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Brussels, Belgium; 2Department of Hypertension, National Institute of Cardiology, Warsaw, Poland; 3University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve
University, Cleveland, OH, USA; 4Zena and Michael A. Wiener Cardiovascular Institute and Marie-José and Henry R. Kravis Center for Cardiovascular Health, Icahn School of Medicine
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Abstract Fibromuscular dysplasia (FMD) is a non-atherosclerotic vascular disease that may involve medium-sized muscular
arteries throughout the body. The majority of FMD patients are women. Although a variety of genetic, mechanical,
and hormonal factors play a role in the pathogenesis of FMD, overall, its cause remains poorly understood. It is
probable that the pathogenesis of FMD is linked to a combination of genetic and environmental factors. Extensive
studies have correlated the arterial lesions of FMD to histopathological findings of arterial fibrosis, cellular hyperpla-
sia, and distortion of the abnormal architecture of the arterial wall. More recently, the vascular phenotype of lesions
associated with FMD has been expanded to include arterial aneurysms, dissections, and tortuosity. However, in the
absence of a string-of-beads or focal stenosis, these lesions do not suffice to establish the diagnosis. While FMD
most commonly involves renal and cerebrovascular arteries, involvement of most arteries throughout the body has
been reported. Increasing evidence highlights that FMD is a systemic arterial disease and that subclinical alterations
can be found in non-affected arterial segments. Recent significant progress in FMD-related research has led to im-
prove our understanding of the disease’s clinical manifestations, natural history, epidemiology, and genetics.
Ongoing work continues to focus on FMD genetics and proteomics, physiological effects of FMD on cardiovascular
structure and function, and novel imaging modalities and blood-based biomarkers that can be used to identify
subclinical FMD. It is also hoped that the next decade will bring the development of multi-centred and potentially
international clinical trials to provide comparative effectiveness data to inform the optimal management of patients
with FMD.
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1. Introduction and aim of the
review

Fibromuscular dysplasia (FMD) is a non-atherosclerotic vascular dis-
ease that may involve medium-sized muscular arteries throughout the
body (Table 1). The frequency of FMD in the general population is
not known. Though FMD may occur in men, the majority of FMD
patients are women (82–95% in contemporary registries) (Table 2).1,2

FMD can occur at any age, including children and elderly patients,
though presentation in young and middle adulthood is most common.
Mean age at diagnosis of FMD is estimated as 43–53 years across dif-
ferent registries (Table 2). The pathogenesis of FMD remains largely
unknown, but is probably multifactorial including genetic and environ-
mental factors. However, it is not thought to be an inflammatory pro-
cess (i.e. vasculitis) and it is also not known to involve the venous
system. The angiographic features of FMD include the classical multi-
focal (string-of-beads) lesions as well as tubular or focal stenosis (now
grouped under the generic term ‘focal’)1,2 (Figure 1 and Table 1).
These findings may be associated with the clinical manifestations of
the disease depending on the stenosis-induced ischaemia of the vascu-
lar territory predominantly involved. While FMD most commonly
involves the renal (66–91%), cerebrovascular (25–80%), and less often
mesenteric (14–21%) and lower extremity (10–45%) arteries,

involvement of most arteries throughout the body has been reported
(Table 2).

Extensive prior studies have correlated the arterial lesions of FMD to
histopathological findings of arterial fibrosis, cellular hyperplasia, and dis-
tortion of the abnormal architecture of the arterial wall.6 More recently,
the vascular phenotype of lesions associated with FMD has been ex-
panded to include arterial aneurysms, dissections, and tortuosity.
However, in the absence of a string-of-beads or focal stenosis, these
lesions do not suffice to establish the diagnosis.1,2,7 The scope of this re-
view is to present an outline of recent advances and ongoing progress in
the understanding of FMD and related diseases, made since publication
of the International FMD Consensus1,2 or not extensively covered in this
document, from bench to bedside. A comprehensive summary of clinical
management based on the International FMD Consensus1,2 can be found
in Supplementary Table S1.

2. Progress in research on FMD—
multicentre registries

2.1 US registry for FMD
The US Registry for FMD, launched in 2009,8 currently includes nearly
3000 patients from 17 specialized FMD clinical centres (Figure 2 and
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Table 2). It is coordinated by the University of Michigan’s Michigan
Cardiovascular Outcomes Research and Reporting Program and funded
by the patient advocacy organization the FMD Society of America
(www.fmdsa.org). New centres have been incrementally added across
the USA to increase geographical, racial/ethnic, and clinical diversity of
the Registry population. Key reports of the Registry published since
2012 include: description of the most common clinical manifestations of
FMD, including hypertension, headache,9 and pulsatile tinnitus;8 the find-
ing of cerebrovascular (carotid and vertebral) involvement of FMD being
as common as renal involvement;8 a report of a high prevalence of
aneurysms and dissections among patients with FMD;10,11 a description

of a higher prevalence of aneurysms and dissections in men with FMD,12

and of a more benign vascular phenotype in patients diagnosed
>_65 years old.13

2.2 ARCADIA registry
The French-Belgian ARCADIA Registry4 represents the ultimate devel-
opment of a series of French achievements on FMD mostly produced by
the Hypertension Excellence Centre of the Hôpital Européen Georges
Pompidou (Paris, France).14,15 It includes expert centres from 16 univer-
sity hospitals in France and Belgium (Figure 2). The ARCADIA registry is
at the origin of the landmark ARCADIA study4—which provided defini-
tive evidence of a high prevalence of multivessel FMD based on system-
atic state-of-the art imaging of brain-to-pelvis main arterial beds (by
CT- or MR-angiography) with centralized image reading in 469 patients
(Table 2). It also provided the backbone for the PROFILE study, looking
at the incidence of novel FMD localizations and complications during a
3 year-follow-up in patients who had been fully examined at baseline.
The results of the PROFILE study are expected to be published in 2021.

2.3 ARCADIA-POL study
The Polish study ARCADIA-POL initiated in January 2015 at the
National Institute of Cardiology in Warsaw currently includes more than
300 patients with confirmed FMD referred by 32 centres (Figure 2). All
patients are examined by head to pelvis CT angiography and benefit
from an exhaustive work-up during a 5 day hospitalization. As of now,
the main achievement of the ARCADIA-POL study was to document a
high prevalence of previously undetected FMD lesions affecting clinical
decisions using this systematic approach in the first 232 patients

Table 1 Consensus points from the International FMD
Consensus—Definitions and Nomenclature for FMD.
Adapted from Refs1,2

• FMD is classified based on angiographic evaluation as multifocal or focal

FMD (Figure 1).

• To confirm FMD diagnosis >_1 multifocal or focal arterial lesion must be

present. Aneurysm, dissection, or tortuosity without multifocal/focal le-

sion/s is not sufficient to diagnose FMD.

• In patients with multifocal/focal lesion/s in >_1 vascular bed, if aneurysm,

dissection, or tortuosity is present in another/other vascular beds a mul-

tivessel involvement of all affected vascular beds should be considered.

..............................................................................................................................................................................................................................

