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Synopsis 

Due to the advancement of genetic technologies it is now possible to accurately and 
simultaneously measure the expression levels of essentially all genes for species that have 
had their genomes sequenced. A detailed molecular understanding of these gene expression 
data will facilitate identification of new drug and cell therapy targets for disease treatment. 
There are increasing amounts of genome-wide public gene expression data that provide 
valuable information for the research community. The underlying hypothesis for this thesis is 
that development of new bioinformatics methods for both cell type and signal pathway 
characterization – that make use of public gene expression data – will facilitate application of 
stem cells and their differentiated derivatives. Each chapter in this thesis had specific aims. 
Chapter 1 presents a literature review that aimed to overview current bioinformatics tools 
applicable to robust definition of stem cell and differentiated cell identity. Chapter 2 aimed to 
develop a new tool (termed C3) for identifying unknown cell types based on their 
transcriptional profile. Chapter 3 aimed to characterize a new populations of purified cells 
(termed ROR1+ cells) obtained from differentiation of human pluripotent stem cells. Chapter 
4 aimed to develop a new method (termed SPAGI) for predicting active signalling pathways 
for any cell type, based on the cell’s transcriptome. Chapter 5 aimed to provide a large-scale 
prediction (or blueprint) of signal pathway-mediated regulation of lens epithelial cell gene 
expression. Lastly, the final chapter provides an overall reflection on the thesis combined 
with perspectives on future work made possible as a result of the thesis. 
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The aim of this thesis was to develop and apply new methods to analyse gene expression data 
in order to identify uncharacterised cell types and to identify potential active signalling 
pathways en masse. The thesis is presented in manuscript format, with each publication status 
listed on the next page. The progression of manuscripts is arranged such that preceding 
chapters demonstrate the need, and provide background for, subsequent chapters.  

The first manuscript is a review that describes the importance of bioinformatics analyses of 
large-scale transcriptomic and other data sets for progressing the field of stem cell biology. 
The manuscript is described in this chapter. This manuscript provides the rationale for why 
cell type characterisation and signalling pathway identification are important research areas. 

The second manuscript describes a new method (termed C3) for Cross-species Compendium-
based Cell-type identification from a gene expression profile. The C3 method was 
implemented by developing an open source R package. Extensive validation studies showed 
the method is applicable to cell type identification from a gene expression profile for a wide 
variety of species. One suitable application is the identification of purified but poorly 
characterised cell populations obtained from differentiating stem cells.  

The third manuscript describes application of the C3 algorithm as part of a larger study to 
characterise ROR1+ cells derived from human pluripotent stem cells. The C3 method was 
applied to RNA-seq data obtained from ROR1+ cells, and showed the purified cells to be 
most similar to primary human lens epithelial cells. This finding was supported by additional 
bioinformatics studies including principal component analysis as well as extensive cell 
biology-based characterisation techniques.  

The fourth manuscript describes a new method, termed SPAGI for Signal Pathway Analysis 
for Gene regulatory network Identification. The SPAGI method utilizes gene expression and 
protein-protein interaction data and is executed as an open source R package. It outputs a 
ranking of signal paths – each consisting of receptor(s), kinases, and transcriptional regulators 
– with paths grouped as receptor-defined pathways. The goal of the method was to identify 
active signalling pathways en masse from microarray or RNA-seq gene expression data. The 
method was validated using gene expression data sets from a variety of cell types.  

The fifth manuscript provides an in-depth characterisation of a published newborn mouse 
lens epithelial cell dataset using the SPAGI method. The results of the SPAGI analysis were 
extended by comparison with lens epithelial cell target genes identified from sequencing data 
generated through the Fantom5 consortium. This analysis generated an interconnected, lens 
epithelial cell transcriptional blueprint of signalling pathways and associated target genes. 
Comparison of these target genes with the known cataract-associated genes identified 3 new 
gene regulatory networks and associated signal pathways predicted to control the networks.  

The thesis is completed by a General Discussion that provides perspectives on future research 
areas that have arisen from the advances made during this thesis. 
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Abstract
Identification of new drug and cell therapy targets for disease treatment will be facilitated by a detailed molecular understanding
of normal and disease development. Human pluripotent stem cells can provide a large in vitro source of human cell types and, in a
growing number of instances, also three-dimensional multicellular tissues called organoids. The application of stem cell tech-
nology to discovery and development of new therapies will be aided by detailed molecular characterisation of cell identity, cell
signalling pathways and target gene networks. Big data or ‘omics’ techniques—particularly transcriptomics and proteomics—
facilitate cell and tissue characterisation using thousands to tens-of-thousands of genes or proteins. These gene and protein
profiles are analysed using existing and/or emergent bioinformatics methods, including a growing number of methods that
compare sample profiles against compendia of reference samples. This review assesses how compendium-based analyses can
aid the application of stem cell technology for new therapy development. This includes via robust definition of differentiated stem
cell identity, as well as elucidation of complex signalling pathways and target gene networks involved in normal and diseased
states.

Keywords Pluripotent stemcell .Bioinformatics .Compendium .Signalling .Growthfactor .Pathway .Gene regulatorynetwork

Introduction

All somatic cells in a multicellular organism such as humans
contain the same DNA. However, each normal distinct cell
type within the organism only expresses a subset of the avail-
able genome required for proper functioning of that particular
cell type (Ralston and Shaw 2008). Expression of particular
sets of target genes (TGs) is regulated by a range of transcrip-
tional regulators (TRs) including transcription factors and his-
tone modifiers (Hoopes 2008; Ralston and Shaw 2008).
Disease states typically involve acquisition of abnormal cellu-
lar transcriptional profiles that, in turn, alter cell phenotypes
and function, for instance, during tumorigenesis.

Maturation of cellular phenotype and function occurs
through the interplay between environmental cues—sensed,
for example, via growth factor receptors—and transcriptional
changes that take place within the cell (Hoopes 2008; Ralston
and Shaw 2008). For most cell type/external cue combina-
tions, little molecular detail is known either of the molecular
events that lead to transcriptional changes or the breadth of
TGs changes that occur. Greater detail of these processes is
recognised as a key frontier for the development of new ther-
apies for a broad range of diseases (Berg 2016). Thus, there is
a compelling need to identify TG sets that are regulated by
particular signalling pathways and environmental factors, in
order to better characterise the development and maintenance
of cellular phenotypes, behaviours and biological processes.
This information will also greatly facilitate improved under-
stand of how these events become dysregulated in ageing and
disease.

Stem cells enable molecular characterisation
of human biology

Historically, the inability to access large amounts of normal
and diseased human tissue—particularly during the early

This article is part of a Special Issue on ‘Big Data’ edited by Joshua WK
Ho and Eleni Giannoulatou.
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stages of disease initiation—significantly impeded efforts to
define cell identity at a molecular level. The scarcity of human
tissues has also hindered efforts to define how environmental
cues alter cell biology and disease progression.

Significant genomic and functional similarities exist be-
tween human cells and tissues compared to those of other
species. Consequently, many different animal models have
been developed to try and progress investigation of normal
and disease development.While valuable knowledge has been
gained through decades of animal studies, the ability for ani-
mal models to specifically predict treatment responses in hu-
man patients is questionable (Shanks et al. 2009). This has led
both academic researchers and the pharmaceutical industry to
investigate human stem cells as an alternative source of infor-
mation for both basic research and drug discovery (Cressey
2012; O'Connor 2013).

Human pluripotent stem (PS) cells offer a unique opportu-
nity to rapidly progress our understanding of how environ-
mental cues modulate signalling cascades and TG sets. This
is due to key properties of human PS cells (O'Connor 2013;
O'Connor et al. 2011a; Ungrin et al. 2007), including the abil-
ity to:

1) Self-renew (i.e., proliferate while retaining developmental
potential), thereby enabling production of extremely large
numbers of human cells in vitro

2) Differentiate into essentially any desired human cell type
for research and clinical applications

3) Enable simple and highly targeted gene modification
through technologies such as Crispr/Cas9

4) Obtain both normal and disease-specific human PS cells,
either from donated IVF embryos (i.e., embryonic stem
cells, or ES cells), by cell reprogramming (i.e., induced
pluripotent stem cells) or by genome modification of
these PS cell types

5) Directly model human biology without confounding
species-specific differences that can arise through studies
of animal models

As a result of these properties, use of human PS cell tech-
nology has become widespread. For example, in 2010 GE
Healthcare announced the commercial availability of human
ES cell-derived cardiomyocytes. These PS cell-derived cells
provided a readily available and biologically relevant alterna-
tive to animal models and primary cells for cardiac drug dis-
covery and toxicity testing.

