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Abstract

Background and aims: Coronary artery disease (CAD) arises from the interaction of genetic 

and environmental factors. Although genome-wide association studies (GWAS) have identified 

multiple risk loci and single nucleotide polymorphisms (SNPs) associated with risk of CAD, they 
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are predominantly located in non-coding or intergenic regions and their mechanisms of effect are 

largely unknown. Accordingly, our objective was to develop a data-driven informatics pipeline to 

understand complex CAD risk loci, and to apply this to a poorly understood cluster of SNPs in the 

vicinity of ZEB2.

Methods: We developed a unique informatics pipeline leveraging a multi-tissue CAD genetics-

of-gene-expression dataset, GWAS datasets, and other resources. The pipeline first dissected SNP 

locations and their linkage disequilibrium relationships, and progressed through analyses of tissue-

specific expression quantitative trait loci, and then gene-gene, gene-phenotype, SNP-phenotype 

relationships. The pipeline concluded by exploring CAD-relevant gene regulatory networks 

(GRNs).

Results: We identified three independent CAD risk SNPs in close proximity to the ZEB2 coding 

region (rs6740731, rs17678683 and rs2252641/rs1830321). Our pipeline determined that these 

SNPs likely act in concert via the atherosclerotic arterial wall and adipose tissues, by governing 

metabolic and lipid functions. In addition, ZEB2 is the top key driver of a liver-specific GRN that 

is related to lipid levels, metabolic and anthropometric measures, and CAD severity.

Conclusions: Using a novel informatics pipeline, we disclosed the multi-faceted mechanisms of 

action of the ZEB2-associated CAD risk SNPs. This pipeline can serve as a roadmap to dissect 

complex SNP-gene-tissue-phenotype relationships and to reveal targets for tissue- and gene-

specific therapeutic interventions.

Graphical Abstract
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INTRODUCTION

The pathology of coronary artery disease (CAD) is driven by an interaction between genetic 

and environmental factors (1, 2). As a disease with complex traits, it is understood that 

multiple loci, each imparting a small-modest effect, contribute to the polygenic nature of 

CAD, and accordingly multiple risk loci for the disease have been identified by genome 

wide association studies (GWAS) (3, 4). However, the CAD susceptibility loci identified by 

GWAS are predominantly located in non-coding or intergenic regions and their effects on 

genes or CAD are largely unknown (3–5).

As an important challenge, it is increasingly clear that there is substantial and under-

appreciated complexity underlying the causality of CAD (3). For example, our group 

recently showed that a previously unrecognized mechanism accounts for a significant 

proportion of the heritability of CAD, namely, the heritability carried in gene regulatory 

networks (GRNs) (2). As another dimension adding to the complexity of CAD, at each 

genetic locus that is associated with CAD, there are often multiple single nucleotide 

polymorphisms (SNPs) that are of potential importance (6). In some instances, this may be 

because there is a single causal SNP and other SNPs in that vicinity have merely been 

identified due to their being in linkage disequilibrium (LD), while in reality these additional 
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SNPs are not causal. However, other instances exist where there appear to be multiple, 

independent SNPs arising in close vicinity of each other. One specific example of this latter 

phenomenon exists in a cluster of SNPs in close proximity to the coding region for Zinc 

Finger E-Box Binding Homeobox 2 (ZEB2), with various GWAS repeatedly identifying and 

replicating differing SNPs in this region that are related to the risk of CAD. It is also 

noteworthy that the first description of a SNP in the vicinity of ZEB2 that is related to the 

risk of CAD appeared in 2013 (7), however, very few insights have arisen regarding the 

potential mechanism(s) of association of these SNPs or ZEB2 with CAD since that time.

To address these issues leveraged the recently curated Stockholm-Tartu Atherosclerosis 

Reverse Networks Engineering Task (STARNET) study datasets (8), and other informatics 

resources, to develop a data-driven pipeline to gain mechanistic insights on complex CAD 

genetic loci, which we applied to a cluster of SNPs in the vicinity of the coding region for 

ZEB2 that are associated with risk of CAD. This revealed significant complexity and 

interaction among these SNPs, with evidence for independent disease-promoting effects of 

ZEB2 in at least two separate CAD-relevant tissues, as well as a key driver role whereby 

ZEB2 governs an important GRN that is related to CAD.

MATERIALS AND METHODS

Previously identified SNPs associated with CAD in the vicinity of ZEB2

Known GWAS SNPs associated with CAD in the ZEB2 gene and its vicinity were obtained 

from published reports (6, 7, 9–13) and public databases, including the GWAS catalog (14) 

and PhenoScanner (15). These GWAS SNPs were plotted and visualized in LocusZoom 

(Figure 1A) (16). Stepwise regression was calculated in R (3.6.0) to identify independent 

SNP signals (17) and a q-q plot of these results is presented Figure 1C.

Study description, tissue collection

Subject recruitment and tissue collection in STARNET were performed as previously 

described (8). Briefly, patients with CAD who were eligible for open-thorax surgery at the 

Department of Cardiac Surgery, Tartu University Hospital in Estonia as well as control 

subjects without CAD were enrolled into this approved protocol and after informed consent. 