Table 2 Comparison of selected data from the US, French (ARCADIA), European/International FMD registries and
ARCADIA-POL study

Registry US Registry for

FMD (USA)1

European/International

Registry3

ARCADIA

(France, Belgium)4

ARCADIA-POL

(Poland)5

Number of patients analysed, n 1885 1022 469 232

No. of centres evaluating patients 13 46 16 1a

Women (%) 95 82 84 83

BMI (kg/m2) 26 25 24 25

Family history of FMD (%) 5.4 3.0 2.4 2.6

Age at diagnosis of FMD (years) 53 46 53 43

Hypertension (%) 67 86 77 91

Office blood pressure (mmHg) 132/75 140/85 139/83 134/83

Age at hypertension diagnosis (years) 45 37 No data 36

Multifocal FMD (%) 95c 72 92 82

Multivessel FMD (%) 55.1 57.4 48.0 30.2

FMD lesions distribution

Renal (%)b 66 91 79 88

Cerebrovascular (including extracranial) (%)b 80 63 50 25

Mesenteric (%)b 15 21 17 14

Lower extremity (%)b 45 31 15 10

FMD-associated vascular complications

Dissections (%) 28 6 16 13

Aneurysms (%) 23 22 26 31

BMI, body mass index; FMD, fibromuscular dysplasia; IQR, interquartile range.
aA total of 32 centres are actively recruiting patients and referring them to one national center.
bRate in patients in whom evaluation was performed.
cExcluding patients with undetermined/missing FMD phenotype, in addition 2% of patients had both multifocal and focal FMD.
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.(Table 2).5 Other contributions include evaluation of structural and func-
tional changes in the heart and kidneys of patients with FMD,16,17 and de-
scription of prevalence and characteristics of spontaneous cervical
artery dissections18 and visceral FMD.19

2.4 European/International FMD registry
The European/International FMD registry was launched in Brussels in
December 20153,20 and endorsed by the European Society of
Hypertension (ESH) in 2016. It forms the nucleus of the wider
European/International FMD Registry and Initiative (FEIRI).3 As of now, it
enrolled about 1800 patients from 47 centres in 23 countries, also in-
cluding Argentina, China, and Japan (Figure 2D). Currently, the main
achievements of the European/International FMD Registry are

(i) detailed analysis of the first 1000 patients included in the Registry,
allowing characterization of distinct patient profiles according to FMD
subtype, age and gender and identification of novel predictors of multi-
vessel disease, aneurysms, and dissections3 (Table 2) and (ii) first-time de-
tailed assessment of the prevalence and nature of FMD-related
complications during pregnancy.21

3. Genetics of FMD

While both sporadic and familial forms of FMD exist, symptomatic FMD
in relatives is reported only in a minority of cases (<5%). In some families,
autosomal dominant inheritance with incomplete penetrance has been
suggested.22,23 Traditional, family-based genetic studies have been

Figure 1 Multifocal (A) and focal (B) lesion of FMD of the renal arteries.

Figure 2 National and international registries evaluating patients with FMD: The United States Registry for FMD (green), The French-Belgian ARCADIA
network (orange/blue), Polish ARCADIA-POL Registry (red), and the European/International FMD Registry (blue).
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challenging to conduct due to the relatively low frequency of well-char-
acterized multiplex pedigrees and incomplete penetrance (�0.5).23–26

FMD is currently thought to have at least a partially complex genetic ba-
sis, due to the influence of common genetic variants. Additionally, studies
on genetic background of FMD are difficult due to the likely high preva-
lence of asymptomatic FMD patients (�3–6%)8,27 and the influence of
potential environmental modifiers (e.g. female hormones, lifetime me-
chanical stress, and tobacco smoking).

Using a genome-wide association study approach, a single nucleotide
polymorphism (SNP) rs9349379-A, in the Phosphatase and Actin
Regulator 1 (PHACTR1) gene has been identified as a common genetic
risk variant. The protein encoded by this gene is a member of the phos-
phatase and actin regulator family of proteins. This family member can
bind actin and regulate the reorganization of the actin cytoskeleton. It
plays a role in tubule formation and endothelial cell survival.28 The associ-
ated SNP confers an odds ratio of�1.4 for FMD.29 It is located within an
intron of the PHACTR1 gene and is associated with PHACTR1 transcript
expression levels in dermal fibroblasts.29 The same variant has been asso-
ciated with spontaneous coronary artery dissection (SCAD) and expres-
sion QTL and colocalization analyses in this context have supported an
effect of this SNP on PHACTR1 expression in vascular tissues.30,31

Additional data suggest that this SNP is located at the site of an enhancer
in vascular tissue, where it has been shown to regulate PHACTR1 and
endothelin-1 (EDN-1) expression.32 The potential involvement of EDN-
1 is especially intriguing as it has several known vascular effects on arterial
tone and remodelling. However, at this time, the precise pathological
changes in vascular function resulting from the PHACTR1 risk variant have
yet to be defined.33 Notably, this risk locus has pleiotropic associations,
with SCAD, carotid artery dissection, hypertension, and migraine head-
ache, as well as an inverse association with coronary atherosclerotic arte-
rial disease and related myocardial infarction30,31,34–39 (Figure 3). Among
individuals with FMD, a recent analysis of a genetic risk score for SCAD
identified increased risk of SCAD among individuals with FMD, support-
ing that while these phenotypes overlap clinically and genetically at loci
such as rs9349379, there are distinct genetic risk factors as well.30 It is
noteworthy that FMD, SCAD, and related diseases all have a higher prev-
alence in women, typically manifesting at younger ages than the time-
frame of disease manifestations from atherosclerotic arterial disease,43

which suggests possible shared genetic and non-genetic risks.
Notably, in the European/International FMD Registry, the overall

prevalence of atherosclerotic lesions reported by the investigators was
17% (171/1012).3 While, expectedly, it was almost double in a subset of
122 patients aged 65 or older (33%), this prevalence remains surprisingly
low for age. As a matter of comparison, in the Cardiovascular Health
Study, including 5888 participants aged >_65 years, the prevalence of ca-
rotid atherosclerotic plaques was 77%.44 In agreement with the lower
prevalence of cardiovascular events in elderly patients from the US
Registry,13 this may reflect survival or inclusion biases. Alternatively, it
may support the belief that patients with FMD are somehow protected
from atherosclerosis.

A number of rare, exonic coding genetic variants have been implicated
in FMD. Exome sequencing has identified loss-of-function variants in
PTGIR, which encodes for the prostaglandin I2 receptor.45 Recently, a re-
current novel variant in the collagen type V alpha 1 chain COL5A1 gene,
c.1540G>A, p.(Gly514Ser), resulting in the substitution of a glycine resi-
due with a serine residue at position 514 of the protein, has been associ-
ated with a phenotype encompassing multifocal FMD, arterial
dissections, aneurysms, and tortuosity.46 This finding is the first clinically
actionable genetic finding for adult multifocal FMD. The phenotype is

notable for involvement of the external iliac artery and coeliac artery
with arterial aneurysms and dissections, and carotid artery tortuosity
was observed as well. Spontaneous arterial dissections were seen in indi-
viduals harbouring this variant in the coronary, carotid, coeliac, and iliac
arteries. Clinical presentations occurred in the fourth or fifth decades of
life, and proposed management was similar to that for vascular Ehlers–
Danlos syndrome due to collagen type III alpha 1 chain (COL3A1) patho-
genic variants, including consideration of surveillance angiographic imag-
ing, blood pressure monitoring and control, consideration of pregnancy
risk, avoidance of contact sports, and surgical precautions. The recurrent
COL5A1 variant is rare, as it was not observed in genetic population data-
bases, such as gnomAD. Further, the variant was found to exist on a
shared ancestral haplotype, supporting a ‘founder effect’ that would im-
plicate additional individuals in the population harbouring the variant.
Finally, additional individuals with multifocal FMD also harbouring genetic
variants in the COL5A1 gene that were predicted to be deleterious by in
silico analysis were predisposed to arterial dissections.46 Whether the ad-
ditional variants in this gene are pathogenic or may be acting as modifiers
of FMD remains to be clarified.