Realising the full academic, industrial and clinical
potential of human PS cells will require application of
big data or ‘omics’ techniques to overcome major chal-
lenges that face the field. These challenges include (i)
improving culture manipulations for optimal PS cell
maintenance and directed differentiation, (ii) develop-
ment of efficient cell purification strategies, and (iii)

establishment of robust characterisation assays for dif-
ferentiated cell types.

Overcoming these challenges will require defining the sim-
ilarities between differentiated cell types and desired primary
cell types. This will include assessment of the developmental
maturity of differentiated cells as relates to their phenotypes
and functions, as well as the molecular events required to
achieve and maintain cell phenotypes and functions. Doing
so will provide both minimal characterisation criteria for re-
producible production of desired differentiated cell types, and
also a molecular framework for disease investigation and drug
target discovery.

Molecular profiling using big data

Transcriptional changes that result from environmental cues
occur via activation and/or repression of specific TG sets.
Historically, investigations of signalling pathways and related
TGs developed from the discovery of recombinant DNA tech-
nology (Cohen et al. 1973) and the ability to genetically mod-
ify mice and other organisms. Initial characterisation technol-
ogies for these studies included PCR, histology and electron
microscopy. While these initial approaches yielded useful in-
formation, limited molecular detail of affected signalling path-
ways or TG sets was obtained.

The development of big data techniques for transcriptomics
(from spotted arrays and microarrays to RNA-sequencing,
also known as RNA-seq) (Bumgarner 2013) and proteomics
(particularly mass spectrometry) (Han et al. 2008) enabled
much higher resolution characterisation of the molecular
changes that link environmental sensing, signal transduction
and affected TG sets. Additionally, traditional immunoprecip-
itation techniques—that provide evidence of protein interac-
tions through antibody-based protein capture—have been
coupled with both microarray analysis and DNA sequencing.
For example, chromatin immunoprecipitation (ChIP) tech-
niques (termed ChIP-chip and ChIP-seq, respectively) enable
interactions between proteins and DNA to be defined with
high resolution of the chromosomal location (Furey 2012;
Mardis 2007). Both ChIP-chip and ChiP-seq assays have been
widely used with cell lines and animal tissue to determine the
chromosomal location of post-translationally modified his-
tones, histone variants, transcription factors and chromatin
modifying enzymes (Bailey et al. 2013; Collas 2010).

Computational approaches have also been developed to
investigate TG regulation by TRs. This has largely been driv-
en by the capacity for genome-wide assessment of DNA-
binding motifs within gene promoters, as a consequence of
sequencing the human genome. Algorithms such as PASTAA
(Roider et al. 2009), Homer (Heinz et al. 2010), GeoSTAN
(Zacher et al. 2017), iRegulon (Janky et al. 2014) and
compendium-based approaches (Banks et al. 2016) are

42 Biophys Rev (2019) 11:41–50
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examples of software that use different approaches to predict
TG regulation by transcription factors. As these methods are
evolved, the accuracy of TG predictions increases.
Combinations of sequencing and computational-based ap-
proaches have also been developed for identification of TG
regulation by TRs. For example, cap analysis of gene expres-
sion (CAGE) data generated through the Fantom5 consortium
has provided sequencing data from the 5′ region of mRNA
transcripts (as opposed to traditional 3′ sequencing ap-
proaches) for 975 human and 399 mouse cell samples
(Andersson et al. 2014; Consortium et al. 2014).
Computational analysis of this data has been used to predict
TRs responsible for regulation of large sets of TGs across
many cell types (Marbach et al. 2016).

Current big data analysis tools

The above technical and technological advances mean it is
now possible to accurately and simultaneously measure the
expression levels of essentially all genes for species that have
had their genomes sequenced. It is also possible to begin in-
terrogating the TRs involved in generating gene expression
profiles, through ChIP-seq and or computational analyses.
Alternatively, mass spectrometry enables simultaneous mea-
surement of the levels of many thousands of proteins.

Avariety of open source and proprietary software has been
developed to analyse whole transcriptome expression data.
For example, Gene Pattern (Broad Institute) (Reich et al.
2006) and GeneSpring (Agilent) for microarray data; limma
for both microarray and RNA-seq gene expression data
(Ritchie et al. 2015); and EdgeR (Robinson et al. 2010) for
RNA-seq data. These different softwares enable identification
of differentially expressed genes related to developmental
and/or disease states. However, it should be noted that
sequencing-based approaches, such as RNA-seq, tend to be
better suited for identification of expressed vs. non-expressed
genes, as opposed to identification of only differentially
expressed genes. This is due to the digital nature of transcript
detection by sequencing techniques, compared to the analogue
nature of microarray based techniques (that typically rely on
fluorescent-based methods for transcript detection, thereby
making determination of absolute expression cut-off thresh-
olds challenging).

Transcriptome analysis software can generate lists of
expressed and/or differentially expressed genes from ei-
ther new whole transcriptome data or reanalysis of pub-
lished studies. These gene lists then provide insights into
the signalling pathways and TGs involved in development
or function of normal tissue, as well as pathways and TGs
altered by disease states. A commonly used approach to
investigate differentially expressed gene lists is identifica-
tion of gene groupings via gene ontology (GO) analysis.

Various GO analysis software are available including the
DAVID Gene Ontology Functional Annotation Clustering
tool (Huang et al. 2009a, b), Enricher (Kuleshov et al.
2016), GO-Bayes (Zhang et al. 2010), Babelomics
(Medina et al. 2010), etc. Alternatively, assessment of
expressed growth factor signalling pathway members can
be performed by comparison of gene lists against the
Kyoto Encyclopaedia of Genes and Genomes (KEGG)
pathway database (Kanehisa and Goto 2000).

Characterising pluripotency mechanisms
using big data

Transcriptional, translational and ChIP profiling studies
have been performed using cell lines and primary cells/
tissue, and more recently using stem cells and their dif-
ferentiated derivatives. For example, landmark studies
have highlighted genes that are highly expressed across
multiple human PS cell lines, thus identifying core tran-
scriptional machinery consisting of the transcription fac-
tors OCT4/POU5F1, NANOG and SOX2 (Boyer et al.
2005; Cloonan et al. 2008; Hirst et al. 2007). These
studies have also identified some TGs of these key
pluripotency TRs. Additional studies have identified oth-
er human PS cell regulators including FOXD3, SALL4,
Polycomb-group proteins, etc. (Lee et al. 2006; O'Connor
et al. 2011b; Respuela et al. 2016).

Through comparison with mouse ES cell transcription-
al data, these human studies provided a molecular frame-
work for understanding the different culture requirements
for PS cells obtained from different species. For instance,
while mouse and human ES cells are both obtained from
fertilised embryos, maintenance of mouse ES cells is
LIF-dependent and FGF-independent. Conversely, human
ES cells are LIF-independent and FGF-dependent.
Transcriptional profiling studies have helped provide an
explanation for these observations. The initially isolated
mouse ES cell state is now recognised as a developmen-
tally earlier state termed the ‘naïve’ pluripotency state. In
contrast, the initially isolated human ES cell state is now
termed the ‘primed’ pluripotency state that is analogous
to pluripotent cells that can be isolated from the mouse
epiblast. Naïve human ES cells can be transitioned be-
tween the naïve and primed pluripotency states (Chen
et al. 2015; Duggal et al. 2015; Warrier et al. 2017),
raising the possibility of obtaining naïve human ES cells
directly from blastocysts (Van der Jeught et al. 2015). As
naïve PS cells may enable better control of differentiated
cell production, the transcriptomics studies described here
provide evidence that big data might facilitate improve-
ment and application of stem cell technology.

Biophys Rev (2019) 11:41–50 43
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Big data repositories for defining cell identity

A major challenge for the stem cell field is the reliable pro-
duction and characterisation of desired differentiated cell
types. Cell-type identification via a whole transcriptome gene
expression profile can provide a relatively rapid, broad and
reasonably cost-effective approach. Accurate cell-type identi-
fication is needed to enable better manipulation of differenti-
ated cells in culture (e.g., by identifying growth factor require-
ments), and also to provide a framework for understanding the
molecular events that occur in a disease state.