From each STARNET subject, venous blood (BLOOD) as well as biopsies from 

atherosclerotic aortic wall (AOR), non-atherosclerotic mammary artery (MAM), liver (LIV), 

skeletal muscle (SKLM), subcutaneous fat (SF) and visceral fat (VAF) were obtained and 

RNA was extracted as described (8). BLOOD was also used to obtain DNA which was 

isolated for genotyping using the Illumina Infinium assay. Additional details are available in 

the original manuscript (8).

RNA sequencing

RNA sequencing for STARNET cases in different tissues was performed as described (8). 

The Ribo-Zero library preparation method was used for all AOR and MAM samples, and for 

some LIV, SKLM, SF and VAF samples due to lower total amounts of RNA, while all 

BLOOD and most of LIV, SF, VAF and SKLM samples were sequenced by poly(A)+ 

selection. Samples were sequenced on an Illumina HiSeq with single-end read lengths of 50 
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or 100 base pairs. In the case-control matched study cohorts, cases and controls with 

matched age, gender and BMI were selected from AOR, LIV, SKLM, SF and VAF tissues 

for RNAseq. Samples were sequenced with poly(A)+ selection on Illumina HiSeq with 

single-end at read lengths of 100 base pairs. STARNET RNAseq datasets have been 

previously described, including the number of samples passing quality control (8).

Quality control and differential gene expression

Quality control was performed using FASTQC (18) that checks raw sequence data for per-

base quality, per-sequence quality, number of duplicate reads, number of reads with an 

adaptor, sequence length distribution, per-base GC content, per-sequence GC content and 

Kmer content. GENCODE v.19 was used as reference annotation to quantify gene and 

isoform expression. Sequencing reads (fastq files) were mapped with STAR (19) onto the 

human genome. Raw reads were summarized by feature counts (20). Samples with less than 

1,000,000 uniquely mapped reads were discarded. Low counts were removed by keeping 

genes where the count per million (cpm) is greater than 1 in at least two samples. For 

differential gene expression analysis, cases and controls were differentiated by Duke CAD 

index and Syntax scores. The number of subjects for each tissue was: AOR 102 versus 79; 

LIV 154 versus 100; SF 131 versus 91, SKLM 168 versus 115; VAF 135 versus 102 (CAD 

cases versus controls, respectively). Covariates (age, gender, BMI and batch) were not added 

to the linear module for adjustment since all 1177 samples were randomized before 

sequencing to remove batch effects, while cases and controls in each tissue were selected 

with matched age, gender and BMI. Differential gene expression between cases and controls 

was analyzed using R package limma (21). Statistical significance was defined as adjusted p 
< 0.05.

Co-expression module, network and key driver analysis

R package Weighted Gene Co-expression Network Analysis (WGCNA) (22) was used to 

identify correlation patterns among genes across RNA seq data. Cross-tissue co-expression 

networks were constructed based upon 30,716 genes from seven tissues. Unsigned, weighted 

correlation network construction and module detection were performed using default 

parameters. Genes with similar expression patterns were assigned into the same module. The 

correlations of differing modules with clinical traits were assessed using Pearson’s 

correlation. Regulatory networks were reconstructed by GENIE3, an algorithm inferring 

gene regulatory network from expression data based on feature selection with tree-based 

ensemble methods, by using transcription factor and eQTL regulated genes as regulators 

(23). Key driver analyses were performed using Mergeomics (24). Protein-protein 

interaction networks for genes in co-expression modules were built using String software 

(25). An edge was defined by seven types of interaction evidence, including gene fusions, 

gene co-occurrence, gene neighborhood, co-expression, protein homology, experimentally 

determined, text mining and curated database. The minimum required interaction score was 

0.5.

Array-based genotyping, imputation and expression quantitative trait loci analysis

DNA genotyping was performed using the Illumina Infinium assay with the human 

OmniExpressExome-8v1 bead chip. Data was analyzed using GenomeStudio 2011.1 
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(Illumina) which produced 951,117 genomic markers (genome build 37) (8). Quality control 

was performed using PLINK v.1.07 and IMPUTE2 v.2.3.0 was used for genotype imputation 

to increase the power of analysis (13). Of the four SNPs in the vicinity of ZEB2 studied here 

in detail (Figure 1), three of the four being rs2252641, rs1830321 and rs6740731, were 

directly genotyped by the human OmniExpressExome-8v1 bead chip. Genotyping for 

rs17678683 was obtained by imputation. Genotyping for all four SNPs passed quality 

control. In each tissue, cis and trans- regulated expression quantitative trait loci (eQTLs) 

were identified with the R package Matrix eQTL v.2.1.1 (8).