Future directions of FMD genetic investigation include comprehensive
genome-wide analyses of genetic variation including both rare, high-im-
pact alleles hypothesized to underlie familial forms of FMD, as well as
common genetic variation contributing to a complex genetic architec-
ture of FMD. Cutting-edge genetic technologies have recently made
these types of investigations feasible, and accordingly, these studies are
now underway to provide urgently needed genetic information for FMD.

4. Molecular studies in FMD

Over the last decades, increasing evidence has emerged that altered
Transforming growth factor-b (TGF-b) signalling plays a crucial role in

Figure 3 Association of PHACTR1 variant with FMD, spontaneous
cervical or coronary artery dissection, coronary artery diseases, and
related diseases. (i) Warchol-Celinska et al.—updated analysis of pre-
viously published data by Kiando et al.40 based on 1283 FMD cases
and 4193 controls;41 (ii) Debette et al.—based on 1393 SCeAD
cases and 14 446 controls;38 (iii) Adlam et al.31—based on 1055
SCAD cases and 7190 controls; (iv) Nikpay et al.36 based on 43 171
cases and 127 176 controls; (v) Gupta et al.32 based on Nikpay
et al.36 and UK Biobank, 65 262 cases and 231 381 controls; (vi)
O’Donnell et al.;42 and (vii) Gupta et al.32 based on Anttila et al.39

and UK Biobank, 7995 cases and 116 409 controls. OR, odds ratio;
FMD, fibromuscular dysplasia; SCAD, spontaneous coronary artery
dissection; SCeAD, spontaneous cervical artery dissection.
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the pathogenesis of connective tissue disorders. A first observation was
made in a mouse model of Marfan syndrome (MFS), a multisystemic dis-
order characterized by aortic aneurysm/dissection, lens dislocation, and
skeletal overgrowth. TGF-b neutralizing antibodies administered to a
MFS mouse model demonstrated that increased TGF-b signalling was
driving the multisystemic aspects of the disease in addition to the histori-
cally known structural deficiency of fibrillin-1, an extracellular matrix
protein that is mutated in MFS.47,48 The important role of TGF-b signal-
ling pathway was further supported by the identification of mutations in
the genes encoding for components of this pathway, affecting the cyto-
kines (TGFB2/3), the receptors (TGFBR1/2), and the downstream effec-
tors (SMAD2/3) in a new aortic aneurysmal syndrome, now called
Loeys–Dietz syndrome (LDS).49–51

Clinical studies in patients with FMD indicated that 30–57% of patients
have angiographical manifestations in multiple arterial beds.8 In addition,
some FMD patients may also have connective tissue features beyond the
arterial pathology, including low bone density, joint laxity, scoliosis, early
onset arthritis, and degenerative spine disease.52 Based on these obser-
vations, FMD is increasingly considered as a systemic disease with some
overlap with known connective tissue disorders, including MFS, LDS,
and Ehlers–Danlos syndrome. As altered TGF-b signalling was already in-
volved in these conditions, a role for TGF-b in the pathogenesis of FMD
was hypothesized.52 In a small cohort of 38 FMD patients, it was shown
that both circulating TGF-b1 and TGF-b2 plasma levels were in-
creased.52 In fibroblasts of FMD patients, no effect on downstream TGF-
b pathway effectors could be demonstrated, even when stimulated with
TGF-b1, TGF-b2, or bone morphogenetic protein 4.52 Overall, these
findings suggest that activation of the TGF-b pathway is not a primary
cause of FMD. This is also confirmed by the fact that mutational screen-
ing of TGF-b pathway related genes in FMD patients has yielded very
few mutations. In the cohort of Ganesh et al.,52 no mutations were found
in TGFBR1/2, TGFB2, and SMAD3 in 47 patients. In another series of 35
patients with FMD who underwent genetic evaluation, 2 variants
(p.Thr204Ile & p. Tyr429His) were identified in TGFBR1.53 Both patients
had multiple cervical artery dissections and thoracic aortic aneurysm as
well as more classical multifocal FMD lesions, so may represent LDS var-
iants. No familial segregation was done for these two variants. A recent
study54 analysed all known pathogenic TGF-b signalling pathway genes in
a cohort of 179 SCAD patients (with or without FMD) and 102 patients
with FMD only. Whereas a mutational burden was identified in the
SCAD cohort in the known LDS genes, the latter was not found in the
FMD only cohort. Notably, in most cases, the distinction between FMD
and MFS, LDS and Ehlers–Danlos syndrome is easy to make based on
the presence or absence of typical string-of-beads arterial lesions.
Though common pathogenic mechanisms are postulated, these are
clearly separate entities.

Recently, researchers uncovered a possible link between FMD and
mutations in a second pathway, driven by platelet-derived growth factor
(PDGF) receptor b (encoded by the PDGFRB gene). PDGFRB is highly
expressed in vascular mural cells and drives their migration and prolifera-
tion in angiogenesis.55 PDGFRB gain-of-function mutations cause myofi-
broma, classified as a benign pericytic tumour made of myofibroblastic
cells.56,57 The development of multiple myofibroma defines infantile
myofibromatosis, a disease that may become life threatening when inter-
nal organs are involved. Most of the mutant receptors identified in myofi-
bromatosis are sensitive to tyrosine kinase inhibitors, such as imatinib
in vitro, which was successfully tested in several severely affected
patients.56,58

In 2010, Brasseur et al.59 reported myofibromatosis also involving re-
nal arteries in a young patient with severe hypertension, multiple myofi-
bromas and aneurysms of the renal and iliac arteries. Sequencing tumour
DNA revealed an acquired PDGFRB p. D850V substitution,57 which was
also present in the renal artery lesion (Dachy and Demoulin, personal
communication). This mutation constitutively activates the receptor sig-
nalling in the absence of ligand.57 Recently, somatic activating mutations
were also identified in four out of six cases of cerebral fusiform aneur-
ysms.60 Interestingly, several of these PDGFRB variants were identical to
those found in myofibroma. The association between PDGFRB and
aneurysms was further confirmed in patients with Kosaki overgrowth
syndrome, another rare connective tissue disease caused by germline
PDGFRB variants. Two patients were reported with fusiform aneurysms
of the basilar artery, resulting in a lethal haemorrhage at the age of 20,
and stroke, respectively.61 In another report, saccular aneurysms of cor-
onary arteries and arterial tortuosity were diagnosed in a patient with
Kosaki syndrome who suddenly died at the age of 19.62 Altogether, these
studies confirm that overactivation of PDGF receptor b causes aneur-
ysms and, possibly, other vessels anomalies. Nevertheless, whether
PDGFB and PDGFRB genes are involved in the pathophysiology of classic
FMD remains to be demonstrated.