Transcriptional and/or translational analyses typically in-
volve characterisation of a control sample with or without
comparison to treated sample(s) generated through chemical
or genomic perturbations. Time-course components are also
often included. The vast number of transcriptional and trans-
lational studies performed over the past 15 years has led to the
establishment of large data repositories to facilitate public ac-
cess to gene and protein expression data. Examples of public
repositories for gene expression data include the Gene
Expression Omnibus (GEO) that accepts data from any spe-
cies (Barrett et al. 2013); human and mouse data available via
the ENCODE consortium (Consortium TEP 2012;
Consortium TME 2012); and human data available via
GTEx (Consortium GT 2013). Protein data repositories in-
clude UniProt (Consortium TU 2007) and STRING (von
Mering et al. 2003). These public gene and protein expression
data repositories can provide compendia for more
comprehensive/more robust cell-type identification for differ-
entiated PS cell progeny.

Compendium-based methods for defining
cell identity

Discovery of new biology by comparison of a test gene ex-
pression profile against a larger collection (i.e., compendium)
of expression profiles has been used for almost two decades
(Fig. 1a). However, compendium-based analyses have not yet
been widely used by the stem cell field, despite the opportu-
nity for robust cell type identification through compendia
(Fig. 1a–c).

Two general approaches have been used for compendium-
based cell-type identification: those that use a somewhat lim-
ited gene set as the query and those that use a larger expression
profile as the query (DeFreitas et al. 2016). Compendium-
based approaches can also be further divided into those that
enable within-species comparisons and (less frequent) those
that enable cross-species comparisons. For example, SPELL
enables within-species identification (only for yeast) from a
limited gene set against large gene expression microarray
compendia (Hibbs et al. 2007). Alternatively, GEMINI uses
a large transcriptome profile to query for similar profiles but

only within BThe Cancer Genome Atlas^ database (DeFreitas
et al. 2016). GEMINI uses a principal component analysis to
reduce the dimensionality of the query transcriptome, and then
uses a distance function to search for the closest match within
the compendium. It does not support cross-species
comparisons.

A small number of compendium-based approaches that
enable cross-species cell-type identification have recently
been described. For example, the web server ProfileChaser
mines only the curated GEO datasets for gene expression pro-
files that differentially regulate the same transcriptional pro-
grams as the query profiles (Engreitz et al. 2011). Another
web server that matches query gene sets (to a maximum of
100 differentially expressed genes) by searching the GEO

Fig. 1 Increases in the number of published articles making use of
compendium-based analyses (as identified via PubMed searches). a The
number of articles using compendium-based analyses for both non-stem
cell types (white bars) and stem cell types (black bars). bAn indication of
the number of publications using particular compendium-based applica-
tions for analysis of non-stem cell types. c Publications using particular
compendium-based applications for analysis of stem cell types
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database is ExpressionBlast. Required inputs are the limited
query gene list together with their expression comparison
values, a species type, a desired output species type and a
distance metric (Euclidean/correlation/anti-correlatin/anti-
Euclidean). The algorithm then uses text analysis methods to
perform similarity matching of the query gene set against
GEO datasets. ExpressionBlast then outputs the relevant
GEO datasets that similarly express the same genes as the
query gene list (Zinman et al. 2013). The web server Cell
Montage permits searching for similar gene expression pro-
files compared to a query gene profile (Fujibuchi et al. 2007).
The method is platform specific (i.e., specific to similar mi-
croarray platforms) and also only allows users to query against
GEO datasets that contain raw expression values.

Compendium-based analyses for stem cell
research

A small number of groups have started utilising the
compendium-based approach for stem cell research
(Fig. 1c). For example, Germanguz et al. used a
compendium-based approach consisting of 17 cell state-
specific gene expression data (including PS cells) to identify
genes that uniquely define cell states and developmental
stages. They also identified core genes (including transcrip-
tion factors) that can drive and maintain the cell states
(Germanguz et al. 2016). StemCellNet is a web server for
interactive network analysis and visualisation in the context
of stem cell biology (Pinto et al. 2014). HAEMCODE is a
repository of transcription factor binding maps for mouse
blood cells generated by ChIP-seq (Ruau et al. 2013). Asp
et al. generated a dataset of genome-wide locations for ten
key histone marks and transcription factors. By using mouse
myoblasts and terminally differentiated myotubes, they were
able to discover key epigenetic changes underlying
myogenesis (Asp et al. 2011). Hannah et al. described a
ChIP-Seq compendium to discover transcriptional mecha-
nisms operating in the haematopoietic system (Hannah et al.
2011). Sharov et al. identified a reliable set of direct TGs for
Pou5f1, Sox2 and Nanog by utilising a compendium of pub-
lished and new microarray data (Sharov et al. 2008). Hackney
and Moore built a compendium of information and data de-
rived from biological and molecular studies relating to
haematopoietic stem cell regulation (Hackney and Moore
2005).

The above compendium-based stem cell studies tended to
either compare multiple cell types or identify a specific cell
type. These approaches are not optimised for identification of
an unknown cell type. In comparison, a new open source R
package developed by our group, termed C3, allows cross-
species identification of any cell type. C3 uses a large
transcriptomic profile rather than a limited gene list, and is

compatible with a wide variety of input compendia (Kabir
et al. 2018a). The cross-species comparison enabled by C3
makes use of a recently developed cross-species gene set anal-
ysis method called XGSA (Djordjevic et al. 2016). C3 can
identify unknown cell types for a wide variety of species by
comparing gene expression profiles with a large compendium
of public human and mouse gene expression datasets. This
approach is suitable for identification of poorly characterised
cell types obtained from stem cell differentiation strategies
(Murphy et al. 2018). In this way, C3 fits well into the pipeline
of cell analyses needed by the stem cell field (Fig. 2).

In addition to identification and characterisation of differ-
entiated stem cell progeny, transcriptional profiles are also
being used to guide stem cell differentiation strategies. For
example, a recently published algorithm called MOGRIFY
uses gene expression data to predict TRs responsible for gen-
erating cell type-specific transcriptional profiles (and thus cell-
specific phenotypes and functions) (Rackham et al. 2016).
These cell type-specific combinations of TRs can then be used
to guide overexpression studies aimed at directly converting
(i.e., trans-differentiating) one cell type into another.

Investigating extracellular regulation of cell
behaviour

A second major challenge for the stem cell field, and disease
research in general, is to define how extracellular signalling
pathways regulate transcriptional events required for cell de-
velopment, environmental sensing and disease progression
(Berg 2016; Zhang and Mallick 2013). At the genome level,
gene transcription is often activated or repressed by the action
of transcription factors (also referred to as trans-regulatory
factors) that bind to promoter regions generally upstream
(i.e., 5′) of a gene’s transcription start site (termed cis-
regulatory elements). The specific DNA sequences within
the genome to which transcription factors bind are called
DNA-binding motifs and are often described via position
weight matrices (Babu et al. 2004; Boeva 2016; Spitz and
Furlong 2012).

Transcriptional and translational profiles represent molec-
ular snapshots that result from the combined action of an array
of transcriptional, post-transcriptional and translational regu-
lators, often under extracellular control via signalling path-
ways. Individual gene transcript abundance is largely deter-
mined by the net activity of the transcription factors bound to a
gene’s promoter (Beer and Tavazoie 2004; Chen and
Rajewsky 2007; Kim and O'Shea 2008)—though other regu-
lators of transcript abundance can also be involved such as
transcriptional regulators acting at more distance (e.g., en-
hancer) sites and post-transcriptional regulators (such as mi-
cro-RNA). Overall, the ability of any particular transcription
factor to activate or repress gene expression is dependent upon
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the interplay between the intracellular context and regulatory
cues received from the extracellular environment, for instance
via growth factor signalling pathways.