Association of GWAS SNPs and gene expression levels with clinical phenotypes

STARNET phenotypic and demographic data were used to explore relationships with our 

SNPs and genes of interest. These data include indices of CAD severity: Duke CAD index 

(26), Syntax score (27), number of coronary lesions per patient (Lesions) and number of 

diseased coronary vessels per patient (Diseased vessels). Other data included body mass 

index (BMI) and waist to hip ratio (Waist:Hip); and the following parameters from 

peripheral blood: hemoglobin A1C concentration (HbA1c), c-reactive protein concentration 

(CRP), white blood cell concentration (WBC), hemoglobin concentration (HbG), platelet 

concentration (PLT), aspartate aminotransferase concentration (AST), alanine 

aminotransferase concentration (ALT), cholesterol concentration (Chol), low-density 

lipoprotein cholesterol concentration (LDL), high-density lipoprotein cholesterol 

concentration (HDL), triglyceride concentration (TG).

Pearson correlation coefficient in R (3.6.0) was used to measure the strength of linear 

correlation between expression of the same gene in different tissues, of different genes in the 

same tissue, as well as the correlation between gene expression and clinical phenotypes. The 

association of the expression of different alleles in GWAS SNPs with clinical phenotypes 

were analyzed using STARNET data and computed by one-way ANOVA in R (3.6.0). P 
value was adjusted by Bonferroni correction for multiple comparisons and an adjusted p < 

0.05 was considered statistically significant.

RESULTS

We applied a data-driven approach to study a cluster of SNPs in close proximity to the 

coding region for ZEB2 that are related to risk of CAD. We first sought to understand the 

linkage relationships of these SNPs, and then used gene expression data to identify 

expression quantitative trait loci (eQTLs) at these SNPs to further determine their relative 

independence and the likely tissues in which their CAD-causal effects are operative. We also 

undertook various functional analyses of gene expression data, including exploring GRNs 

where ZEB2 is operative and appears causal for CAD (Graphical Abstract).

Four different SNPs in the region of ZEB2 are linked to risk of CAD

There are four SNPs in close proximity to ZEB2 on chromosome 2 (2q22.3) that have been 

identified by GWAS and which are related to risk of CAD (Figure 1A, Table 1).

Rs2252641 was identified by the CARDIoGRAMplusC4D Consortium (total 67,394 cases 

and 142,664 controls from European and South Asian decedents) with p = 5.3×10−8 (7). 
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This SNP was replicated in the UK biobank (p = 1.94×10−5) and in a meta-analysis of the 

combined CARDIoGRAMplusC4D and UK biobank datasets (p = 7.34×10−13) (13). This 

SNP is located within an intron of a long non-protein coding RNA (lncRNA) gene called 

testis expressed 41 TEX41).

The second SNP rs1830321 was identified in a UK Biobank GWAS analysis (34,541 CAD 

cases and 261,984 controls) with p = 3.5×10−6, and in a second stage meta-analysis using 

122,733 cases and 42,4528 controls it reached genome-wide significance with p = 

3.19×10−8 (6). This SNP was also found to be associated aortic stenosis in an Icelandic 

clinical trait association analysis with p = 1.8×10−13, where the association with CAD was 

also confirmed (CAD association p = 9.3×10−5) (9).

The third SNP rs6740731 is associated with risk of CAD and was identified using GWAS 

data from the UK biobank (34,541 cases and 261,984 controls, p = 4.94×10−5) and 

CARDIoGRAMplusC4D (p = 1.87×10−5) as discovery cohorts, and a meta-analysis of a 

combination of the two datasets (including a total 122,733 cases and 424,528 controls) with 

p = 3.86×10−9 (13). Depending on the specific isoform of ZEB2 (47 isoforms are currently 

recognized), this SNP is located either in an intron (for 42 of the ZEB2 isoforms) or 5’ UTR 

(for 5 of the ZEB2 isoforms) in the ZEB2 gene on the reverse (minus) strand of the double 

stranded DNA.

The fourth CAD-associated SNP in the vicinity of ZEB2, rs17678683, was identified by 

CARDIoGRAMplusC4D (p = 3×10−9) (7, 13). The SNP was not replicated by UK biobank 

data, but was reported to have a p = 3.44×10−7 in a meta-analysis combining these two 

datasets (13). This SNP is located in lncRNA LINC01412, which is a long intergenic non-

protein coding RNA. rs17678683 also lies very close to the gene encoding ZEB2-AS1. 
ZEB2-AS1 produces a spliced lncRNA which is a natural antisense transcript corresponding 

to the 5’ UTR of ZEB2, which is thought to be involved in regulation of ZEB2 expression 

(28).

We next explored potential LD relationships between these four CAD-associated SNPs in 

the region of ZEB2. As shown in Figure 1B, other than rs2252641 and rs1830321 which are 

in low LD (LD score = 0.3847), there were no other significant LD relationships. In 

particular, despite their relatively close proximity, rs6740731 and rs17678683 were not in 

LD (LD score = 0.0472; Figure 1B). Therefore, assuming the LD relationship between 

rs2252641/rs1830321 is true, there are potentially three SNPs in the vicinity of ZEB2 that 

are each independently associated with the likelihood of CAD (rs6740731, rs17678683 and 

rs2252641/rs1830321) (Figure 1). Whether the three SNPs rs1830321, rs6740731 and 

rs17678683 are in LD was further tested by a stepwise regression analysis of SNP genotypes 

and ZEB2 expression in AOR in STARNET. The results confirmed that these three SNPs are 

independent (Figure 1C).
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ZEB2-associated CAD SNPs modulate gene expression in the aortic wall and adipose 
tissue

We sought to determine potential gene-regulatory effects for each of these three CAD-

associated SNPs in the vicinity of ZEB2 (rs6740731, rs17678683, rs2252641/rs1830321) by 

exploring their effect on transcript expression (i.e. eQTLs) in STARNET tissues.

