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ARTICLE

A massively parallel assay accurately
discriminates between functionally normal
and abnormal variants in a hotspot domain of KCNH2

Chai-Ann Ng,1,2,5 Rizwan Ullah,3,5 Jessica Farr,1,4 Adam P. Hill,1,2 Krystian A. Kozek,3 Loren R. Vanags,3

Devyn W. Mitchell,3 Brett M. Kroncke,3,* and Jamie I. Vandenberg1,2,*
Summary
Many genes, including KCNH2, contain ‘‘hotspot’’ domains associated with a high density of variants associated with disease. This has

led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known

what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking

assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause longQTsyndrome type 2

and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein

trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2

allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate

(AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally

normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced

interpretation of variants in this ‘‘hotspot’’ domain is necessary. Our massively parallel trafficking assay can provide this information

prospectively.
Introduction

Inherited cardiac arrhythmia syndromes are the common-

est cause of unexplained sudden death in 15- to 30-year-

olds,1 most often arising from rare variants in KCNQ1

(MIM: 607542), KCNH2 (MIM: 152427), and SCN5A

(MIM: 600163) that cause congenital long QT syndrome2

(MIM: 192500). Low-cost full-exome sequencing has the

potential to identify individuals at risk early in life before

any phenotype manifests. However, our ability to distin-

guish benign from pathogenic variants lags behind our

ability to generate genome-sequencing data. Conse-

quently, most missense variants identified to date are clas-

sified as variants of uncertain significance (VUSs). AVUS is

not supposed to be used in clinical decision-making,3 yet is

difficult to ignore when discovered in a gene strongly asso-

ciated with sudden death; as such these variants consume

considerable resources in multi-disciplinary team meet-

ings. For example, variant discovery in a ‘‘hotspot’’ domain

of KCNH2 is of immediate concern,4–6 since variant loca-

tion is strongly associated with increased risk of severe car-

diac events.

In contrast to characterizing variants discovered in clin-

ically identified probands and their families, in silico and

in vitro experiments may prospectively identify variants

that cause channel dysfunction before they are observed

in individuals. Previously, characterization of variants in
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cardiac ion channels has relied on manual patch-

clamp electrophysiology, which is prohibitively time

consuming for the thousands of missense variants

possible in KCNH2. Two recent technological develop-

ments have enabled the functional characterization of

missense variants at a scale commensurate with their

rate of discovery: an automated patch-clamp platform,

which permits analysis of hundreds of cells simulta-

neously,7–9 and massively parallel variant-effect mapping

coupled to cell survival10 or trafficking assays,11 which

measures the abundance of cell surface protein. The auto-

mated patch-clamp platform enables phenotyping of cur-

rent density, gating, and permeation properties of variant

channels, both homozygous and heterozygous,9 at mod-

erate throughput (hundreds of variants per month).

Massively parallel variant effect mapping enables the

analysis of tens of thousands of variants but at a reduced

depth of information.11,12 For KCNH2, massively parallel

trafficking assays11 have great potential, as the deleterious

effects of ion channel variants in KCNH2 are largely due

to trafficking defects.6,13

In this work, we tested the hypotheses that (1) ‘‘hotspot’’

domains are enriched with functionally defective variants

and (2) a massively parallel trafficking assay could distin-

guish functionally defective from normal variants. These

assays can provide functional evidence for variant classifi-

cation to reduce the burden of VUSs.
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Material and methods

Automated patch-clamp assay
A detailed methods paper describing the design of heterozygous

KCNH2 (GenBank: NM_000238.4) vector, generation of Flp-In

T-REx HEK293 KCNH2 variant cell lines, cell culture routine of

heterozygous KCNH2 Flp-In HEK293 for automated patch-clamp

electrophysiology, operation of SyncroPatch 384PE automated

patch-clamp, quality control measures, voltage protocols, and

data analysis was recently published.14 The critical components

of this assay are that variants are co-expressed with the WT allele

from the same plasmid that is inserted into the same place in

the genome using the Flp-In recombinase technology (summa-

rized in Figure S1). WT controls and a negative control were

included together with ten KCNH2 variants on every assay plate.