Signal transduction pathways and target
genes

As discussed above, a range of computational tools have been
developed to elucidate gene regulatory networks by defining
transcription factor/TG interactions (e.g., PASTAA, Homer,
GeoSTAN, iRegulon, etc.). Sequencing approaches that target
the 5′ end of mRNA transcripts, such CAGE, have also been
developed. Significant recent progress has been made by ap-
plying these approaches within large, international collabora-
tive efforts. For example, the Fantom5 consortium generated
CAGE data across 975 human and 399 mouse samples, in-
cluding primary cells, tissues and cancer cell lines (Andersson
et al. 2014; Consortium et al. 2014). From these data, TG sets
for transcription factors expressed by 394 human cell samples

have been defined via analysis of DNA-binding motifs within
gene promoters and enhancers (Marbach et al. 2016).

While the above approaches have provided a wealth of
information on transcription factor/TG interactions, there are
relatively few open source or proprietary algorithms that exist
for comprehensively linking signal pathways to TG sets. A
typical signal transduction pathway for transmitting extracel-
lular cues involves growth factors binding to specific cell sur-
face receptors, subsequent modulation of intracellular kinase
activities, and ultimately altered transcription factor activity
and consequent changes in TG expression (Wang et al.
2011). The coordinated activity of different signalling path-
ways within and between multiple cell types is the basis of
many important biological processes, such as development,
tissue repair and immunity (Zhao and Li 2017; Zhao et al.
2008). Activation of different signalling pathways can lead
to numerous physiological or cellular responses, such as cell
proliferation, differentiation, metabolism and death—key pro-
cesses relevant to stem cells and their progeny both in vitro
and in vivo.

Stem cells

Differentiation

Self renewal

Cell purification or 

organoid production

Improve stem cell maintenance 

via C-GRN-ID
Improve differentiation methods 

via C-GRN-ID

Characterise cell identity 

via C-Cell-ID

Define normal biology Define disease biology Cell transplantation 

to treat diseases

Define GF-based 

regulation of  GRNs 

via C-GRN-ID

Stimulate in vivo 

regulation / repair

Define effect of environmental cues 

(e.g., GFs and risk factors) on GRNs 

in disease via C-GRN-ID

Identify novel candidate drug 

targets for disease treatment

Legend

C-Cell-ID: compendium-based analyses for cell type identification

C-GRN-ID: compendium-based analyses for gene regulatory network identification

Characterise cell identity

via C-Cell-ID

Fig. 2 Schematic diagram
showing how compendium-based
analyses can be used to accelerate
application of stem cell
technology to identification and
testing of new drug and cell-based
therapies
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Bioinformatic determination of signal
pathways

Various resources have been created to assist in defining sig-
nalling pathways. The collection of manually drawn pathway
diagrams available via KEGG provides a starting point for
understanding particular receptor-mediated signalling path-
ways. However, their use can be limiting when attempting to
define cell type-specific signalling pathways. Conversely, the
STRING database contains millions of known protein-protein
interactions (PPIs); however, accessing cell type-specific sub-
sets of these interactions can be challenging.

Several bioinformatics methods have been described that
reconstruct known signalling pathways from PPI data, with or
without inclusion of gene expression data (Bebek and Yang
2007; Gil et al. 2017; Ritz et al. 2016; Wang et al. 2011).
CASCADE_SCAN uses a steepest descent method to build
a specific pathway from a list of protein molecules (Wang
et al. 2011). Pathlinker creates signal pathways by using input
receptors and transcriptional regulators to interrogate PPI da-
tabases (Gil et al. 2017; Ritz et al. 2016). PathFinder uses
characteristics of known signal pathways together with related
association rules to find pathways from a receptor to a tran-
scription factor in PPI networks (Bebek and Yang 2007).
Gitter et al. proposed a method to handle the orientation prob-
lem (i.e., orienting protein interaction edges using direction-
less PPI data) in weighted protein interaction graphs (Gitter
et al. 2011). Mei et al. proposed a multi-label, multi-instance
transfer learning method to simultaneously reconstruct 27 hu-
man signalling pathways (Mei and Zhu 2015). Scott et al.
proposed a method to reconstruct known signalling pathways
by applying a colour coding algorithm (Scott et al. 2006).
Tuncbag et al. formulated a forest approach (defined as a
disjointed union of trees) to simultaneously reconstruct multi-
ple pathways from biological networks that are altered in a
particular condition (Tuncbag et al. 2013). Other methods
identify known signalling pathways using gene expression
datasets to calculate edge weights for PPI data (Liu and
Zhao 2004; Steffen et al. 2002; Zhao and Li 2017; Zhao
et al. 2008).

Linking signal pathways and TG sets

All the above methods for signal pathway analysis generate
topological structures for known signalling pathways. One
potential limitation is that most of the methods were assessed
and applied only to yeast data, with few methods designed for
complex mammalian data. Recent work from our group has
demonstrated a novel approach—termed SPAGI (Signal
Pathway Analys is for Gene regula tory ne twork
Identification)—that systematically identifies biologically rel-
evant signalling pathways for mammalian cells (Kabir et al.

2018c). The SPAGI approach starts with a whole tran-
scriptome expression profile and uses it to construct a com-
prehensive catalogue of signalling pathways from PPI data.
Application of the SPAGI approach to mouse and human cell
RNA-seq data, including from differentiated progeny of hu-
man PS cells, identified known critical signalling pathways
relevant to the cell types used. Subsequent research using
human lens epithelial cell gene expression data has coupled
each of the SPAGI-generated receptor-defined paths to TG
sets obtained from the Fantom5 consortium data (Kabir et al.
2018b). The resulting lens epithelial cell gene expression
framework (or lens transcriptional blueprint) describes growth
factor-mediated control of transcriptional programs important
to lens epithelial cell biology. Initial validation studies have
shown that known gene regulatory interactions were identi-
fied, and predicted new transcriptional regulators were vali-
dated via Western blotting. This approach directly addresses a
major challenging in the stem cell and disease research fields,
namely, the need for large-scale generation of discrete and
testable molecular hypotheses that describe the influence of
environmental factors during tissue development and disease
progression (Fig. 2).

Defining disease mechanisms by integrating
signal pathways and disease genes

A key motivation driving the establishment of integrated sig-
nalling pathways and TG networks is the need to better define
disease processes to enable identification of novel drug targets
(Butcher et al. 2004; Davidson et al. 2002). Information relat-
ing to genes and gene variants involved in disease phenotypes
can be found within the Online Mendelian Inheritance in Man
(OMIM) database (Hamosh et al. 2005). Tissue-specific dis-
ease gene databases also exist for numerous tissues including
the kidney, heart, muscle, brain, lens, etc. By correlating the
abovementioned lens transcriptional blueprint with the Cat-
Map database of lens-related disease genes (Shiels et al.
2010), our group has been able to identify both known and
novel gene regulation events and map them to growth factor
signalling pathways (Kabir et al. 2018b). This approach can
also be applied to other cell types, including differentiated
stem cell derivatives, to define candidate drug targets—and
therefore candidate novel therapeutics—for human diseases
(as outlined in Fig. 2).

Conclusion

Stem cells provide an opportunity to examine normal and
disease human biology on a scale not possible with primary
cells and tissues. Realising these opportunities requires over-
coming specific challenges relating to determination of cell
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type identity, and definition of how environmental cues in-
cluding growth factor signalling pathways regulate gene tran-
scription involved in tissue development, repair/regeneration
and disease. Compendium-based analyses hold promise for
rapid and robust identification of first-reported differentiated
stem cell types, as well as batch-produced cells for industry or
cell therapy applications. Bioinformatic methods that generate
comprehensive and integrated combinations of signalling
pathways and gene regulatory networks are starting to provide
specific molecular disease hypotheses that can be investigated
using human PS cell-derived cell types. Thus compendium-
based big data approaches to stem cell research present signif-
icant opportunities for the development of novel cell and drug
therapies.

Author contributions M.H.K drafted the manuscript. M.H.K and
M.D.O’C revised and approved the manuscript.

Funding M.H.K was supported byWSU Postgraduate Research Awards.
M.D.O’C was supported by The Medical Advances Without Animals
Trust.

Compliance with ethical standards

Conflict of interest Md Humayun Kabir declares that he has no conflict
of interest. Michael D. O’Connor declares that he has no conflict of
interest.

Ethical approval This article does not contain any studies with human or
animal subjects performed by any of the authors.

Publisher’s note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.