As shown in Table 2, while there were no cis eQTLs identified for rs2252641, the other 3 

SNPs exhibited corresponding eQTLs that were operative in the atherosclerotic aortic wall 

and in adipose tissue. Of most relevance, rs1830321 was found to be an eQTL for ZEB2 
expression in AOR. We were able to further confirm that rs1830321 is an eQTL for ZEB2 
expression in AOR using GTEx study data (Table 2). In addition, we found that rs17678683 

is an eQTL for ZEB2 expression in both VAF and SF. We also detected cis eQTLs for 

TEX41 (in SF at rs1830321), GTDC1 (in AOR at rs17678683) and for the non-coding and 

uncharacterized gene AC009951.1 (in MAM at rs6740731) (Table 2). Importantly, the risk 

alleles of these SNPs were consistently associated with reduced ZEB2 expression levels at 

rs1830321 in AOR, and rs17678683 in VAF and SF (Figures 2A, E and F; CAD risk alleles 

are shown in red). While reduced TEX41 (in SF at rs1830321) and AC009951.1 (in MAM at 

rs6740731) were also associated with risk of CAD, increased levels of GTDC1 (in AOR at 

rs17678683) were associated with risk of CAD (Figures 2B, C, and D, respectively).

Expression levels of genes in the vicinity of ZEB2

We next explored the expression levels of genes in close proximity to the CAD SNPs in this 

region (Figure 1A), being ZEB2, GTDC1, ZEB2-AS1, TEX41 and LINC01412. Expression 

levels were examined and compared according to RPKM (Reads Per Kilobase Million) 

mapped reads (Supplementary Figures 1 and 2). Overall, the mean levels of ZEB2 were ~10-

fold higher (2.5-22.5 RPKM) than any of the other ZEB2-associated genes in this region. 

Thus, expression levels of GTDC1 were intermediate (1-5 RPKM), while as expected the 

levels of the non-coding genes TEX41, ZEB2-AS1 or LINC01412 were much lower 

(generally < 1 RPKM). For ZEB2 specifically, higher transcript levels were observed in 

MAM, SF, VAF and AOR – a pattern that was closely mirrored by transcript levels of 

GTDC1 (Supplementary Figures 1 and 2).

We also explored the levels of these transcripts in the Genotype-Tissue Expression (GTEx) 

project. As shown in Supplementary Figure 3, the levels of these transcripts were broadly 

similar between STARNET and GTEx. Due to its very low expression levels (particularly in 

STARNET tissues), expression of LINC01412 was not further considered in this study.

We explored the potential differential gene expression between matched cases and controls 

in STARNET for ZEB2, GTDC1, ZEB2-AS1 and TEX41 (Supplementary Table 1 and 

Supplementary Figure 4). While CAD cases in STARNET were patients undergoing 

coronary artery bypass graft surgery, matched controls underwent open chest surgery for 

other reasons (e.g. mitral valve replacement) and CAD was excluded on pre-operative 

angiograms. ZEB2 expression was significantly increased in SF and SKLM in CAD cases 

versus controls. Furthermore, ZEB2-AS1 expression was decreased in VAF in CAD cases 

versus controls; TEX41 was increased in AOR and SKLM in CAD cases; and GTDC1 was 
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decreased in AOR in CAD cases, but was increased in CAD cases in LIV, SKLM, SF and 

VAF. These differences affirm that altered regulation and expression of these transcripts may 

play a role in the development of CAD.

Gene expression correlations between ZEB2, GTDC1, ZEB2-AS1 and TEX41

We sought to define any relationships among the respective expression levels of each of 

these individual genes in different tissues. As shown in Supplementary Figure 5 and 

Supplementary Table 2, positive correlations were found between ZEB2 expression levels in 

MAM and LIV, while a negative association was present between ZEB2 expression levels in 

BLOOD and AOR. GTDC1 expression levels were also positively correlated between 

several tissues, including: MAM and LIV, AOR and SF, SKLM and SF, SKLM and VAF. 

There were no correlations among ZEB2-AS1 expression levels in different tissues, nor 

TEX41. Therefore, with possible exception of GTDC1, this result confirmed the tissue-

specificity of the eQTLs at these SNPs. In other words, as indicated in Table 2, the effects of 

the ZEB2-associated CAD risk SNPs (and their corresponding eQTLs) on gene expression 

are largely unique for each tissue presented in this study.

Additional regulatory control of ZEB2, GTDC1, ZEB2-AS1 and TEX41 expression

To understand any additional regulatory influences on the expression levels of ZEB2, 
GTDC1, ZEB2-AS1 and TEX41, we sought additional eQTLs that govern expression levels 

of these genes. We identified a single additional cis eQTL that governed ZEB2 expression in 

AOR (Supplementary Table 3). There were a further 46 cis eQTLs identified which 

governed either TEX41 or GTDC1 expression, with 45/46 of these eQTLs being in SF 

(Supplementary Table 3). Throughout the entire genome, there were no other cis or trans-
regulated eQTLs that governed expression levels of ZEB2, GTDC1, ZEB2-AS1 or TEX41.