Technical replicates were performed for all plates. In total, 92 assay

plates (384-well) were used to collect >22,000 successful patch-

clamp experiments. Current density was quantified by measuring

the peak amplitude of the tail current at�50 mV, after a depolariz-

ing step to þ40 mV for 1 s. Current values were normalized to cell

capacitance to obtain current density (pA/pF) and transformed to

normal distribution using a square-root function before normal-

izing to the mean of WT from the same plate.15
Massively parallel trafficking assay
Mutagenesis and stable line generation

To manage KCNH2 into workable sections, we created a tile system

using the QuikChange Lightning Multi kit (Agilent), as reported

earlier.11 Specifically, the Per-Arnt-Sim (PAS) domain was included

in the first of these ‘‘tiles,’’ which we will refer to as the ‘‘PAS tile,’’

flanked by restriction sites for ClaI and SpeI. To enable cell surface

labeling of KV11.1, a hemaglutinin (HA) tag (NSEHYPYDVP-

DYAVTFE) was inserted in the region between amino acids

Thr443 and Glu444, which was previously found to have no effect

on the electrical or trafficking properties of the channel.16 We

completed a comprehensive site saturation mutagenesis on the

PAS tile withmutagenic primer pairs comprising a 50 NNN segment

on the forward primer, where N is a mix of A/C/G/T, and then

added these mutagenized segments into the full-length construct

as previously described.11 Results were analyzed using in-house Py-

thon and R scripts. Transfecting and creating a stable cell line and

preparing cells for flow sorting followed the same protocol as previ-

ously described (see also the supplemental methods).11

NovaSeq sequencing of the generated libraries

DNA was isolated from each pool of cells sorted for extracellular

staining using 100 mL QuickExtract (Lucigen) per 1 million cells,

following the manufacturer’s instructions. Polymerase chain reac-

tion (PCR) was used to amplify the barcode, and the resulting prod-

ucts were purified with AMPure XP beads (Beckman Coulter),

following the manufacturer’s instructions. The libraries were

sequenced on a NovaSeq 6000 instrument with 150-base paired-

end sequencing. (For more details, see the supplemental methods.)

Variant counts from each pool of sorted cells were aggregated to

calculate a trafficking score using the following equation:

Trafficking scorei ¼
1 � ðPool1;iÞ þ 2 � ðPool2;iÞ þ 3 � ðPool3;iÞ þ 4 � ðPool4;iÞ

Total number of barcodes observedi

(Equation 1)

Where Pooln;i is the fraction of the ith barcode in the nth pool of

sorted cells; n ranges from 1 (no KV11.1 present, i.e., no Alexa
The Americ
Fluor 647 [AF647] signal) to 4 (high abundance of KV11.1, i.e.,

high AF647 signal). The scores were then aggregated by variant

and normalized with a linear transformation so that trafficking

score ranged from 0 (barcodes only observed in the AF647-nega-

tive pool) to 100 for WT. The scores were then averaged across

the two replicate experiments (separate transfections of the

mutant library pool). A total of 1,449 observed out of 1,463 total

possible missense variants, 77 synonymous, and 77 nonsense var-

iants were assayed for trafficking phenotype (Figure 1).

Replicates

Two mutagenized plasmids with unique barcode-variant associa-

tions were generated and transfected into three separate HEK293

cell lines for a total of six biological replicates. Within each

plasmid, there were approximately 2–9 (interquartile range) tech-

nical replicates, owing to the redundancy of barcodes and codon

substitutions associated with the same missense variant.

Modeling peak tail current

Models included Rare Exome Variant Ensemble Learner

(REVEL),17 CardioBoost,18 and/or high-throughput trafficking

data where mentioned. Logistic regression models to evaluate

AUCs (areas under the receiver operating characteristic [ROC]

curve) were built using the glm function in the rms package in

R. Confidence intervals were calculated using a 1,0003 bootstrap

with resampling.
Ethics declaration
No patient data were used in this study, and therefore institutional

review board approval was not required.
Results

Massively parallel trafficking assay

Pathogenic missense variants throughout the proteome

are most often caused by destabilization-induced

misfolding;19–22 for KCNH2, this results in loss of traf-

ficking to the plasma membrane.5,6,23 Here, we investi-

gated all codon substitutions in exon 2 of KCNH2

(Figure S2 denotes its location within the protein), one of

the hotspots for pathogenic variants,4–6 with a massively

parallel trafficking assay (Figure 1). We use ‘‘trafficking’’