References

Andersson R et al (2014) An atlas of active enhancers across human cell
types and tissues. Nature 507:455–461. https://doi.org/10.1038/
nature12787

Asp P et al (2011) Genome-wide remodeling of the epigenetic landscape
during myogenic differentiation. Proc Natl Acad Sci U S A 108:
E149–E158. https://doi.org/10.1073/pnas.1102223108

Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA
(2004) Structure and evolution of transcriptional regulatory net-
works. Curr Opin Struct Biol 14:283–291. https://doi.org/10.1016/
j.sbi.2004.05.004

Bailey T et al (2013) Practical guidelines for the comprehensive analysis
of ChIP-seq data. PLoS Comput Biol 9:e1003326. https://doi.org/
10.1371/journal.pcbi.1003326

Banks CJ, Joshi A, Michoel T (2016) Functional transcription factor
target discovery via compendia of binding and expression profiles.
Sci Rep 6:20649. https://doi.org/10.1038/srep20649

Barrett T et al (2013) NCBI GEO: archive for functional genomics data
sets—update. Nucleic Acids Res 41:D991–D995. https://doi.org/10.
1093/nar/gks1193

Bebek G, Yang J (2007) PathFinder: mining signal transduction pathway
segments from protein-protein interaction networks. BMC
Bioinformatics 8:335. https://doi.org/10.1186/1471-2105-8-335

Beer MA, Tavazoie S (2004) Predicting gene expression from sequence.
Cell 117:185–198

Berg J (2016) Gene-environment interplay. Science 354:15. https://doi.
org/10.1126/science.aal0219

Boeva V (2016) Analysis of genomic sequence motifs for deciphering
transcription factor binding and transcriptional regulation in eukary-
otic. Cells Front Genet 7:24. https://doi.org/10.3389/fgene.2016.
00024

Boyer LA et al (2005) Core transcriptional regulatory circuitry in human
embryonic stem cells. Cell 122:947–956. https://doi.org/10.1016/j.
cell.2005.08.020

Bumgarner R (2013) Overview of DNAmicroarrays: types, applications,
and their future. Curr Protoc Mol Biol Chapter 22:Unit 22 21.
https://doi.org/10.1002/0471142727.mb2201s101

Butcher EC, Berg EL, Kunkel EJ (2004) Systems biology in drug dis-
covery. Nat Biotechnol 22:1253–1259. https://doi.org/10.1038/
nbt1017

Chen K, Rajewsky N (2007) The evolution of gene regulation by tran-
scription factors and microRNAs. Nat Rev Genet 8:93–103. https://
doi.org/10.1038/nrg1990

Chen H et al (2015) Reinforcement of STAT3 activity reprogrammes
human embryonic stem cells to naive-like pluripotency. Nat
Commun 6:7095. https://doi.org/10.1038/ncomms8095

Cloonan N et al (2008) Stem cell transcriptome profiling via massive-
scale mRNA sequencing. Nat Methods 5:613–619. https://doi.org/
10.1038/nmeth.1223

Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of
biologically functional bacterial plasmids in vitro. Proc Natl Acad
Sci U S A 70:3240–3244

Collas P (2010) The current state of chromatin immunoprecipitation. Mol
Biotechnol 45:87–100. https://doi.org/10.1007/s12033-009-9239-8

Consortium F et al (2014) A promoter-level mammalian expression atlas.
Nature 507:462–470. https://doi.org/10.1038/nature13182

Consortium GT (2013) The genotype-tissue expression (GTEx) project.
Nat Genet 45:580–585. https://doi.org/10.1038/ng.2653

Consortium TEP (2012) An integrated encyclopedia of DNA elements in
the human genome. Nature 489:57–74. https://doi.org/10.1038/
nature11247

Consortium TME (2012) An encyclopedia of mouse DNA elements
(Mouse ENCODE). Genome Biol 13:418. https://doi.org/10.1186/
gb-2012-13-8-418

Consortium TU (2007) The universal protein resource (UniProt). Nucleic
Acids Res 35:D193–D197. https://doi.org/10.1093/nar/gkl929

Cressey D (2012) Stem cells take root in drug development. Nat News
Davidson EH et al (2002) A genomic regulatory network for develop-

ment. Science 295:1669–1678. https://doi.org/10.1126/science.
1069883

DeFreitas T, Saddiki H, Flaherty P (2016) GEMINI: a computationally-
efficient search engine for large gene expression datasets. BMC
Bioinf 17:102. https://doi.org/10.1186/s12859-016-0934-8

Djordjevic D, Kusumi K, Ho JW (2016) XGSA: a statistical method for
cross-species gene set analysis. Bioinformatics 32:i620–i628.
https://doi.org/10.1093/bioinformatics/btw428

Duggal G et al (2015) Alternative routes to induce naive pluripotency in
human embryonic stem cells. Stem Cells 33:2686–2698. https://doi.
org/10.1002/stem.2071

Engreitz JM, Chen R, Morgan AA, Dudley JT, Mallelwar R, Butte AJ
(2011) ProfileChaser: searching microarray repositories based on
genome-wide patterns of differential expression. Bioinformatics
27:3317–3318. https://doi.org/10.1093/bioinformatics/btr548

Fujibuchi W, Kiseleva L, Taniguchi T, Harada H, Horton P (2007)
CellMontage: similar expression profile search server.
Bioinformatics 23:3103–3104. https://doi.org/10.1093/
bioinformatics/btm462

48 Biophys Rev (2019) 11:41–50

 
10

https://doi.org/10.1038/nature12787
https://doi.org/10.1038/nature12787
https://doi.org/10.1073/pnas.1102223108
https://doi.org/10.1016/j.sbi.2004.05.004
https://doi.org/10.1016/j.sbi.2004.05.004
https://doi.org/10.1371/journal.pcbi.1003326
https://doi.org/10.1371/journal.pcbi.1003326
https://doi.org/10.1038/srep20649
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1186/1471-2105-8-335
https://doi.org/10.1126/science.aal0219
https://doi.org/10.1126/science.aal0219
https://doi.org/10.3389/fgene.2016.00024
https://doi.org/10.3389/fgene.2016.00024
https://doi.org/10.1016/j.cell.2005.08.020
https://doi.org/10.1016/j.cell.2005.08.020
https://doi.org/10.1002/0471142727.mb2201s101
https://doi.org/10.1038/nbt1017
https://doi.org/10.1038/nbt1017
https://doi.org/10.1038/nrg1990
https://doi.org/10.1038/nrg1990
https://doi.org/10.1038/ncomms8095
https://doi.org/10.1038/nmeth.1223
https://doi.org/10.1038/nmeth.1223
https://doi.org/10.1007/s12033-009-9239-8
https://doi.org/10.1038/nature13182
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/nature11247
https://doi.org/10.1038/nature11247
https://doi.org/10.1186/gb-2012-13-8-418
https://doi.org/10.1186/gb-2012-13-8-418
https://doi.org/10.1093/nar/gkl929
https://doi.org/10.1126/science.1069883
https://doi.org/10.1126/science.1069883
https://doi.org/10.1186/s12859-016-0934-8
https://doi.org/10.1093/bioinformatics/btw428
https://doi.org/10.1002/stem.2071
https://doi.org/10.1002/stem.2071
https://doi.org/10.1093/bioinformatics/btr548
https://doi.org/10.1093/bioinformatics/btm462
https://doi.org/10.1093/bioinformatics/btm462


Furey TS (2012) ChIP-seq and beyond: new and improved methodolo-
gies to detect and characterize protein-DNA interactions. Nat Rev
Genet 13:840–852. https://doi.org/10.1038/nrg3306

Germanguz I, Listgarten J, Cinkornpumin J, SolomonA, Gaeta X, Lowry
WE (2016) Identifying gene expression modules that define human
cell fates. Stem Cell Res 16:712–724. https://doi.org/10.1016/j.scr.
2016.04.008

Gil DP, Law JN, Murali TM (2017) The PathLinker app: connect the dots
in protein interaction networks. F1000Res 6:58. https://doi.org/10.
12688/f1000research.9909.1

Gitter A, Klein-Seetharaman J, Gupta A, Bar-Joseph Z (2011)
Discovering pathways by orienting edges in protein interaction net-
works. Nucleic Acids Res 39:e22. https://doi.org/10.1093/nar/
gkq1207

Hackney JA, Moore KA (2005) A functional genomics approach to he-
matopoietic stem cell regulation. Methods Mol Med 105:439–452