5. Proteomics and transcriptomics
of FMD

It has been known for several decades that FMD involves changes in the
composition of the arterial wall.63,64 However, unlike diseases such as
atherosclerosis where samples from affected vessels can be obtained via
surgery, the vast majority of patients with FMD are treated conserva-
tively or with catheter-based therapy (e.g. angioplasty). As a result, FMD
vascular tissue samples are very rarely obtained. As a more novel line of
investigation, there have been increasing efforts directed towards
leveraging blood and dermal fibroblast samples to gain insights on the
pathophysiology of FMD. Notably, dermal fibroblasts can be readily
obtained from a small (2–3 mm) skin biopsy using outgrowth tissue cul-
ture techniques over 4–8 weeks, and it is intuitive that FMD involves
alterations in fibroblast cells. Indeed, as mentioned, Ganesh et al.52 found
elevated plasma TGF-b and inflammatory marker levels, and increased
TGF-b secretion in dermal fibroblast cell lines from subjects with FMD
compared to age- and gender-matched controls.52

More recently, Olin et al.65 published the first report from the
DEFINE-FMD study, a functional multi-omics systems biology study aim-
ing to decipher the molecular and genetic basis of FMD. Of relevance,
systems biology approaches leverage highly tractable and informative
methods66 that have been used with success for understanding coronary
artery and other vascular diseases.67,68 In their study, Olin et al.65 evalu-
ated plasma levels of 981 proteins and 31 lipid sub-classes in women
with multifocal FMD and matched healthy controls. Using separate dis-
covery and validation cohorts with a combined total of 113 FMD cases
and 128 controls, they identified and successfully validated a signature of
37 plasma proteins and 10 lipid sub-classes with differential abundance in
FMD patients vs. controls. Using systems biology approaches, they
showed that the genetic locus of one of these ‘FMD signature proteins’,
CD2-associated protein (CD2AP), was independently associated with
risk of having FMD (P=0.0003) and that it is widely expressed by endo-
thelial cells in medium-large-sized human arteries (Figure 4). In addition,
machine learning trained on the discovery cohort plasma protein and
lipid data were used to develop a test for FMD. When independently
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..applied to the validation cohort, the test showed promising proof-of-
principle for its ability to diagnose the presence of FMD. Accordingly, an
accompanying editorial suggested that while these exciting findings re-
quire further validation, the potential clinical relevance of a blood-based
test for FMD may include the ability to: (i) predict the presence of silent
FMD in relatives of patients with symptomatic FMD; (ii) support or rule
out the diagnosis of FMD in patients with suggestive arterial features but
without the pathognomonic ‘string-of-beads’; and (iii) predict progres-
sion of the disease.69

DEFINE-FMD has now enrolled over 400 subjects and while unpub-
lished, additional studies using the fibroblast samples from this study ap-
pear equally promising. Again using systems biology approaches but on
this occasion applied to transcriptomic (i.e. gene expression) data from
fibroblasts, the investigators have reportedly identified a gene regulatory
network that is of importance in FMD, which has led to their developing
mouse model of this disease.70

6. Immunological and inflammatory
aspects of FMD

The current definition of FMD emphasizes its fibrotic, non-athero-
sclerotic, and non-inflammatory nature. This last statement is based
on the early observations of relative paucity of inflammatory cells in
advanced FMD lesions at a time where vascular samples were

available. However, in view of the critical role of inflammation in
triggering vascular fibrosis, which has emerged in recent years, in-
cluding the role of key cytokines, such as TGF-b, IL-17, and IL-9 in
the regulation of fibrosis,52,71 it may be hypothesized that inflamma-
tion is involved at the early stages of FMD. In a recent study, angio-
tensin II was reported to lead to severe perivascular and vascular
fibrosis in the absence of T cells and T cell-dependent cytokines.
Moreover, FMD patients showed features of increased inflammatory
biomarkers including tumour necrosis factor alpha, C-reactive pro-
tein, monocyte chemoattractant protein 1, serum amyloid A protein,
intercellular adhesion molecule 1, vascular cell adhesion molecule 1
and IL-8, as well as clearly profibrotic TGF-b compared to control
subjects and patients with MFS.52 Finally, the proteomic signature of
FMD confirmed that number of top newly identified FMD-specific
proteins are inflammatory.65 These include CCL11 (eotaxin), fibro-
blast growth factor 19, or GRB2 related adaptor protein 2.
Interestingly similar sets of mechanisms are linked with immune and
inflammatory pathogenesis of hypertension itself.72 Recent studies
using optical coherence tomography demonstrate that vascular seg-
ments affected by coronary FMD display features usually associated
with vascular inflammation, such as multiple areas of patchy or dif-
fuse intimal, medial or adventitial abnormalities, and features of mac-
rophage infiltration.73 Further mechanistic studies will be critical to
provide detailed insights into the role of inflammation in the patho-
genesis of FMD.

Figure 4 FMD signature proteins. CD2AP was associated with FMD and was expressed by endothelial cells. Immune-fluorescence staining for CD2AP is
performed on adult human non-FMD samples from renal artery (A), internal mammary artery (B), and aorta (C). Endothelial cells are identified by staining
for CD31 (green), while CD2AP is shown in red. Nuclei are stained with DAPI (blue). Scale bar—25 mm. Inset panels on the right, represent a magnified
view of the area in the respective dashed squares, show endothelial cells at higher enlargement. M—tunica media; L—lumen. Reproduced with permission
from Olin et al.65
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7. New and revisited risk factors
for FMD

As discussed above, although a variety of genetic, mechanical, and hor-
monal factors may play a role in the pathogenesis of FMD, overall, its
cause remains poorly understood. It is probable that the pathogenesis of
FMD is linked to a combination of genetic and environmental factors e.g.
smoking, mechanical factors, stretching, and maybe vasculotoxic medica-
tions, such as fluoroquinolones.

Tobacco smoking may be a potential pathogenic factor associated
with FMD. Following early observation of Nicholson et al.74, Savard
et al.14 showed that the proportions of current smokers (30% vs. 18%)
or ever smokers (50% vs. 37%) were much higher in FMD patients as
compared to matched hypertensive controls (Figure 5). Moreover, the
prevalence of current smoking was much higher in patients with focal
than with multifocal lesions (50% vs. 26%, respectively), possibly reflect-
ing the difference in sex distribution (female: male ratio, 2:1 and 5:1, re-
spectively). Current smoking was also associated with a more aggressive
course among patients with multifocal FMD. In the US Registry, history
of smoking was associated with a significantly higher rate of aneurysm de-
tection in patients with FMD (25% vs. 19% in never smokers) (Figure 5)
as well as an increased prevalence of major vascular events (43% vs. 37%,
respectively).75

Contrasting with these two studies, Dobrowolski et al. documented
no difference in the rate of ever smokers among FMD patients as com-
pared to two matched control groups—the first from the general popu-
lation and the second consisting of hypertensive subjects (Figure 5).
Moreover, smoking was neither associated with clinical characteristics of

patients with FMD nor with extent or complications of the disease.76 In
summary, data linking smoking with the pathogenesis of FMD are equivo-
cal and further studies are needed to elucidate this potential relationship.

