x-axis) vs. reference allelic frequency (AF) (y-axis). AFs at heterozygotes 
determined from WGS data were calculated from allelic depths obtained for GM12878 ChIP-seq (top panel) and ChIA-PET (bottom panel) data. The 
correlation is indicated for eight bins that were divided by motif score differences. Arrows indicate where the non-reference allele leads to an increase or 
decrease in CTCF binding. ( C ) Correlation of reference AF from ChIP-seq (x-axis) and ChIA-PET (y-axis) data for CTCF motifs at CTCF-BSs with motif 
score differences ≥2. A binomial test was used to determine the CTCF-BSs that display a significant bias in looping (yellow) and those that do not (blue) 
(Materials and methods). ( D ) Reference vs. non-reference motif scores for L-CTCF-BSs (left) and P-CTCF-BSs (right) defined in prostate cancer. Orange 
and blue dots signify CTCF-BSs with | �motif scores| ≥2, or | �motif scores| < 2, respectively. ( E ) Proportion of L-CTCF and P-CTCF that are located at loop 
anchors determined from LNCaP ChIA-PET data. Significance of enrichment of loop anchors to be at P-CTCF-BSs vs. L-CTCF-BSs was calculated from a 
χ2 test based on a 2 × 2 contingency table. ‘***’ represents P -value < 0.0001. ( F ) Ratio of P- and L- CTCF-BSs under varying selection criteria (y-axis). 
Pairwise comparisons between ratios generated for different criteria (marked by vertical lines) were performed, with P -values calculated using χ2 tests. 
Significance le v els are indicated as: ‘ns’ f or not significant, ‘*’ f or P -v alue < 0.01 and ‘***’ f or P -v alue < 0.0 0 01. 
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 Supplementary Figure S11 ). Altogether these results suggest
hat P-CTCF-BS mutations potentially cause loss of CTCF
inding that leads to dysregulation of cancer related genes. 

-CTCF-BS mutations are enriched across multiple 

ancer types 

e next assessed whether our observed mutation enrichment
t P-CTCF-BSs is a pan-cancer phenomenon. We compiled
imple mutations from WGS of the different cancer cohorts
rom ICGC, performed quality control to exclude the mi-
rosatellite instable cancer data (Materials and methods), and
rouped the mutations from the cohorts into 12 cancer types
ccording to tissue of origin ( Supplementary Table S2 ). We cu-
ated ENCODE CTCF ChIP-seq data for each of the cancer
ypes, and used CTCF-INSITE to predict the top 10% most
ersistent CTCF-BSs for the pan-cancer enrichment analyses.
s expected, the different cancer types varied substantially in
utation rate within CTCF-BSs (Figure 4 A). However, all can-

ers had a significantly increased mutation rate at P-CTCF-BSs
elative to L-CTCF-BSs (Figure 4 B). Interestingly, the preva-
ence of mutations at P-CTCF-BSs was not dependent on the
verall mutational burden. For example, the elevated muta-
ion rate at P- vs L-CTCF-BSs is three times higher in oe-
ophageal and stomach cancers, despite a lower mutational
urden (Figure 4 A, B). To exclude that the increased muta-
ional rate might be driven by a small number of patients, we
tratified the data into three subgroups of patients with higher
utational loads i.e. top 10%, 10–20% and 20–30% and

valuated the enrichment of mutations in the P-CTCF-BS core
otif versus flanking regions. We observed a consistent en-

ichment of mutations in the core motif for all three groups, in-
icating a robustness of enrichment of P-CTCF-BS mutations
hroughout the cohorts ( Supplementary Figure S12 ). Further-
ore, P-CTCF-BSs also displayed a significant enrichment of
isruptive mutations in most cancer types (Figure 4 C and
upplementary Table S7 ), similar to our observations in breast
nd prostate cancer (Figure 3 F). 

We next investigated the per-base mutation rate at the
TCF core motif with a ±5 bp flanking region. To normalize

or differences in mutation rates (Figure 4 A), we calculated
elative mutation rate by dividing the observed value by an
xpected value that was simulated using trinucleotide muta-
ion rates for each cancer (Materials and methods). In 8 / 12
ancers, we identified an elevated mutation rate at the 9th
predominantly A / T → G / C or A / T → C / G mutations), 8th,
2nd to 2nd and 17th to 18th bases (Figure 4 D). This muta-

ional pattern has been reported at CTCF-BSs in gastrointesti-
al cancers ( 23 , 25 , 26 , 28 ); however, this is the first report in
rostate and breast cancers, likely because the pattern is weak
hen examining all CTCF-BSs ( Supplementary Figure S13 ).
utational enrichment at the 7th, 13th, 14th (G bases) in skin

ancer and melanoma has also been reported and is linked to
V impairment of Nucleotide Excision and Mismatch Repair

NEMR) ( 29 ). No enrichment was observed at the binding
otifs in SCLC (Figure 4 D), despite a high background mu-

ation rate (Figure 4 A). This is potentially due to the small
ohort size or that this cancer is caused by distinct carcino-
ens compared to other cancer type ( 57 ). Indeed, the differ-
nt mutational signatures observed across the cancers might
ighlight different or, in some cases, shared aetiologies among
hem. Taken together our results confirm that P-CTCF-BSs are
utational hotspots in a pan-cancer context. 
Discussion 