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005)
Online Mendelian Inheritance inMan (OMIM), a knowledgebase of
human genes and genetic disorders. Nucleic Acids Res 33:D514–
D517. https://doi.org/10.1093/nar/gki033

Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteo-
mics. Curr Opin Chem Biol 12:483–490. https://doi.org/10.1016/j.
cbpa.2008.07.024

Hannah R, Joshi A, Wilson NK, Kinston S, Gottgens B (2011) A com-
pendium of genome-wide hematopoietic transcription factor maps
supports the identification of gene regulatory control mechanisms.
Exp Hematol 39:531–541. https://doi.org/10.1016/j.exphem.2011.
02.009

Heinz S et al (2010) Simple combinations of lineage-determining tran-
scription factors prime cis-regulatory elements required for macro-
phage and B cell identities. Mol Cell 38:576–589. https://doi.org/10.
1016/j.molcel.2010.05.004

Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG
(2007) Exploring the functional landscape of gene expression: di-
rected search of large microarray compendia. Bioinformatics 23:
2692–2699. https://doi.org/10.1093/bioinformatics/btm403

Hirst M et al (2007) LongSAGE profiling of nine human embryonic stem
cell lines. Genome Biol 8:R113. https://doi.org/10.1186/gb-2007-8-
6-r113

Hoopes L (2008) Introduction to the gene expression and regulation topic
room. Nat Educ 1(1)

Huang DW, Sherman BT, Lempicki RA (2009a) Bioinformatics enrich-
ment tools: paths toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/
nar/gkn923

Huang DW, Sherman BT, Lempicki RA (2009b) Systematic and integra-
tive analysis of large gene lists using DAVID bioinformatics re-
sources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.
211

Janky R et al (2014) iRegulon: from a gene list to a gene regulatory
network using large motif and track collections. PLoS Comput
Biol 10:e1003731. https://doi.org/10.1371/journal.pcbi.1003731

Kabir MH, Djordjevic D, O’Connor MD, Ho JWK (2018a) C3: an R
package for cross-species compendium-based cell-type identifica-
tion. Comput Biol Chem 77:187–192

Kabir MH, Murphy P, Lim S, Ho JWK, O’Connor MD (2018b) Large
scale profiling of lens epithelial cell signalling pathways and target
genes reveals regulatory networks for cataract-associated genes. Exp
Eye Res (under review)

Kabir MH, Patrick R, Ho JWK, O’Connor MD (2018c) Identification of
active signaling pathways by integrating gene expression and pro-
tein interaction data. BMC Syst Biol in press

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res 28:27–30

Kim HD, O'Shea EK (2008) A quantitative model of transcription factor-
activated gene expression. Nat Struct Mol Biol 15:1192–1198.
https://doi.org/10.1038/nsmb.1500

Kuleshov MVet al (2016) Enrichr: a comprehensive gene set enrichment
analysis web server 2016 update. Nucleic Acids Res 44:W90–W97.
https://doi.org/10.1093/nar/gkw377

Lee TI et al (2006) Control of developmental regulators by Polycomb in
human embryonic stem cells. Cell 125:301–313. https://doi.org/10.
1016/j.cell.2006.02.043

Liu Y, Zhao H (2004) A computational approach for ordering signal
transduction pathway components from genomics and proteomics.
Data BMC Bioinf 5:158. https://doi.org/10.1186/1471-2105-5-158

Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S
(2016) Tissue-specific regulatory circuits reveal variable modular
perturbations across complex diseases. Nat Methods 13:366–370.
https://doi.org/10.1038/nmeth.3799

Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods
4:613–614. https://doi.org/10.1038/nmeth0807-613

Medina I et al (2010) Babelomics: an integrative platform for the analysis
of transcriptomics, proteomics and genomic data with advanced
functional profiling. Nucleic Acids Res 38:W210–W213. https://
doi.org/10.1093/nar/gkq388

Mei S, Zhu H (2015) Multi-label multi-instance transfer learning for
simultaneous reconstruction and cross-talk modeling of multiple
human signaling pathways. BMC Bioinf 16:417. https://doi.org/
10.1186/s12859-015-0841-4

Murphy P et al (2018) Light-focusing human micro-lenses generated
from pluripotent stem cells model lens development and drug-
induced cataract in vitro. Development 145. https://doi.org/10.
1242/dev.155838

O'Connor MD (2013) The 3R principle: advancing clinical application of
human pluripotent stem cells. Stem Cell Res Ther 4:21. https://doi.
org/10.1186/scrt169

O'Connor MD, Kardel MD, Eaves CJ (2011a) Functional assays for hu-
man embryonic stem cell pluripotency. Methods Mol Biol 690:67–
80. https://doi.org/10.1007/978-1-60761-962-8_4

O'Connor MD et al (2011b) Retinoblastoma-binding proteins 4 and 9 are
important for human pluripotent stem cell maintenance. Exp
Hematol 39:866–879 e861. https://doi.org/10.1016/j.exphem.2011.
05.008

Pinto JP, Reddy Kalathur RK, Machado RS, Xavier JM, Braganca J,
Futschik ME (2014) StemCellNet: an interactive platform for
network-oriented investigations in stem cell biology. Nucleic
Acids Res 42:W154–W160. https://doi.org/10.1093/nar/gku455

Rackham OJ et al (2016) A predictive computational framework for
direct reprogramming between human cell types. Nat Genet 48:
331–335. https://doi.org/10.1038/ng.3487

Ralston A, Shaw K (2008) Gene expression regulates cell differentiation.
Nat Educ 1(1)

Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006)
GenePattern 2.0. Nat Genet 38:500–501. https://doi.org/10.1038/
ng0506-500

Respuela P, Nikolic M, Tan M, Frommolt P, Zhao Y, Wysocka J, Rada-
Iglesias A (2016) Foxd3 promotes exit from naive pluripotency
through enhancer decommissioning and inhibits germline specifica-
tion cell. Stem Cell 18:118–133. https://doi.org/10.1016/j.stem.
2015.09.010

RitchieME, Phipson B,Wu D, HuY, Law CW, ShiW, Smyth GK (2015)
limma powers differential expression analyses for RNA-sequencing
and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/
10.1093/nar/gkv007

Ritz A et al (2016) Pathways on demand: automated reconstruction of
human signaling networks. NPJ Syst Biol Appl 2:16002. https://doi.
org/10.1038/npjsba.2016.2

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor
package for differential expression analysis of digital gene

Biophys Rev (2019) 11:41–50 49

 
11

https://doi.org/10.1038/nrg3306
https://doi.org/10.1016/j.scr.2016.04.008
https://doi.org/10.1016/j.scr.2016.04.008
https://doi.org/10.12688/f1000research.9909.1
https://doi.org/10.12688/f1000research.9909.1
https://doi.org/10.1093/nar/gkq1207
https://doi.org/10.1093/nar/gkq1207
https://doi.org/10.1093/nar/gki033
https://doi.org/10.1016/j.cbpa.2008.07.024
https://doi.org/10.1016/j.cbpa.2008.07.024
https://doi.org/10.1016/j.exphem.2011.02.009
https://doi.org/10.1016/j.exphem.2011.02.009
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1093/bioinformatics/btm403
https://doi.org/10.1186/gb-2007-8-6-r113
https://doi.org/10.1186/gb-2007-8-6-r113
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1371/journal.pcbi.1003731
https://doi.org/10.1038/nsmb.1500
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1016/j.cell.2006.02.043
https://doi.org/10.1016/j.cell.2006.02.043
https://doi.org/10.1186/1471-2105-5-158
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.1038/nmeth0807-613
https://doi.org/10.1093/nar/gkq388
https://doi.org/10.1093/nar/gkq388
https://doi.org/10.1186/s12859-015-0841-4
https://doi.org/10.1186/s12859-015-0841-4
https://doi.org/10.1242/dev.155838
https://doi.org/10.1242/dev.155838
https://doi.org/10.1186/scrt169
https://doi.org/10.1186/scrt169
https://doi.org/10.1007/978-1-60761-962-8_4
https://doi.org/10.1016/j.exphem.2011.05.008
https://doi.org/10.1016/j.exphem.2011.05.008
https://doi.org/10.1093/nar/gku455
https://doi.org/10.1038/ng.3487
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1016/j.stem.2015.09.010
https://doi.org/10.1016/j.stem.2015.09.010
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/npjsba.2016.2
https://doi.org/10.1038/npjsba.2016.2


expression data. Bioinformatics 26:139–140. https://doi.org/10.
1093/bioinformatics/btp616