We also sought eQTLs residing within ZEB2, GTDC1, ZEB2-AS1 and TEX41 which 

govern the expression levels of other transcripts (besides ZEB2, GTDC1, ZEB2-AS1 and 
TEX41), but there were no such cis or trans eQTLs identified.

In summary, with the exception of TEX41 and GTDC1 in SF, these data affirm that there 

appears to be minimal additional genomic influence on the expression of ZEB2, GTDC1, 
ZEB2-AS1 and TEX41 beyond that exerted by the CAD-associated GWAS SNPs (Figure 

1A).

Correlation of gene expression and GWAS SNPs with clinical phenotypes

We compared the clinical phenotypes of STARNET subjects with the transcript expression 

levels of ZEB2, GTDC1, ZEB2-AS1 and TEX41. There were no gene expression level 

correlations with HbA1c, Chol, TG, Diseased vessels, Syntax score or Duke CAD index 

(Figure 3A and Supplementary Table 4). AOR showed the greatest number of phenotypic 

associations of the seven tissues. Specifically, ZEB2 levels in AOR were positively 

correlated with WBC, ALT, AST and CRP; ZEB2-AS1 levels in AOR were positively 

correlated with ALT and LDL; while TEX41 levels in AOR were positively correlated with 

WBC and LDL but negatively correlated with HbG and HDL. In terms of phenotypes, the 

strongest associations were with LDL, HDL and liver enzymes (ALT and AST). The 
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strongest of all relationships was a positive correlation between ZEB2-AS1 expression and 

HDL in BLOOD (correlation coefficient 0.24, adjustedp = 6.72×10−7). Also of note, levels 

of ZEB2 in LIV were negatively correlated with HDL cholesterol levels (p = 0.0504).

We also evaluated the relationship between the four reported CAD GWAS SNPs in the 

vicinity of ZEB2 (Figure 1A) and their effects on clinical traits in STARNET CAD subjects. 

At nominal significance thresholds, SNPs at rs2252641 and rs1830321 were correlated with 

HbG, while rs1830321 was also associated with BMI (Figures 3B–D). None of these SNPs 

were associated with any other clinical traits (Supplementary Table 5). After adjustment for 

multiple comparisons, only the associations of rs2252641 and rs1830321 with HbG 

remained significant. Interestingly, both the T allele in rs2252641 and also the T allele in 

rs1830321 were associated with increased HbG. However, while T is the CAD risk allele in 

rs1830321, it is not the CAD risk allele in rs2252641.

Co-expression modules, cross tissue network and key drivers

Cross-tissue co-expression modules were generated from AOR, MAM, BLOOD, LIV, 

SKLM, SF and VAF tissues. A total of 224 modules were generated from 30,716 transcripts, 

with the majority of co-expression modules involving genes from multiple tissues. Co-

expression modules containing ZEB2 were found in all seven tissues (Figure 4A). ZEB2 was 

identified as hierarchically being the top key driver for module 20 (p =8.16×10−135; Figures 

4A and 4B, Supplementary Table 6). The module contained 103 genes, with all of these 

being expressed in liver. The module was significantly associated with lipids level in blood, 

including LDL, HDL, Chol and TG (Figure 4C). The module was also associated with 

certain metabolic indices including Waist:Hip ratio, BMI, HbA1c. Importantly, module 20 

was also associated with the severity of CAD as assessed by various parameters including 

Syntax score, number of coronary lesions and Duke CAD index (Figure 4C). At the protein 

level, there were 8 connected protein networks for the 103 genes in module 20 (Figure 4D). 

ZEB2 was directly connected with CTBP2 identified by evidence of co-expression, text 

mining and experimental determination. ZEB2 was also connected with ARHGAP31 

identified by co-expression and text mining. Other proteins in the network that contained 

ZEB2 were ZFPM2, MECOM, RHOJ, ARHGAP15 and ARHGEF6. In terms of its patho-

biological roles, pathway analysis indicated that module 20 is involved in multiple 

cardiovascular functions (Supplementary Figure 6A).

Apart from module 20, ZEB2 was not a key driver in any other co-expression modules. 

However, of the other modules that contained ZEB2, co-expression modules 162 and 38 

were associated with various clinical traits, with both being highly correlated with LDL and 

HDL (Supplementary Figures 6B and C).

In terms of other genes in the vicinity of ZEB2, co-expression modules containing GTDC1 
were found in all seven STARNET tissues, while co-expression modules for ZEB2-AS1 and 

TEX41 were each found in six tissues (Supplementary Figure 7). However, ZEB2-AS1, 
GTDC1 and TEX41 were not key drivers in any co-expression modules.