The use of fluoroquinolones is associated with thoracic and abdominal
aortic aneurysms or dissections.77,78 Also, the use of fluoroquinolones
was associated with a more than two-fold increased risk of spontaneous
cervical artery dissection.79 However, a recent study did not provide evi-
dence for an excess of risk of intracranial aneurysm or dissection with
fluoroquinolone use.80 Experimental studies have demonstrated several
molecular mechanisms responsible for fluoroquinolone-associated colla-
gen toxicity, including increased matrix metalloproteinases (MMPs) ac-
tivity and collagen degradation, as well as decreased activity of tissue
inhibitors of MMPs.81,82 Although there are no data on the role of fluoro-
quinolones in the pathogenesis of FMD and associated dissection, while
waiting for specific evidence, patients with FMD should follow the advice
of the FDA that ‘fluoroquinolones should not be used in patients at in-
creased risk [of aortic ruptures or dissections] unless there are no other
treatment options available’.83

8. Arterial structure and function
in FMD

Increasing evidence highlights that FMD is a systemic disease, and that
subclinical alterations can be found in non-affected arterial segments,
such as the ‘triple signal’ pattern in the common carotid artery22,84

(Figure 6), or the presence of reduced arterial diameter and impaired
smooth muscle cell function in the brachial artery.85 Triple signal was

Figure 5 Frequency of smoking in FMD patients in Savard et al., Dobrowolski et al., and O’Connor et al. studies.14,75,76 HT, hypertensive; FMD, fibromus-
cular dysplasia.
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associated with increased stiffness of the vascular wall of the common
carotid artery85 and may represent the ultrasound signature of outer
media fibrosis observed in renal biopsies.22 However, carotid triple signal
has limitations: it is less FMD-specific than previously thought, being also
associated with atherosclerosis and traditional risk factors,85,86 and it has
not been validated in independent cohorts yet. Indeed, subclinical abnor-
malities seem to be more evident in the muscular medium-sized arteries
(usually spared by atherosclerosis but specifically affected by FMD),
according to a ‘muscular-to-elastic’ gradient.85

The recently introduced technique of ultra-high-frequency ultrasound
(UHF-US) allows imaging of superficial tissues (2 cm depth max), making
it possible to study arterial wall thickness and ultrastructure of
medium-sized and small-sized arteries (lumen down to 300 lm) in vascu-
lar diseases and therefore has the potential to overcome these limita-
tions.87–89

In 2017, the first research programme for non-invasive vascular phe-
notyping by UHF-US in diseases from the FMD-spectrum, the FUCHSIA
study—‘Very high-Frequency Ultrasonography for arterial phenotyping
in patients with Cervico-Cerebral Artery Dissection (CCeAD),
Hypertension, Spontaneous Coronary Artery Dissection (SCAD) and
FibroMuscular Dysplasia (FMD)’—was launched in four different coun-
tries (Italy, UK, France, and Belgium). Preliminary results from the Italian
cohort showed an altered ultrastructure in carotid and radial walls of
patients with FMD, with thickening and disarray of wall layers in compari-
son to healthy controls90 (Figure 6).

In the next years, the FUCHSIA research plan includes replication in
independent validation cohorts; integration of the radiomics—machine
learning approach for classification; and correlation of vascular pheno-
types with disease characteristics and clinical outcomes. Coupling with
other omics techniques is also advisable,69 for a more accurate diagnosis

and risk stratification, as well as for a better understanding of the patho-
physiology of FMD.

9. Renal haemodynamics in FMD

Until recently, little was known on the impact of multifocal renal artery
FMD on the kidney. Most knowledge was based on experiments in ani-
mal models with clipping of the renal artery and studies in patients with
atherosclerotic renal artery stenosis (ARAS). Recent studies in patients
with renal artery FMD, however, shed a new light on the kidney in FMD
and suggested important differences with ARAS and animal models.

First of all, it has been proposed that in multifocal FMD the intrarenal
vasculature is relatively intact. Renal blood flow (RBF) was indeed mea-
sured in 64 patients with multifocal FMD (prior to balloon angioplasty
and without the use of antihypertensive drugs) using the 133Xenon wash-
out method. RBF in the affected kidney was comparable to that in the
unaffected contralateral kidney.91 Moreover, the global RBF in multifocal
FMD was comparable to that in matched patients with essential hyper-
tension, and significantly higher than that in patients with ARAS.91,92

The ARCADIA-POL study evaluated intrarenal haemodynamic pat-
terns by Doppler-ultrasonography in 153 patients with renal artery
FMD.17 Among FMD patients with non-significant renal FMD, the renal
resistive index (RRI) was comparable to that in patients with essential hy-
pertension and healthy normotensives. Also, no difference in RRI was
found between patients with multifocal and focal FMD. However, in
FMD patients with significant stenosis, post-stenotic intrarenal RRI was
significantly lower as compared to FMD patients without significant ste-
nosis, hypertensive controls, and normotensive subjects.17 Likewise,
lower RRI was measured in kidneys with FMD with a significant stenosis

Figure 6 Subclinical ultrasound FMD features in non-affected districts include disarray of the arterial wall. Normal common carotid artery wall (standard
ultrasound) (A) and normal radial artery (UHF-US) (B) are characterized by one and two echogenic interfaces, respectively (white arrows). In FMD patients,
common findings are the presence of additional echogenic interfaces (yellow arrows), either in the posterior wall of the carotid artery (the so-called triple
signal) (C) or in the radial artery (D).
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as compared to those without, along with significant differences in other
intra-renal duplex ultrasound parameters.

Since the post-stenotic flow pattern is associated with the compliance
of the post-stenotic vessel wall, a lower RRI may reflect a high compli-
ance. This may explain the finding of a lower RRI in patients with FMD
with significant stenosis.

Finally, microvascular function appears to be preserved in kidneys
with multifocal FMD. Global renal function is generally in the normal
range (mean eGFR in the European FMD registry was 92 mL/min/
1.73 m2)3 and does not differ between the affected and unaffected kidney
in patients with unilateral FMD if the renal artery stenosis is not severe.91

However, this may depend on the severity of stenosis.93 Moreover, in
patients with multifocal FMD enrolled in the ARCADIA-POL study, RRI
was not correlated with renal function or albuminuria.17 Finally, intrare-
nal infusion of vasoactive substances in kidneys with FMD results in a
haemodynamic response that is comparable to that in controls,91 while
this response is severely decreased in ARAS (Figure 7).94,95

As a whole, it appears that the presence of a string-of-beads does not
significantly impair renal perfusion or intrarenal microvascular function in
most patients, which is in sharp contrast to ARAS. In the short term, this
remains true even in the presence of a unilateral tight stenosis because
of compensatory mechanisms in the contralateral kidney.93 Presumably,
the lower exposition to other pro-atherosclerotic and nephrotoxic fac-
tors (diabetes and hypercholesterolemia) and the shorter duration of hy-
pertension, may also contribute to preserve the kidney tissue from
glomerular and tubular damage and fibrosis, as well as intrarenal vascular
compliance. Possibly, altered haemodynamics caused by the string-of-
beads may also protect the kidneys from hypertensive damage. These
differences in renal microvasculature may explain why revascularization
is usually unsuccessful in ARAS96,97 while it frequently has a blood pres-
sure-lowering effect in FMD.98

Renal perfusion is relatively preserved in patients with multifocal FMD
and thus renin secretion is not markedly increased compared to patients
with essential hypertension. Moreover, there is no renin secretion gradi-
ent between the affected and unaffected kidney in patients with unilateral

multifocal FMD.91,92 However, interpretation of these studies4,17,95,99 is
complex since in the absence of trans-stenotic pressure gradient meas-
urements, a proportion of patients may have non-significant renal artery
stenosis associated with essential hypertension.