Roider HG,Manke T, O'Keeffe S, VingronM,Haas SA (2009) PASTAA:
identifying transcription factors associated with sets of co-regulated
genes. Bioinformatics 25:435–442. https://doi.org/10.1093/
bioinformatics/btn627

Ruau D et al (2013) Building an ENCODE-style data compendium on a
shoestring. Nat Methods 10:926. https://doi.org/10.1038/nmeth.
2643

Scott J, Ideker T, Karp RM, Sharan R (2006) Efficient algorithms for
detecting signaling pathways in protein interaction networks. J
Comput Biol 13:133–144

Shanks N, Greek R, Greek J (2009) Are animal models predictive for
humans? Philos Ethics Humanit Med 4:2. https://doi.org/10.1186/
1747-5341-4-2

Sharov AA et al (2008) Identification of Pou5f1, Sox2, and Nanog down-
stream target genes with statistical confidence by applying a novel
algorithm to time course microarray and genome-wide chromatin
immunoprecipitation data. BMC Genomics 9:269. https://doi.org/
10.1186/1471-2164-9-269

Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract
on the map. Mol Vis 16:2007–2015

Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding
to developmental control. Nat Rev Genet 13:613–626. https://doi.
org/10.1038/nrg3207

Steffen M, Petti A, Aach J, D'Haeseleer P, Church G (2002) Automated
modelling of signal transduction networks. BMC Bioinf 3:34

Tuncbag N et al (2013) Simultaneous reconstruction ofmultiple signaling
pathways via the prize-collecting steiner forest problem. J Comput
Biol 20:124–136. https://doi.org/10.1089/cmb.2012.0092

Ungrin M, O'Connor M, Eaves C, Zandstra PW (2007) Phenotypic anal-
ysis of human embryonic stem cells. Curr Protoc Stem Cell Biol
Chapter 1:Unit 1B 3. https://doi.org/10.1002/9780470151808.
sc01b03s2

Van der Jeught M et al (2015) Application of small molecules favoring
naive pluripotency during human embryonic stem cell derivation.
Cell Reprogram 17:170–180. https://doi.org/10.1089/cell.2014.
0085

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003)
STRING: a database of predicted functional associations between
proteins. Nucleic Acids Res 31:258–261

Wang K et al (2011) CASCADE_SCAN: mining signal transduction
network from high-throughput data based on steepest descent meth-
od. BMC Bioinf 12:164. https://doi.org/10.1186/1471-2105-12-164

Warrier S et al (2017) Direct comparison of distinct naive pluripotent
states in human embryonic stem cells. Nat Commun 8:15055.
https://doi.org/10.1038/ncomms15055

Zacher B, Michel M, Schwalb B, Cramer P, Tresch A, Gagneur J (2017)
Accurate promoter and enhancer identification in 127 ENCODE and
roadmap epigenomics cell types and tissues by GenoSTAN. PLoS
One 12:e0169249. https://doi.org/10.1371/journal.pone.0169249

Zhang L, Mallick BK (2013) Inferring gene networks from discrete ex-
pression data. Biostatistics 14:708–722. https://doi.org/10.1093/
biostatistics/kxt021

Zhang S, Cao J, Kong YM, Scheuermann RH (2010) GO-Bayes: Gene
Ontology-based overrepresentation analysis using a Bayesian ap-
proach. Bioinformatics 26:905–911. https://doi.org/10.1093/
bioinformatics/btq059

Zhao XM, Li S (2017) HISP: a hybrid intelligent approach for identifying
directed signaling pathways. J Mol Cell Biol 9:453–462. https://doi.
org/10.1093/jmcb/mjx054

Zhao XM, Wang RS, Chen L, Aihara K (2008) Uncovering signal trans-
duction networks from high-throughput data by integer linear pro-
gramming. Nucleic Acids Res 36:e48. https://doi.org/10.1093/nar/
gkn145

Zinman GE, Naiman S, Kanfi Y, Cohen H, Bar-Joseph Z (2013)
ExpressionBlast: mining large, unstructured expression databases.
Nat Methods 10:925–926. https://doi.org/10.1038/nmeth.2630

50 Biophys Rev (2019) 11:41–50

 
12

https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btn627
https://doi.org/10.1093/bioinformatics/btn627
https://doi.org/10.1038/nmeth.2643
https://doi.org/10.1038/nmeth.2643
https://doi.org/10.1186/1747-5341-4-2
https://doi.org/10.1186/1747-5341-4-2
https://doi.org/10.1186/1471-2164-9-269
https://doi.org/10.1186/1471-2164-9-269
https://doi.org/10.1038/nrg3207
https://doi.org/10.1038/nrg3207
https://doi.org/10.1089/cmb.2012.0092
https://doi.org/10.1002/9780470151808.sc01b03s2
https://doi.org/10.1002/9780470151808.sc01b03s2
https://doi.org/10.1089/cell.2014.0085
https://doi.org/10.1089/cell.2014.0085
https://doi.org/10.1186/1471-2105-12-164
https://doi.org/10.1038/ncomms15055
https://doi.org/10.1371/journal.pone.0169249
https://doi.org/10.1093/biostatistics/kxt021
https://doi.org/10.1093/biostatistics/kxt021
https://doi.org/10.1093/bioinformatics/btq059
https://doi.org/10.1093/bioinformatics/btq059
https://doi.org/10.1093/jmcb/mjx054
https://doi.org/10.1093/jmcb/mjx054
https://doi.org/10.1093/nar/gkn145
https://doi.org/10.1093/nar/gkn145
https://doi.org/10.1038/nmeth.2630


 
 
 
 

Chapter 2 
 

C3: An R package for cross-species compendium-
based cell-type identification 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
13



Identification of cell-type of a biological sample based on its gene expression profile is an 
important research question when investigating novel cell populations resulting from 
differentiation of pluripotent stem cells, or after isolation of a cell population in a non-model 
organism. Application of a cell type compendium-based method may be particularly useful if 
the compendium consists of large collection of available cell transcriptome data for human 
and mouse organisms. Here we have developed a procedure associated with an open source R 
package, known as C3, to identify the cell type of a gene expression profile and tested it 
against a variety of cell samples. 
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A B S T R A C T

Cell type identification from an unknown sample can often be done by comparing its gene expression profile
against a gene expression database containing profiles of a large number of cell-types. This type of compendium-
based cell-type identification strategy is particularly successful for human and mouse samples because a large
volume of data exists for these organisms. However, such rich data repositories often do not exist for most non-
model organisms. This makes transcriptome-based sample classification in these species challenging. We propose
to overcome this challenge by performing a cross-species compendium comparison. The key is to utilise a recently
published cross-species gene set analysis (XGSA) framework to correct for biases that may arise due to poten-
tially complex homologous gene mapping between two species. The framework is implemented as an open
source R package called C3. We have evaluated the performance of C3 using a variety of public data in NCBI
Gene Expression Omnibus. We also compared the functionality and performance of C3 against some similar gene
expression profile matching tools. Our evaluation shows that C3 is a simple and effective method for cell type
identification. C3 is available at https://github.com/VCCRI/C3.

1. Introduction

The key question we seek to address in this article is how can we
identify the cell-type of a biological sample given its gene expression profile?
This question commonly arises when investigating a novel cell popu-
lation resulting from differentiation of pluripotent stem cells or isola-
tion of a cell population in a non-model organism. The most popular
bioinformatics approach is a compendium-based identification ap-
proach, in which the unknown sample’s gene expression profile is used
as a query profile against a large gene expression compendium con-
sisting of many cell types. A number of tools have been developed to
perform such a task, such as GEMINI (DeFreitas et al., 2016), Profi-
leChaser (Engreitz et al., 2011), ExpressionBlast (Zinman et al., 2013)
and CellMortage (Fujibuchi et al., 2007). All these tools work in a si-
milar fashion: match the query gene expression profile or a gene set
against a database of gene expression profiles to identify its best mat-
ches. Importantly, most of these tools implicitly assume there is a one-
to-one correspondence between genes in the query sample and the

compendium sample, which can be violated when comparing data from
different species. Beyond supporting filtering for genes with one-to-one
homology mapping across species, none of the current tools effectively
handle a cross-species query in a statistically rigorous fashion.