Ma et al. Page 10

Atherosclerosis. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DISCUSSION

Using an array of datasets and bioinformatics tools, our study has shed light on the potential 

mechanisms of CAD causality that arises from SNPs in the vicinity of ZEB2. This includes: 

(1) Of the four SNPs in the region of ZEB2 that are associated with CAD, only two are in 

potential LD, and therefore there are potentially three SNPs in this region that are each 

independently associated with the likelihood of CAD (rs6740731, rs17678683 and 

rs2252641/rs1830321) (Figure 1); (2) eQTL findings at rs1830321 in AOR, and rs17678683 

in VAF and SF indicate that these tissues may be of particular importance for governing the 

effect of ZEB2 in CAD (Figure 2); (3) Cross-tissue comparisons of gene expression levels 

indicated that, with the possible exception of GTDC1, levels of ZEB2, ZEB2-AS1 and 

TEX41 were tissue specific (Supplementary Figure 5); (4) rs2252641 and rs1830321 are 

related to HbG levels; (5) Gene expression levels of ZEB2, GTDC1, ZEB2-AS1 and TEX 
were related to various clinical phenotypes, with many of these relationships being detected 

in AOR, and the strongest of these associations being to HDL, LDL and liver enzyme levels 

(ALT and AST). ZEB2 gene expression levels in liver were also negatively associated with 

HDL cholesterol levels (p = 0.0504); (6) While ZEB2, GTDC1, ZEB2-AS1 and TEX41 
were in multiple GRNs related to CAD, most notable was that ZEB2 is the top key driver of 

a liver-specific GRN that is associated with HDL and other lipid levels, metabolic and 

anthropometric measures, and CAD severity (Figure 4); (7) Collectively, these findings can 

be summarized as indicating that the ZEB2-associated CAD SNPs appear to act in concert 

via the atherosclerotic aortic arterial wall and adipose tissues, likely by governing metabolic 

and lipid functions. Furthermore, ZEB2 also exhibits a key driver role whereby it governs a 

CAD-associated GRN in liver.

To date, the scientific community has collectively deciphered the mechanism of action of 

only a small proportion of GWAS SNPs for complex diseases. Notable examples of SNPs 

and their associated genes for which we have a strong understanding of their causal 

mechanisms for CAD include PCSK9 and the LDL receptor (29). Accordingly, one can 

speculate that GWAS SNPs that are ‘understood’ may be biased toward those with simpler 

or more obvious mechanisms of action that could be deciphered using contemporary 

research tools. For example, it is logical that variants in the LDL receptor would promote 

CAD by influencing LDL cholesterol levels. Conversely, SNPs or genetic regions with more 

complex mechanisms of action are perhaps more likely to be those that we do not yet 

understand. In support of this concept, as well as the findings of the present study there are 

many examples of this potential bias toward only understanding the more straightforward 

causal SNP-phenotype relationships for complex diseases. For example, the first genetic risk 

variant to be identified for CAD resides on the small arm p of chromosome 9 and is referred 

to as 9p21. Although first described in 2007 (30, 31), after over a decade of intense efforts 

the precise mechanisms of action of this risk variant remain under investigation, but 

certainly, these mechanisms appear to of similar complexity as described here for the ZEB2-

associated CAD SNPs (29). As another example, at rs9349379, which is located in an exon 

of PHACTR1, either an adenine (A) or guanine (G) may be present. Remarkably, a disease 

association exists regardless of which nucleotides are present (AA, AG, or GG). Thus, an 

(A) at rs9349379 is associated with increased risk of cervical artery dissection (32), 
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migraine headache (33), fibromuscular dysplasia (34) and spontaneous coronary artery 

dissection (35). Conversely, the (G) allele at rs9349379 is associated with CAD (12), 

coronary artery calcification (36), and myocardial infarction (12, 36). While many theories 

exist, at present we have few insights on this complex reciprocal risk of having these diverse 

vascular diseases (37). The implications of this potential bias toward understanding the more 

straightforward causal pathways for complex diseases, are that it may require a substantial 

amount of time, effort, and resources before we begin to fully understand complex genetic 

diseases. We suggest that the pipeline of analyses undertaken in this study (Graphical 

Abstract) may be a useful and important first step toward unravelling genetic regions or 

related SNPs that are linked to complex disease traits.

While many of the results to emerge from this study are novel, our finding that rs2252641 

and rs1830321 are associated with HbG concentration is not without precedent (Figure 3). 

ZEB2 is known to be involved in controlling hematopoiesis and hematopoietic stem cell 

differentiation (38), and a GWAS study in the Japanese population found that other SNPs in 

the ZEB2 region are associated with erythrocyte count and various erythrocyte indices (e.g. 

mean red cell corpuscular volume) (39). However, in our study both the T allele in 

rs2252641 and also in rs1830321 were associated with increased HbG, but while T is the 

CAD risk allele in rs1830321 it is not the CAD risk allele in rs2252641. Interestingly, both 

low (< 15 g/dL) and high HbG levels (≥ 17 g/dL) have been found to be independently 

associated with increased risk for cardiac events (40). Therefore, at the present time the 

precise link between HbG levels, rs2252641 and rs1830321, ZEB2 and causality for CAD 

remains to be defined. Nevertheless, based on the totality of our other findings, the 

regulation of HbG levels does not appear to be the predominant mechanism of action of 

these ZEB2-associated SNPs for causing CAD.