In contrast, in patients with focal FMD, the impact on the kidney
appears similar to that of ARAS and renal artery clipping in animal mod-
els: renal perfusion and glomerular filtration are lower in kidneys with fo-
cal FMD and renin secretion is increased in the affected kidneys.99

Hence, it appears that the haemodynamic impact of focal FMD lesions
on the kidney is more severe, resulting in a more classic pattern of reno-
vascular hypertension. This may in turn explain the more often severe
clinical presentation and higher success rate of balloon angioplasty in
patients with focal FMD compared to multifocal FMD. Work regarding
renal haemodynamics and haemodynamic assessment of renal artery
FMD is ongoing. In 2019, the International FMD Consensus proposed a
standardized clinical protocol for haemodynamic assessment of renal ar-
teries based on trans-stenotic pessure gradient measurements prior to
and following angioplasty, which requires additional validation.1,2

10. Neurological manifestations
of FMD

The most frequent presenting symptoms of neurological FMD are head-
aches and pulsatile tinnitus.4,8,100 Headaches (mostly migraine type and
tension type) were reported by 70% of patients with FMD.4,8,9 The un-
derlying pathophysiology of headaches in FMD patients remains vague
and potential mechanisms comprise changes in cerebrovascular flow—
labile hypertension, hyper- or hypoperfusion, neurovascular dysregula-
tion or dysautonomia, structural injury—dissection, microtrauma, or en-
hanced pain sensitivity.101 Although headaches are commonly reported
by FMD patients, irrespective of involved vascular beds, the presence of
headaches is significantly more frequent in FMD patients with a history
of cervical or intracranial artery dissection or intracranial aneurysm.9

Figure 7 Kidney in FMD: tentative differences between FMD and ARAS. Adapted from Ref.95
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Pulsatile tinnitus is reported in 40% of patients with neurological FMD
and may be associated with the presence of cervical artery dissection.8,9

Patients with FMD have a high prevalence of cervical (carotid and ver-
tebral) artery dissection and intracranial saccular aneurysms.10,102 The
most frequent complications of neurological FMD are, in decreasing or-
der, transient ischaemic attack (TIA) (8–53%) or ischaemic stroke (8–
35%), subarachnoid haemorrhage or unruptured aneurysm (3–49%),
and intracerebral haemorrhage (6–13%).102

In FMD patients, TIA or ischaemic stroke can be a consequence of:
haemodynamic mechanism (hypoperfusion from cervical or intracranial
arterial stenosis or occlusion—Supplementary Figure S2A), emboli
(thrombosis in the area of a stenosis or dilation), or thrombosis (lacunar
stroke, thrombosis of small, perforating arteries due to secondary hyper-
tension). However, TIA/ischaemic stroke appear to occur primarily in
the presence of associated cervical artery dissection, due to artery-to-ar-
tery thromboembolism or cerebral hypoperfusion (Supplemental Figure
S2B). Subarachnoid haemorrhage mainly results from the rupture of
an intracranial aneurysm and less commonly from dissecting vertebral
artery into the intracranial segment.102 Intracerebral haemorrhage
is rare in patients with FMD but may be due to the rupture of an
intracranial aneurysm, a dissection or the presence of hypertensive
microangiopathy.102

FMD is the most common underlying vasculopathy at the origin of
cervical artery dissection, and a recent systematic review of patients with
cervical artery dissection estimated the presence of FMD lesions to be
16%.103 Also, in a recent small study of 43 patients with spontaneous
cervical artery dissection who underwent brain-to-pelvis CT-angio eval-
uations, FMD was found in 39.5% of patients.18

The prevalence of cervical artery dissection has been estimated to be
21% in all FMD patients, with an increased prevalence of carotid (16%)
as opposed to vertebral (5%) artery dissection.104 Furthermore, among
patients with a neurological presentation leading to the diagnosis of
FMD, the prevalence of cervical artery dissection is even higher, being
27%.4 Cervical arteries remain the main location of arterial dissections in
FMD patients, with cervical artery dissection accounting for up to 65% of
all dissections.104 Of note, among FMD patients with a cervical artery dis-
section, the presence of multiple cervical artery dissections is not un-
common and estimated to be up to 37%.8,10

The ARCADIA registry has identified male sex, age >50years, history
of migraine or hypertension and involvement of >_3 vascular beds with
FMD lesions to be independent risk factors for cervical artery dissection
in patients with FMD (Arnaud et al., Journal of American Heart
Association, in press).

Intracranial saccular aneurysms are mainly unruptured and diagnosed
incidentally on imaging rather than discovered after rupture. The preva-
lence of intracranial aneurysms in patients with FMD is higher (7%) than
in the general population (<5%).105 In the US Registry, 13% of women
with FMD had at least one intracranial aneurysm and 4% more than one.
Of interest, 29% of these aneurysms were of size >_5 mm, which is the
threshold commonly judged to classify intracranial aneurysms as of high
risk of rupture.106 Also, there was no difference in the rate of intracranial
aneurysms between patients presenting with renal and cervical FMD.11

It remains unclear whether the risk of rupture of intracranial aneurysm is
higher in FMD patients that in the general population (<1%/year), be-
cause of the shortage of longitudinal data in patients with FMD with in-
tracranial aneurysm.

Information on risk of long-term progression of FMD and occurrence
of non-specific lesions (aneurysm, dissection etc.) is scarce. Longitudinal
data from the US FMD registry suggest that FMD is a non-progressive

disease, with no or rare extension of FMD lesions in initially involved ar-
teries and no FMD involvement in previously unaffected arteries.104

Similarly, patients with cervico-encephalic FMD do not appear to have
an increased risk of FMD progression and occurrence of non-specific
lesions (e.g. recurrent cervical artery dissection).104 Indeed, in 146
patients with multifocal FMD with follow-up cervical imaging, none had
development of FMD in a previously unaffected artery and none had
FMD progression in previously involved artery after a mean follow-up of
35 months (range 5–153 months).104 No patient had a new aneurysm
and three (2%) had a new cervical artery dissection during follow-up.
Interestingly, all three patients with a new cervical artery dissection dur-
ing follow-up already had multifocal FMD lesions on the same cervical ar-
tery at baseline, one had a previous contralateral cervical artery
dissection and another a previous coronary artery dissection.

Arterial diaphragms are thin translucent endoluminal webs localized in
the carotid (especially in the posterolateral side of the carotid bulb) or
vertebral (V3 segment or ostium) artery and correspond to a linear de-
fect on angiography that does not change or disappear after change of
the patient’s head position (Supplemental Figure S2C).107–109 This entity
has been reported to share similar histological findings with FMD, with
anatomical specimens showing intimal fibroplasia without atheromatous
or inflammatory lesions in almost all cases.102,110,111 Several authors esti-
mate that this could be the predominant form of FMD in Black popula-
tions and have classified it as ‘atypical FMD’.112

Carotid webs have been reported in middle-aged adults, predomi-
nantly women, of African or Afro-Caribbean ethnicity, presenting with a
TIA or ischaemic stroke in the carotid artery territory ipsilateral to the
web, with no other causes identified after a comprehensive work-up.
Patients with carotid webs have no typical multifocal or focal FMD
lesions, no aneurysm or dissection, and no atherosclerotic risk fac-
tors.107–109,112 Carotid webs could be more frequent than previously
thought in patients who suffered an ischaemic stroke. A review of con-
secutive patients with ischaemic stroke indeed reported a 1.2% rate of
carotid web (0.7% ipsilateral to the stroke),108 while a subanalysis of
patients with ischaemic stroke due to intracranial large-vessel occlusion
included in the Multicenter Randomized Clinical Trial of Endovascular
Treatment for Acute Ischaemic Stroke in the Netherlands (MR CLEAN
trial) showed a 2.7% frequency (2.5% ipsilateral to the stroke).113