here to indicate surface expression; however, low overall

channel expression in heterologous cells may underly a

small proportion of trafficking-defective variants. Traf-

ficking scores were calculated by counting variants in pools

of sorted cells as previously described11 and detailed in the

material and methods. The trafficking scores ranged be-

tween 0% and 160% of WT for the 1,449/1,463 homozy-

gous missense variants identified, 0%–165% of WT for

the 77 synonymous variants (median of 100% of WT by

definition), and 0% of WT for the 77 nonsense variants

(median of 0% ofWT; Figure 1). Though the trafficking dis-

tribution of synonymous variants is largely like WT, there

were two outliers (p.Asp46¼ and p.His70¼) that were

tested separately and found to traffic like WT, indicating

a limitation to the method (Figure S3). The observed distri-

bution of the trafficking scores for missense variants was

bimodal with peaks around 0 and 100 (Figure 1B). Fig-

ure 1C shows a summary heatmap of the observable
an Journal of Human Genetics 109, 1208–1216, July 7, 2022 1209
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Figure 1. Deep mutational scan of exon 2 of KCNH2 identifying trafficking-deficient variants
(A) Fluorescence-activated cell sorting plots of wild-type (WT) KCNH2 and a loss-of-function (LoF) variant.11 Cell surface concentration
of Alexa Fluor 647 (AF647)-labeled KV11.1 (encoded by KCNH2), a correlate of trafficking, is shown in the y axis; bins indicate popula-
tions of cells with high, medium (med), low, and negative (neg) AF647 surface staining. Expression of KCNH2 is inferred by mCherry
fluorescence (expressed on the same transcript) plotted on the x axis (see material and methods for details).
(B) Violin plots showing the trafficking scores for all synonymous, nonsense, and missense variants in the exon 2 region.
(C) Trafficking levels, normalized to themedian synonymous value and color coded on a converging scale, for the 1,603 variants assayed.
Regions corresponding to structural elements are denoted by solid arrows (b sheets) and coils (a helices) at the top of the panel.
trafficking scores with deleterious variants concentrated

around the structural regions of the protein.

Large-scale automated patch-clamp assay

For our automated patch-clamp assays of heterozygous

KCNH2 variants, we characterized the subset of 458 non-

redundant missense single-nucleotide variants (SNVs; the

most common type of clinically observed variant) in

exon 2. Typical examples of tail currents fromWTand a se-

lection of 10 variants stably expressed in Flp-In HEK293

cell lines (and a negative control) recorded on the same

384-well plate are shown in Figure 2A. The current den-

sities recorded at �50 mV are presented as violin plots in

Figure 2B. The normalized current density measured

at �50 mV is similar to �120 mV (Figure S4). The mean

values for all 458 variants are categorized into three groups

(severe functional defect, <32%; partial functional defect,

32%–61%; and functionally normal, >61% of WT) based

on previously established thresholds15 calibrated accord-

ing to recommendations from the Clinical Genome
1210 The American Journal of Human Genetics 109, 1208–1216, July
(ClinGen) Sequence Variant Interpretation (SVI) Working

Group,24 are summarized in Figure 2C. Figure 2D shows

the current densities of exon 2 variants found in gnomAD,

and the majority (22 of 25) are functionally normal. There

were 118 exon 2 variants found in the ClinVar database

(https://www.ncbi.nlm.nih.gov/clinvar/): 2 have been

classified as likely benign (p.Ala34Val [c.101C>T] and

p.Lys93Arg [c.278A>G]), 42 have been classified as VUSs

without conflicting, and a further 74 do not have classifica-

tion provided (Table S1). The current densities for these

ClinVar VUSs spread across the functionally normal and

abnormal ranges, whereas the majority of the ClinVar

‘‘not provided’’ variants show a distribution similar to the

likely pathogenic variants reclassified including functional

data in a recent study.15

There were 125 of 458 variants with<32% ofWTcurrent

density, which precluded analysis of their gating kinetics.