As an unexpected finding to emerge from this study, we identified that ZEB2 is the top key 

driver of a liver-specific GRN (Figure 4). This GRN appears to be involved in various 

vascular and cardiac disease pathways (Supplementary Figure 6A), and showed strong 

associations with multiple CAD-relevant sub-phenotypes such as lipid levels, Waist:Hip 

ratio and BMI, HbA1c levels and CAD severity (Figure 4C). The importance of this finding 

is underscored by the fact that we have previously shown that GRNs capture a major portion 

of genetic variance and contribute to heritability, playing pivotal roles as mediators of gene-

environmental interactions in CAD (2). The fact that eQTLs in the vicinity of ZEB2 did not 

control ZEB2 expression in the liver (Table 2) is consistent with this key driver role, because 

prior studies of gene networks have indicated that hub nodes tend to be essential and 

evolutionarily conserved, and that ‘disease genes’ do not encode hubs (41). Therefore, the 

contribution of ZEB2 as the top key driver of this GRN likely represents an additional aspect 

of its role in CAD causality, in addition to the causality driven via the ZEB2-associated 

CAD SNPs.

There are certain limitations of this study that should be acknowledged. This is the first 

study to examine the effect(s) of multiple GWAS SNPs located near a gene of interest in 

CAD using this bioinformatics pipeline. More studies using this pipeline are needed to 

further prove its applicability. RNA expression data used in this study were obtained from 

bulk tissues and it is challenging to infer detailed causal mechanisms or gene interactions 
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from different cell types involved in the disease. Indeed, we hypothesize that ZEB2 might 

also govern endothelial cell fate in atherosclerosis and CAD (42), however, in the absence of 

endothelial-specific RNA sequence data is was not possible to reliably prove or refute this 

hypothesis. Furthermore, while this study offers evidence to support causal roles for ZEB2 
in CAD, our results do not prove causality. These potential roles and proof of causality 

require further validation in direct functional studies. Such functional studies of the role of 

ZEB2 in atherosclerosis are currently underway in our laboratory.

In conclusion, we applied a pipeline of investigations to a cluster of ZEB2- associated SNPs 

that begins with a careful dissection of SNP locations and LD relationships, and which 

moves through a series of eQTL, gene-gene, gene-phenotype, SNP-phenotype and GRN 

analyses. While control of HbG levels may also play a role, our major finding was that the 

ZEB2-associated CAD SNPs appear to act in concert via the atherosclerotic arterial wall and 

adipose tissues, likely by governing metabolic and lipid functions. Moreover, ZEB2 is the 

top key driver of a GRN in liver that is related to lipid levels, metabolic and anthropometric 

measures, and CAD severity. These findings indicate several possibilities for manipulating 

ZEB2 as a clinical therapeutic target, such as liver-specific ZEB2 inhibition aiming to 

decrease the activity of module 20. Furthermore, this analytic pipeline can serve as a 

roadmap for future studies aiming to dissect other complex SNP and gene relationships with 

complex clinical phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Hundreds of genes and single nucleotide polymorphisms (SNPs) are 

associated with coronary artery disease (CAD)

• However the mechanisms of effect of these genes and SNPs are largely 

unknown

• To address these concerns we developed a unique informatics pipeline

• This pipeline disclosed several potential mechanisms underlying a cluster of 

ZEB2-associated CAD risk SNPs

• This pipeline can serve as a roadmap to understand other complex CAD risk 

loci, and complex SNP-gene-tissue-phenotype relationships
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Figure 1. 
Known ZEB2-associated GWAS SNPs related to risk of CAD.

(A) Locus zoom plot of the four known GWAS SNPs related to the risk of CAD in the 

vicinity of ZEB2: rs6470731, rs17678683, rs2252641 and rs1830321. Independent SNPs are 

indicated by arrows, with the circle around rs2252641 and rs1830321 signifying that they 

are in low LD. (B) Linkage disequilibrium (LD) score between each of the four SNPs with 

respect to the other SNPs. (C) Stepwise regression of ZEB2 expression in AOR and the SNP 

genotypes for rs17678683, rs6740731 and rs1830321 in STARNET showing that these SNPs 

are independent.
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Figure 2. 
eQTL box plots of significant associations between genotypes of CAD GWAS SNPs and 

gene expression in STARNET tissues (see also Table 2).

(A) eQTL at rs1830321 for ZEB2 expression in AOR, (B) eQTL at rs1830321 for TEX41 in 

SF, (C) eQTL at rs6740731 for AC009951.1 in MAM, (D - F) eQTLs at rs17678683 for 

GTDC1 in AOR, for ZEB2 in VAF and for ZEB2 in SF, respectively. Homozygous CAD 

risk alleles are colored red and are on the left of each panel, heterozygous alleles are in 

green and homozygous reference (CAD protective) alleles are in blue. The number of 

subjects with 3 different genotypes at rs17678683 vary slightly between tissues because the 

availability of expression data across these tissues also differs slightly (due to reasons such 

as isolated samples failing to pass quality checks, or insufficient sample obtained from 

isolated tissues – see original STARNET manuscript for full details (8)). Although 

rs6740731 and rs17678683 are in close proximity (Figure 1A), allele frequency of 

rs6740731 and rs17678683 are different since they are located in different genes and they 

are not in linkage disequilibrium (Figure 1B).
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Figure 3. 
Correlations of ZEB2, GTDC1, ZEB2-AS1 and TEX41 gene expression levels, and CAD 

GWAS SNPs, with clinical phenotypes.