Cerebral ischaemia is thought to be mediated by an embolic mecha-
nism because of stasis upstream to the web or within an associated aneu-
rysmal bulb or from focal dissection, and a strong association between
carotid webs and ischaemic stroke has been reported in a population-
based case–control study.112

11. Heart and FMD

11.1 Heart morphology and function in
FMD
Contrary to atherosclerotic RAS, data on the relationship between renal
FMD and left ventricular morphology and function are limited.114–116

In the ARCADIA-POL study, LV morphology and function of 144
FMD patients were compared to those in a matched control group. No
significant differences in left ventricular morphology and systolic function
were found between FMD patients and controls or between subjects
with multifocal and focal FMD, even in case of significant RAS.16

In contrast, early alterations in left ventricular diastolic function (lower
e’ and higher E/e’) were found in patients with multifocal FMD compared
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to both patients with focal FMD and controls.16 These results may be
explained by the older age of subjects with multifocal FMD.

In summary, there is no evidence that FMD is associated with alter-
ation in LV morphology and function over and above BP levels.

11.2 Coronary arteries in FMD
The coronary phenotype in patients with FMD may include the presence
of excessive tortuosity, the intravessel or multivessel symmetry sign,
corkscrew appearance, dissection, aneurysm, distal tapering or long,
smooth narrowing in relation with either a dissection or an intramural
haematoma within the coronary artery.1,2,117

The most common feature of coronary phenotype in FMD is coro-
nary tortuosity, however, the diagnostic criteria applied across studies
are non-uniform and arbitrary (Supplementary Figure S1).118–120

Coronary tortuosity has been reported in all of 32 examined patients
with extra-coronary FMD in one study.73 Similarly in another study five
patients with resistant hypertension, exertional chest pain, and significant
coronary tortuosity were diagnosed with FMD of renal and/or cervical
arteries.121 Corkscrew appearance and multivessel symmetrical tortuos-
ity were also associated with extra-coronary FMD in SCAD patients.120

On the other hand, coronary tortuosity defined as >_3 bends above 45�

may be found in 39.1% of consecutive patients undergoing coronary an-
giography due to chest pain whereas it may be found in 12.5% when tor-
tuosity is defined as >_2 bends above 180�.118,119 These results should
therefore be interpreted with caution due to limited number of patients
and potential selection bias.

Clinical presentation of coronary artery alterations observed in FMD
ranges across a wide spectrum from asymptomatic, through exertional
chest pain, to rarely life threatening, such as myocardial infarction or sud-
den cardiac death mostly due to SCAD. More severe coronary tortuos-
ity is linked to an increased risk of recurrent coronary dissection in
SCAD.120 Coronary tortuosity may increase transcoronary gradient
leading to myocardial ischaemia and increased local shear stress, which
may facilitate dissections.122–124

11.3 SCAD and FMD
SCAD is a cause of acute coronary syndromes, which, like FMD, afflicts
predominantly young to middle-aged women. Following the first report
of extra-coronary arteriopathies in SCAD-survivors,125 a range of vascu-
lar abnormalities have been described including aneurysms, dissections,
focal stenoses, and aortic root dilation but the commonest finding is an
appearance indistinguishable from the typical radiological manifestations
of multifocal FMD.126,127 To date, there has been no histological confir-
mation that these appearances arise from the same changes at a cellular
level as those described in classical FMD128 but it is now widely accepted
that the radiological findings in SCAD represent true multifocal FMD
rather than a phenocopy.129,130

It remains uncertain if all other vascular abnormalities seen in SCAD
are part of the FMD-spectrum or if FMD is just one of a range of SCAD-
associated arteriopathies. Whilst coronary arterial wall abnormalities
have been described from intravascular imaging in SCAD,73,131 typical
multifocal FMD-like coronary appearances are not generally seen.
Recent genetic studies have shown SCAD and FMD share common risk
variants including the PHACTR1 locus31 but with hints that the effect size
may be different between patients presenting primarily with SCAD com-
pared with those with FMD. Common genetic variants associated with
general forms of SCAD are also associated with SCAD risk among indi-
viduals with FMD,30 suggesting that the two diseases are not one and the

same. Likewise, the contribution of causal rare genetic variants may be
different. Further work is continuing to understand at a molecular ge-
netic level to what extent SCAD and FMD relate.54

Reports of the prevalence of FMD in SCAD have ranged widely
depending on modality and completeness of imaging and the permissive-
ness of the definition used but it is likely this affects between 30% and
50% of SCAD-survivors with the commonest affected vascular beds be-
ing the cervical, renal, and ilio-femoral vessels.129 On the other side,
SCAD may occur in patients with FMD but the incidence appears low in
follow-up reports from international FMD registries (2.7% of patients in
the US Registry for FMD).10 So, whilst there is clinical overlap between
these conditions, a significant proportion of patients with SCAD have no
evidence of FMD when screened using cross-sectional brain-to-pelvis
imaging and most patients with FMD will never have SCAD.

Importantly in most SCAD patients, findings of multifocal FMD appear
benign and non-progressive in the short to medium term, with, low
reported rates of non-coronary major adverse cardiovascular events in
SCAD-survivors.129,130 For example, there have been no reports to date
of renovascular hypertension requiring intervention developing in a
SCAD-survivor identified on screening to have renal multifocal FMD.
Longer follow-up data however, are of considerable importance in this
younger population and are currently limited.

It seems clear that SCAD and FMD are closely related pathologies.
However, clinical, radiological and genetic data suggest they are overlap-
ping disorders rather than a single disease. Whilst initial progress has
been made, further international collaborative research is needed to bet-
ter understand the pathophysiological relationship and the best clinical
management of these important conditions.

12. Visceral phenotype in FMD

Visceral artery FMD (VA FMD) is an uncommon manifestation of FMD,
with presentations varying from incidentally discovered to symptomatic
or even life-threatening disorder.3,4,8,19,132

Its prevalence among FMD patients is estimated at 15–20% (range 9–
48.7%), based on various cohorts and comprehensiveness of vascular
screening.132

In FMD patients enrolled in ARCADIA-POL who underwent a full
brain-to-pelvis vascular screening, the prevalence of VA FMD was
13.8%.19 Most cases of VA FMD were asymptomatic. However, in five
patients (15.6%), VA FMD presented as abdominal emergencies e.g. rup-
ture of a hepatic artery aneurysm or acute thrombosis of mesenteric
artery.