Of the 65 of 458 variants that show partial loss of current

density (between 32% and 61% of WT), 10 have abnormal

deactivation (Figure S5). Of the 268 of 458 variants that
7, 2022
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Figure 2. Functional phenotyping of all missense SNVs in exon 2 of KCNH2 using automated patch-clamp (APC)
(A) A family of peak tail current traces correspond to WT:WT (1), p.Ala97Asp:WT (2), p.Ala97Gly:WT (3), p.Ala97Val:WT (4), p.Phe98-
Cys:WT (5), p.Phe98Ile:WT (6), p.Phe98Leu:WT (7), p.Phe98Ser:WT (8), p.Phe98Val:WT (9), p.Phe98Tyr:WT (10), p.Tyr99Asn:WT (11),
and a negative control (12). The highlighted black peak tail currents were acquired after depolarization atþ40mV for 1 s before stepping
to �50 mV.
(B) The violin plots for the normalized �50 mV peak tail current density that correspond to those variants shown in (A).
(C) The normalized peak tail current density of all the missense SNVs. The number of cells used to derive these mean values ranged from
n ¼ 13 to n ¼ 56 for each variant, with an average of n ¼ 39. The different levels of peak tail current density are categorized as function-
ally normal (>61% of WT; white; 268 variants), functionally abnormal with partial loss of function (32%–61% of WT; orange; 64 var-
iants), and functionally abnormal with severe loss of function (<32% of WT; brown; 126 variants).
(D) Normalized current density for gnomAD variants, existing likely benign and VUS/not provided in ClinVar, and the likely pathogenic
variants classified recently in Jiang et al.15 All data for these 458 variants are provided in Table S1.
have current density within the normal range (>61% of

WT), only 23 have abnormal gating (Figure S5 and

Table S1).

For the subset of 458 non-redundant, missense SNVs,

the trafficking and peak tail current density measurements

were similar (Figures 3A, 3B, and 4C), with both showing

bimodal distributions (Figure 3Ci). When these SNVs

were expressed homozygously, 42% show a reduction in

protein trafficking of at least 50% (moderate to severe).

Sixty-five percent of these moderate to severe trafficking-

defective variants also resulted in current density values

that were less than 32% of WT measured by the heterozy-

gous patch-clamp assay. This indicates that more than half

of the trafficking-defective variants also have a dominant-

negative effect on the co-expressed WT allele (Figures 3A
The Americ
and 3B). The deleterious variants were distributed in clus-

ters on the KV11.1 structure (Figure 3Cii) that are either

buried or located on the surface that binds to the cyclic

nucleotide binding homology (cNBH) domain;25 residues

more tolerant to substitution mapped to the periphery of

these clusters (Figure 3Cii).

A comparison between bioinformatic predictions and

functional data

The ACMG/AMP guidelines3 for variant classification

suggest that predictions from in silico tools can provide

supporting evidence (BP4/PP3) for variant pathogenicity,

in contrast to strong evidence (BS3/PS3) for functional

data. Consistent with this distinction, we found a mod-

erate correlation between measured peak tail current
an Journal of Human Genetics 109, 1208–1216, July 7, 2022 1211
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Figure 3. Concordance between
massively parallel trafficking assay and
peak tail current density; preponderance
of functionally ‘‘benign’’ variants in exon
2 ‘‘hotspot’’ of KCNH2
(A and B) Impaired trafficking of homozy-
gous missense SNVs (A) and peak tail cur-
rent density for heterozygous missense
SNVs (B) are color coded as having <32%
of WT (brown), 32%–61% of WT (orange),
and >61% of WT (white).
(Ci) Violin plots showing the peak tail cur-
rent density and massively parallel traf-
ficking scores for all SNVs in exon 2. Lines
between the violin plot are the peak tail
current density and massively parallel traf-
ficking scores for each SNV, color coded
based on the thresholds established using
the automated patch-clamp assay.
(Cii) Massively parallel trafficking assay re-
sults mapped onto the structure of the PAS
domain (PDB: 5VA1). The orange/brown
color scale is the same as in (A) and (B).
Regions tolerant of substitution are shown
in cyan. The box to the bottom right indi-
cates the PAS-cNHB domain interaction
surface.
density and levels predicted by the commonly used