(A) Heatmap showing Pearson correlation coefficients for the significant correlations of 

ZEB2, GTDC1, ZEB2-AS1 and TEX41 expression levels with clinical phenotypes in 

STARNET tissues. Blue and red correspond to significant negative and positive correlations 

(respectively); non-significant correlations were not color coded. The number within each 

box represents the -log10 of the adjusted p value for that association. The association 

between ZEB2 in LIV and HDL was borderline significant after correction for multiple 

testing (p = 0.0504). Full results are presented in Supplementary Table 4. (B, C) Box plots 

showing associations of rs1830321 alleles with BMI and HbG. (D) Box plot indicating 

associations of rs2252641 alleles with HbG. The homozygous CAD risk allele is on the left 

(red color), the heterozygous allele is in the middle (green) and the homozygous reference 

(CAD protective) allele is on the right (blue). P values represent nominal significance 

thresholds. After adjustment for multiple comparisons, only the associations of rs2252641 

and rs1830321 with HbG remained significant (Supplementary Table 5).
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Figure 4. 
ZEB2 co-expression modules and their associations in STARNET tissues.

(A) ZEB2 co-expression modules. As indicated, the color codes represent differing tissues 

acquired in the STARNET study, while the tissue named on the horizontal axis (i.e. mod 162 

(AOR)) indicates the tissue containing ZEB2 in that particular module. The vertical axis 

(‘Transcripts’) represents the total number of transcripts in each module. (B) Visualization 

of module 20, with ZEB2 identified as hierarchically the top key driver as indicated by red 

arrow (p = 8.16×10−135; Supplementary Table 6). (C) Association of module 20 with clinical 

traits assessed in the STARNET study. CAD DGE represents the enrichment of differential 

gene expression in the module between cases and controls. (D) Protein-protein interaction 

network of genes in module 20. Only connected nodes in the network are shown. A red line 

indicates evidence of gene fusion; green line indicates gene neighborhood evidence; blue 

line indicates co-occurrence evidence; purple line indicates experimental evidence; yellow 
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line indicates text mining evidence; light blue line indicates curated database evidence; black 

line indicates co-expression evidence.
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Table 1.

Known ZEB2-associated GWAS SNPs that are related to the risk of CAD.

SNP ID Location on 
chromosome 

2

Reference 
allele

CAD 
risk 

allele

Allele 
frequency

Gene name Function Nearby 
gene(s)

Beta of 
risk 

allele

GWAS p 
value*

References

rs2252641 145043894 T C T=0.307; 
C=0.693 TEX41 intron LINC01966, 

AC096666.1 −0.0368
5.00× 
10−13

(6, 7, 14, 
15)

rs1830321 145067988 C T C=0.503; 
T=0.497 TEX41 intron LINC01966, 

AC096666.1 0.033 3.19×10−8 (6, 9)

rs6740731 144513025 G A/C/
T

G=0.679; 
A=0.321 ZEB2 intron or 

3’UTR ZEB2-AS1 0.0457 2.77×10−9 (6, 14, 15)

rs17678683 144528992 T G T=0.938; 
G=0.062 LINC01412 intron ZEB2, 

ZEB2-AS1 −0.0988 3.00×10−9 (6, 7, 12, 
14, 15)

*
The lowest p value is provided from across all the cited CAD GWAS studies, respectively. See also Figure 1.
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Table 2.

cis eQTLs in GWAS CAD SNPs in the vicinity of ZEB2 in STARNET (p < 0.05 is considered statistically 

significant).

SNP id SNP 
chromosome 

location

Reference 
allele

CAD 
risk 

allele

Tissue Target gene 
name

Beta p value FDR GTEx p 
value

GTEx 
eQTL 
tissue

rs1830321 chr2:145067988 C T AOR ZEB2 0.1727 0.00697 0.8931 0.0001 Aorta

rs1830321 chr2:145067988 C T SF TEX41 −0.1916 0.00199 0.4918 - -

rs6740731 chr2:144513025 G A/C/
T MAM AC009951.1 0.2425 0.00445 0.7921 0.000011 Skelet. 

mu

rs17678683 chr2:144528992 T G AOR GTDC1 −0.2844 0.00879 0.9435 0.0000012 Skelet. 
mu

rs17678683 chr2:144528992 T G VAF ZEB2 0.2920 0.00994 0.9530 -

rs17678683 chr2:144528992 T G SF ZEB2 0.3380 0.00180 0.4978 -

There were no cis eQTLs identified for rs2252641. These results are also presented in Figure 2. The final 2 columns are data derived from the 
GTEx study for the same SNPs/eQTLs. Skelet. Mu, skeletal muscle.
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