In this series, VA FMD affected most frequently the coeliac trunk
(83.1%). Other arteries were affected less frequently: superior mesen-
teric (25%), splenic (9.1%), common hepatic (6.3%), and inferior mesen-
teric (6.3%). Of interest, 42 aneurysms in visceral arteries were found in
20 patients with VA FMD (62.5% of this cohort). Moreover, patients
with VA FMD were characterized by lower BMI as compared to patients
with only renal FMD, healthy controls and patients with resistant essen-
tial hypertension.19

Furthermore, compared to matched controls, FMD patients were
characterized by significantly smaller diameters of all visceral arteries
irrespectively of the VA FMD presence.19 In line with the aforemen-
tioned findings of Bruno et al. in brachial arteries, this anatomical differ-
ence may represent a novel phenotypic expression of FMD.19 This
observation nevertheless requires confirmation in larger cohorts and
other vascular beds.19,85
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..13. Pregnancy-related
complications

Exogenous or endogenous female hormones have been reported as po-
tential risk factors for FMD133,134 but no strong evidence of a clear asso-
ciation with FMD has yet been identified. In a small renal histological
study, an intense progesterone receptor expression in the nuclei of
smooth muscle cells of the renal arteries was detected in six patients
with FMD but not in three control subjects, suggesting that progester-
one may play a role in the pathogenesis of FMD, but further studies are
needed to confirm these findings.135

Until recently, data on pregnancy-related complications in patients
with FMD were mostly based on the results of a single retrospective
study136 reporting a very high risk of superimposed pre-eclampsia in a
small cohort of patients subsequently revascularized for FMD-related
renal artery stenosis. Furthermore, an increased risk of worsening of
hypertension status and of vascular complications (aneurysms
rupture or arterial dissection) during the peri-partum period has been
postulated in FMD patients according to several case reports and expert
opinion.137–140

Very recently, the nature and prevalence of complications occurring
in FMD patients during pregnancy or within 3 months postpartum were
extensively assessed in the European/Internal FMD Registry.21 Out of
237 women with FMD, 40% experienced pregnancy-related complica-
tions. Compared with women from the general population,141–143

patients with FMD had a substantially higher prevalence of gestational
hypertension (25% vs. 3.6–9.1%) and preterm birth (20% vs. 5.5–12.2%),
while pre-eclampsia was only moderately increased (7.5% vs. 1.6–4%)
(Figure 8). When compared to women with primary hyperten-
sion,142,144,145 both prevalence of preterm birth and, especially, of pre-
eclampsia was lower in women with FMD (20% vs. 22.7–33.3% and 7.5%
vs. 22–25.9%, respectively). Other maternal placental syndromes, such
as abruptio placentae and intra-uterine foetal death, as well as severe
vascular complications (arterial dissection and/or aneurysm rupture)
were rare (Figure 8). Finally, only <5% of women with FMD developed
resistant hypertension during pregnancy.

Since complicated pregnancies were more frequent in younger
patients with renal FMD and a higher rate of renal artery revasculariza-
tions,21 the higher prevalence of pregnancy-related complications com-
pared to the general population may be due to the severity of

Figure 8 Pregnancy-related complications in patients subsequently diagnosed with FMD enrolled in the European/International FMD Registry.21

Gestational hypertension—25%, 0%, and 9.1%; preterm birth—20.1%, 33.3%, and 12.2%; pre-eclampsia—7.5%, 25.9%, and 4.0%, for patients with FMD,
chronic hypertensives, women from the general population, respectively.
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renovascular hypertension. Still, other less well-studied factors, such as
increased inflammation, endothelial dysfunction, changes in cytokines
(i.e. TGF-b1 and -b2), and changes in the VGEF/PlGF balance or female
hormones levels may account for this increased risk. Further studies are
needed in order to replicate these results and dissect the underlying
mechanisms.

14. 2019 FMD consensus

In 2019, the First International Consensus on FMD was published simul-
taneously in the Journal of Hypertension and Vascular Medicine.1,2 This doc-
ument built upon 2014 scientific statements from the USA and Europe,
with a writing committee commissioned in 2017 by the Working Group
‘Hypertension and the Kidney’ of the European Society of Hypertension
(ESH) and the Society for Vascular Medicine (SVM).6,146 The goal of the
International Consensus document was to create a single, up-to-date ex-
pert consensus on adult FMD that would replace the two 2014 docu-
ments. In addition to European and American specialists representing
the ESH and SVM, the writing committee included experts from other
regions of the world and representatives of patient advocacy groups.
The document includes 13 consensus-based points covering multiple
aspects of FMD with the acknowledgement that there was generally

limited level I data available on which to make recommendations. As
explained, the intent of the writing committee was that the document,
‘including identification of research priorities, will lead to future high-
quality research efforts, additional observational studies, and randomized
controlled trials, and that these data will be incorporated into a future in-
ternational guideline document’. Important clinical consensus points in
the document address brain-to-pelvis imaging for patients with FMD, the
prescription of antiplatelet therapy for patients with FMD in the absence
of contraindication, and the use of a standardized protocol for catheter-
based renal angiography and angioplasty that incorporates haemody-
namic assessment of translesional renal artery pressure gradients.1,2 In
addition to the consensus points and research priorities (Table 3), the
document includes a summary of FMD mimics, comparison of data in
the US and European FMD registries, and a review of international pa-
tient advocacy efforts. The co-published document has been widely read
with more than 22 000 views since its publication.

15. New directions in FMD research

The past decade has seen significant progress in FMD-related research,
which has led to improved understandings of the disease’s clinical mani-
festations, natural history, epidemiology, and genetics. An imaging-based
taxonomy has been developed and an International Consensus has been
published, which includes guidance on the diagnostic approach and man-
agement of patients with FMD.1,2 Ongoing work described above contin-
ues to focus on FMD genetics and proteomics, physiological effects of
FMD on cardiovascular structure and function, and novel imaging modal-
ities and blood-based biomarkers that can be used to identify subclinical
FMD. As outlined in the International Consensus, there are a number of
high priority research areas within our field that can hopefully be
addressed in the years to come through ongoing and future international
collaborations (Table 3). In addition to these priorities, exploration of
non-vascular manifestations of FMD, including those potentially involving
the connective tissues and musculoskeletal system, should be under-
taken.52,147 It is also hoped that the next decade will bring the develop-
ment of multi-centred and potentially international clinical trials to
provide comparative effectiveness data to inform the optimal manage-
ment of patients with FMD and guide future clinical practice guidelines
with level I evidence.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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Table 3 FMD research priorities from the 2019
International Consensus. Adapted from Refs1,2

• Further studies to extend the number of genes associated with FMD.

• Study of familial patterns of FMD, including intermediate phenotypes,

and feasibility/utility of different modalities of screening.

• To gain a fundamental understanding of the principal molecular/patho-

logic processes underlying FMD.

• To understand both shared and distinct biologic mechanisms of FMD,

SCAD, and cervical artery dissection.

• Establishment of a tissue bank of pathology specimens to allow for study

of the arterial wall properties associated with FMD.

• Risk stratification: what are the factors that determine major adverse

cardiovascular events in patients with known FMD? Can we separate

out ‘benign’ from ‘severe’ phenotypes, including those with increased

risk of dissection/aneurysm?

• Determination of whether FMD is a progressive disease (within involved

vascular beds, extension to other vascular beds) and the factors associ-

ated with disease progression.

• Determination of the prevalence of FMD in at-risk patient populations

(e.g. young and middle-aged patients with stroke and TIA without appar-

ent CV risk factors, women with severe migraine headaches).

• Studies to explore the efficacy of antiplatelet therapy vs. none for pri-

mary prevention of cardiovascular events among FMD patients; enrol-

ment stratified by cerebrovascular vs. no cerebrovascular involvement.

• Studies to demonstrate the effectiveness of haemodynamic-guided an-

gioplasty (i.e. pressure gradient measurement) for renal FMD in terms

of clinical outcomes, including cure or control of hypertension.
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