in silico variant classifiers, REVEL17 and CardioBoost,18

both with a Spearman r �0.5 (Figures 4A and 4B). Traf-

ficking results were much more correlated with measured

peak tail current density (Figure 4C), Spearman r ¼ 0.77,

95% confidence interval: 0.73–0.81. A model predicting

peak tail current density using REVEL and CardioBoost

alone had a coefficient of determination, adjusted for

the number of regression features, of R2 ¼ 0.29, 0.23–

0.37 (p < 0.001), also suggesting modest overlap of infor-

mation. In contrast, a model using high-throughput traf-

ficking data alone produced an R2 ¼ 0.66, 0.61–0.72

(p < 0.001); adding REVEL and CardioBoost to the traf-

ficking data did not improve models compared to models

based on the trafficking feature alone (R2 ¼ 0.66 [0.62–

0.71]). AUCs using REVEL and CardioBoost to classify

variants had similar predictive accuracy (AUC of 0.81,

Figures 4D and 4E); this performance persisted across

multiple cut-offs of pathogenicity (Figure 4E). The traf-

ficking data substantially outperformed all other features

(Figure 4), correctly classifying loss-of-function variants

with an AUC of 0.94 (Figure 4E). Adding REVEL and

CardioBoost to the trafficking data did not improve pre-

dictive ability (AUC ¼ 0.95, logistic regression model as

described in the material and methods) (Figure 4E).

These results indicate that the trafficking data contain

new information absent in REVEL and CardioBoost.
1212 The American Journal of Human Genetics 109, 1208–1216, July 7, 2022
Discussion

Here, we compared and validated a

massively parallel trafficking assay

against a high-information-content,
automated patch-clamp assay for assessing variants in

KCNH2. The schematic for the massively parallel traf-

ficking assay and automated patch-clamp assay are

described in Figure S1.

Out of all the SNVs located in exon 2 that we assessed,

42% produce less than 50% protein trafficking, and 65%

of these trafficking-deficient variants also exerted a domi-

nant-negative effect by reducing the current density

when co-expressed with a WT subunit. Defective gating

was only a minor contributor to the overall deleterious ef-

fect for exon 2 variants. These deleterious variants were

typically found in clusters when mapped onto the PAS

domain; variants that largely tolerate substitution were

found on the periphery of these clusters. Finally, peak tail

current density phenotype was very well predicted by the

trafficking data, whereas in silico variant tools17,18 provided

little additional information for these predictions.

Like earlier studies,9,11 we observed significant variability

in the extent of deleterious effects for missense variants

(Figures 1C and 2C). A structure-based analysis of the func-

tional impactofvariants shows that loss-of-functionvariants

were distributed throughout the PAS domain, though they

were denser in certain pockets (Figure 3Cii). As expected,

buried regions were generally intolerant of substitutions,21

whereas solvent-exposed regions were generally tolerant

(Figure 3Cii). The deleterious KCNH2 variants identified in

our study are generally consistent with those quantified
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Figure 4. Massively parallel trafficking data accurately recapitulate peak tail current density
(A–C) Correlations between heterozygous peak tail current density and REVEL score (A), CardioBoost (B), and massively parallel traf-
ficking assay (C). Variants are color coded based on the peak tail current density: 0%–32% of WT (brown), 32%–61% of WT (orange),
and >61% of WT (white). Spearman rank-order correlations, r, are shown in the inset, with bootstrap-resampled 95% confidence inter-
vals shown in brackets (2.5%–97.5%) (see material and methods).
(D) ROC curves for predicting less than 61% of WT peak tail current density for exon 2 missense SNVs.
(E) Areas under the ROC curve (AUCs) calculated at multiple cut-offs of ‘‘pathogenicity,’’ loss of peak tail current density. The dashed
vertical line indicates the 61% of WT cut-off value. Light gray indicates a logistic regression to peak current data, which includes traf-
ficking data and both REVEL and CardioBoost (see material and methods). These results indicate that the trafficking data recapitulate
and expand upon the information relevant to predicting peak tail current obtained from in silico predictors.
using a western blot assay26 (Figure S6A; Spearman rank-or-