There is substantial heterogeneity amongst CTCF binding
sites (CTCF-BSs) across the genome, including variable bind-
ing affinity, cell-type specificity ( 3 ), conservation, and involve-
ment in 3D chromatin structures. However, a subset of CTCF-
BSs has recently been identified by us and others that display
persistent and strong CTCF binding in contrast to the major-
ity of CTCF-BSs, that are sensitive to robust CTCF experimen-
tal depletion using different methodologies ( 18 , 21 , 22 ). Char-
acterisation of P-CTCF-BSs revealed high conservation and
enrichment at chromatin loop anchors and TAD boundaries,
suggesting a possible fundamental role in constitutive chro-
matin architecture ( 18 ). In this study, using computational
modelling to predict P-CTCF-BSs we show for the first time
that this subclass of CTCF-BSs is highly enriched for muta-
tions across multiple different cancer types when compared to
all CTCF-BSs. Furthermore, these mutations are suggested to
be functional by potential disruption of associated chromatin
loops and reduced binding in in vitro binding assays. 

To predict CTCF binding persistence we developed a soft-
ware CTCF-INSITE which implemented two machine learn-
ing models by training on the genetic and epigenetic features
of experimentally-defined P-CTCF-BSs. First, we found that
while binding affinity, as measured by ChIP-seq fold enrich-
ment, motif score and constitutive binding, is the strongest
predictor of persistence, all features combined outperformed
the models using the top three features alone. Second, we val-
idated that predicted P-CTCF-BSs from CTCF-INSITE pro-
duce concordant results to those from experimentally-derived
P-CTCF-BSs, including the enrichment of mutations and mu-
tational profile at the core motif. In addition, the prediction
model also allows persistence to be assessed at varying strin-
gencies without the need for further experimental studies.
Third, using predicted P-CTCF-BSs from CTCF-INSITE we
made the notable discovery that mutations are highly enriched
at P-CTCF-BSs across all the cancer types relative to L-CTCF-
BSs. Even though CTCF-BS mutations in cancer have been
described previously ( 23–26 , 28 , 29 , 55 ), our analyses demon-
strate that these hotspots across multiple cancer types may be
driven primarily by P-CTCF-BSs which is strongly supported
by our observation that P-CTCF-BSs have a highly elevated
rate of mutation when compared to L-CTCF-BSs. 

The enriched mutational signal at P-CTCF-BSs can be use-
ful to study mutational profiles. For example, focusing on per-
base mutation rate, we observed a canonical mutational pro-
file in 8 cancer types with frequent mutations at A / T bases
in the CTCF core motif. This profile has been previously
described at all CTCF-BSs for gastrointestinal cancers ( 25 ).
However, we found the same mutational profile in other can-
cer types, such as prostate and breast cancer when focusing
only on P-CTCF-BSs. The notable exceptions to the canoni-
cal mutational profile are in skin, melanoma and lung cancer.
The first two displayed elevated mutation rates at 7th, 13th,
14th (G bases), a pattern previously linked to UV excision mis-
repair ( 26 ); whereas lung showed no specific pattern, which
may reflect the aetiology of this cancer which is commonly
caused by environmental pollutants, e.g. smoking ( 57 ). 

Lastly, we demonstrate that P-CTCF-BSs are significantly
enriched with disruptive mutations which likely prevent
CTCF binding, and are also enriched at loop anchors com-
pared to L-CTCF-BSs. Importantly, we also showed that dis-
rupted CTCF binding was correlated with loss of looping.
The fact that disruptive mutations were only enriched at loop

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae530#supplementary-data
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Figure 4. P-CTCF-BSs are pan-cancer mutational hotspots. CTCF-INSITE was used to predict P-CTCF-BSs from all CTCF-BSs from 12 ChIP-seq datasets 
f or v arious tissues do wnloaded from ENCODE. T hese tissues matc h the 1 2 solid cancers from ICGC. ( A ) Mutation rate (per Mb) at CTCF binding sites 
f or v arious cancers from ICGC. ( B ) R elativ e mutation rate at predicted P-CTCF -BSs compared to all CTCF -BSs calculated at a 40-bp interval centered at 
the core motif. P -values were calculated using χ2 tests, ‘***‘ indicates P -value < 0.0 0 01. ( C ) Ratio of P- :L- CTCF-BSs for functional mutation (orange) and 
all mutation (blue) categories. P -values were calculated using χ2 tests from pairwise comparison between ratios. Significance levels are indicated as: 
’ns’ for not significant and ‘*’ for P -value < 0.01. ( D ) Adjusted mutation rate per base (columns) for each cancer type (rows) calculated by dividing the 
observed mutations counts by the expected mutations counts derived from simulation (Materials and methods). A sequence logo plot of the CTCF core 
motif is placed to indicate the location relative to the core. 
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nchors indicates that loop disruption may provide a selec-
ive advantage. Taken together this suggests that P-CTCF-BS
utations may also promote oncogenic programs by altering

ooping of cancer-related genes; initially proposed as a func-
ion for exemplary CTCF-BSs ( 26 ,58 ). Given that P-CTCF-
Ss mediate constitutive chromatin loops and domains ( 18 ), it

s interesting to speculate that cell-type constitutive structures
re the target of cancer mutations, however this will require
urther studies. 

In summary, our study suggests that among the tens of thou-
ands of CTCF-BSs across the genome, P-CTCF-BSs predicted
y CTCF-INSITE provide worthy candidates to prioritize for
xperimental manipulation in the pursuit of new biological
nsights into cancer aetiology. 
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