der correlations of 0.93) or a PAS domain protein-solubility

assay27 (Figure S6B; Spearman rank-order correlations of

0.80). However, significant advantages of our parallel traf-

ficking assay are that it is capable of greater throughput

and it can be applied to the full-length channel. The PAS

domain, which is partly encoded by exon 2 of KCNH2, has

been previously shown to cause abnormal deactivation

gating.25,28 Even though our massively parallel trafficking

assay does not measure channel gating, only 10% of those

heterozygous variants that have sufficient current density

(>32% of WT) to permit a reliable gating analysis have

shown an accelerated channel deactivation measured by

patch-clamp assay (Figure S5). This is consistent with

impaired trafficking to the plasmamembrane being thema-

jor defect for most of the deleterious KCNH2 variants.6

The high sensitivity but low specificity of in silico tools,

as shown in Figure 4 and previous studies,29 is one reason

the ACMG/AMP variant interpretation guidelines suggest
The Americ
in silico data be interpreted as supporting evidence (BP4/

PP3) of variant pathogenicity compared to strong evidence

(BS3/PS3) for functional data.3 The greater accuracy of the

trafficking data in predicting loss of function, compared to

the REVEL and CardioBoost in silico tools,17,18 indicates

that the trafficking assay provides information that is not

present in these in silico predictors. The in silico criterion

(PP3) often affects the final classification of pathogenic/

likely pathogenic variants,30 and it has been suggested

that properly calibrated in silico criteria (i.e., REVEL

score R0.8) may be used at a moderate evidence level.30

For KCNH2, we have shown that the correlation between

REVEL scores and functional data is only moderate

(r � 0.5). Also, there are 62 variants that are scored R0.8

for REVEL (i.e., deleterious) (Figure 4A) but are functionally

normal, i.e., they had >61% of WT current density, which

is the threshold determined using a set of classified benign

and pathogenic variant controls for differentiating normal

from abnormal function15. We therefore suggest a cautious
an Journal of Human Genetics 109, 1208–1216, July 7, 2022 1213



approach should be taken when applying in silico tools to

KCNH2 variants.

The mutational hotspot criterion (PM1) has also been

applied to variants located within exon 2 of KCNH2;31 how-

ever, we have shown that a large proportion of variants

within exon 2 of KCNH2 are functionally normal (Figure 3).

If PM1 criteria were applied to functionally normal variants,

they would not be classified as likely benign due to the con-

flicting criteria: functionally normal (BS3) versus muta-

tional hotspot (PM1). We therefore urge caution in

assuming that all variants in a ‘‘hotspot’’ domain are likely

pathogenic and suggest that a more nuanced approach

needs to be taken. This is likely to be of particular impor-

tance for assessing patients with incidental findings of a

variant in a known ‘‘hotspot.’’ However, it is also important

to point out that the HEK293 cell line may not have the

complex regulatory processes, as a recent study has shown

that PAS domain variants may have different phenotypes

when co-expressed with the KCNH2 isoform (hERG1b) in

cardiomyocytes derived from induced pluripotent stem

cells (iPSCs).32 Furthermore, the trafficking assay, though

an exceptional improvement over currently used in silico

predictors, still produces false positives at a non-zero rate

(Figures 1B and S3).

Identifying genetic variants that cause clinically relevant

phenotypic changes is a barrier to realizing the promise of

genome-guided medicine. Prospectively classifying

variants has the potential to bring us closer by drastically

reducing the delay between acquiring a genome-

sequencing result and establishing a diagnosis. These

new data will also permit a more nuanced interpretation

of the variant-induced LQTS diagnosis probability.4 We

suggest the assays described here will enable the prospec-

tive collection of meaningful functional data for all

missense variants in KCNH2.
Data and code availability

The raw data that support the findings of this study are available at

https://doi.org/10.5061/dryad.zpc866t9x for patch-clamp experi-

ments and https://doi.org/10.5061/dryad.dbrv15f3f for parallel

trafficking experiments. The corresponding analysis scripts for

patch-clamp experiments are available at https://git.victorchang.

edu.au/projects/SADA/repos/syncropatch_automated_analysis/

browse, and in-house Python and R scripts to associate barcodes

and variants across the tile for the parallel trafficking are available

at https://github.com/kroncke-lab/KCNH2_DMS. The trafficking

and patch-clamp results for the 458 SNVs are available in Table S1.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.05.003.
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