Therefore, when using currently available tools it is important to
always use a database of the same species as the query sample. This is
often practically impossible because most publicly available data sets
are only available for a small number of species. For example, one of the
largest public gene expression repositories - the NCBI Gene Expression
Omnibus (GEO) – contained more than 57,000 GEO series (GSE) gen-
erated by microarrays or RNA-Seq (as of March 2017) (Barrett et al.,
2013). Collectively, these data are a valuable resource for researchers to
discover new biological insights. Nonetheless, most of these GSE data
sets were generated from just two species: Homo sapiens (human) and
Mus musculus (mouse). In fact, around two thirds of these GSE data sets
are derived from human or mouse samples (Fig. 1). The other third
come from more than 1300 species, with only 33 species having over
100 GSE (Fig. 1). In other words, while it is possible to curate a useful
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gene expression compendium for human and mouse, it is practically
impossible for other species, especially non-model organisms.

We propose to alleviate this lack of species-specific compendia by
performing a cross-species cell identification, where a query profile is
matched against a database of samples which come from different or-
ganisms. A key challenge to implementing such a cross-species analysis
scheme is that many pairs of species, especially those that are evolu-
tionary distant, can have complex “many-to-many” homologous gene
relationships. Failure to properly account for the homology gene
mapping can lead to statistical biases (Djordjevic et al., 2016).

In this article, we present a new open source R package – C3 – that
implements this cross-species compendium-based cell type identifica-
tion approach using a recently developed cross-species gene set analysis
method called XGSA (Djordjevic et al., 2016). XGSA has been shown to
reduce the false positive bias while still maintain good statistical power
for gene sets affected by highly complex homology structures. Using C3,
we can harness the large collection of human and mouse public data as
a resource to identify unknown cell types for a wide variety of species.
We demonstrate the effectiveness of C3 using a large collection of GEO
data. We also compare its performance with other similar tools.

2. Methods

2.1. C3: a new R package for cross-species cell-type identification

C3 is an open source R package for identifying an unknown cell-type
from its gene expression profile based on a large compendium of gene
expression data that can be derived from different species. A key aspect
of this approach is that it is most useful when the compendium re-
presents many different tissue or cell types, preferably from a well-
studied organism such as human or mouse. Examples of public data
sources that can be used to form this kind of compendium include
ENCODE (The ENCODE Project Consortium, 2012; The Mouse ENCODE
Consortium, 2012) and GTEx (The GTEx Consortium, 2013). The full
description of the method implemented in C3 is described in detail in
the rest of this section, but an overview of the framework can be found
in Fig. 2. Briefly, C3 first identifies genes considered to be specifically
highly-expressed genes in the query and the compendium profiles, by
removing genes ubiquitously highly-expressed across these expression
profiles. Next, C3 performs XGSA between the query gene set and each
of the compendium gene sets to account for “many-to-many” gene re-
lationships, and thereby determine which compendium gene sets are
statistically enriched in the query gene set. A p-value is reported for
each compendium sample. The cell-types of the most highly ranked

compendium gene sets (according to p-value) are then used to predict
the cell-type of the query profile. C3 is available at https://github.com/
VCCRI/C3.

2.2. The human and mouse gene expression compendia

For both mouse and human, we constructed a large compendium of
tissue-specific genes using RNA data from the ENCODE project.
ENCODE gene expression data, summarised as FPKMs, were obtained
for human (hg19; 144 tissues or cell lines) (The ENCODE Project
Consortium, 2012) and for mouse (mm9; 94 tissues or cell types) (The
Mouse ENCODE Consortium, 2012). Most tissues or cell types in the
ENCODE data set are represented by more than one replicate. We
combined replicates of the same tissue or cell type by calculating the
mean expression value for each gene. The GTEx gene expression data,
summarised as median of TPM values, of 53 different tissues were
downloaded from GTEx web portal (https://www.gtexportal.org/
home/datasets). When a compendium was constructed from multiple
data sources, we only considered genes that were common among all
data sets.

2.3. Identification of specifically expressed genes in the query and
compendium data

Using the compendium data, for each sample in the compendium we
identified sets of highly-expressed genes that are specific to each sample
using two parameters: n – the number of highly expressed genes to
consider for marker gene status; t – the proportion of samples a marker
gene can appear in before it is discarded as non-unique/non-specific.
Using these two parameters we could identify then remove genes that
are consistently highly expressed (within the top n highly expressed
genes in each sample) in more than t × 100% of samples. The goal of
this step is to remove ubiquitously expressed genes such as house-
keeping genes. The remaining gene sets is enriched for cell-type specific
genes. To identify the highly-expressed specific genes within the query
data set, first we calculated the mean expression value of the replicates
for each gene and then identified the top n highly expressed genes. We
then removed the ubiquitously expressed genes identified by the com-
pendium from the top n expressed genes. When the query sample spe-
cies is different from the species used to create the compendium, we use
XGSA to identify the homologs of the set of ubiquitously expressed
genes for the query cell species. We then remove this set of gene
homologs from the query cell top expressed genes.

Fig. 1. Summary of GSE based on species in NCBI GEO.
The pie chart shows the total number of GSE for H. sapiens (blue),M. musculus (pink) and all other species (orange). The bar plot shows the top 60 species according to
the number of GSE in NCBI GEO.
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2.4. XGSA

To provide the required input for XGSA, all genes names are first
converted to ENSEMBL gene IDs. XGSA then applies a simple statistical
method that computes a conservative p-value based on Fisher’s Exact
test. This approach takes into account the homology gene mapping
structure between two cross-species gene sets (Djordjevic et al., 2016).
If the two compared gene sets are from the same gene sets, the resulting
p-value is identical to that of a standard gene set test based on a Fisher’s
Exact test. The package then performs Benjamini-Hochberg multiple
testing corrections on the raw p-values, and reports and visualises the
-log10 of the corrected p-values. Accordingly, the lowest p-value in-
dicates the best similarity between the query sample and the compen-
dium sample. However, if more similar cell samples of the query exist in
the compendium we can go with a number of top most matches.

2.5. Comparison with ExpressionBlast

For the comparison with ExpressionBlast, we used brain, kidney and
liver sample data sets from the R. norvegicus species (Fushan et al.,
2015). We identified the specific highly expressed genes for each of the
sample tissue types using our C3 package by setting parameter values as
n=1000 and t=0.10. Among these specific highly expressed genes,
we have selected the top 100 expressed genes based on their expression

values. We used this set of highly-expressed tissue specific genes with
log2 expression values as the input to the ExpressionBlast web tool. In
this way we tested each of the three tissue types against both the human
and mouse organisms using ExpressionBlast.

3. Results

3.1. Evaluation of C3

To evaluate the performance of C3, we collected gene expression
profiles from four GEO data series (GSE43013 (Fushan et al., 2015),
GSE74754 (Mayrhofer et al., 2017), GSE78770 (Morey et al., 2016),
and GSE53393 (Chapalamadugu et al., 2014)), which collectively
contain data from 13 different species (B. taurus, C. familiaris, C. por-
cellus, E. caballus, E. europaeus, F. catus, M. musculus, O. cuniculus, R.
norvegicus, S. scrofa, D. rerio, T. truncates, and M. mulatta) across five
different tissue types (brain, kidney, liver, blood, and skeletal muscle).
We tested whether C3 could correctly identify the cell type of the
samples when compared against a human compendium or a mouse
compendium constructed from ENCODE data (The ENCODE Project
Consortium, 2012; The Mouse ENCODE Consortium, 2012). Initially,
we tested two combinations of parameters in C3 (n and t). The summary
result is shown in Fig. 3 and the detailed results are shown in the
Supplementary materials [see Supplementary Tables 1–6]. Overall,

Fig. 2. Overall workflow diagram of C3.
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barring a few exceptions which will be discussed below, C3 was able to
consistently identify the correct or the most closely related cell type
across all species (Fig. 3a).

To investigate the robustness of C3, we investigated the impact of
using a different high quality gene expression compendium. Using a
compendium of human tissue from GTEx (The GTEx Consortium,
2013), we repeated the C3 analysis on a subset of representative sam-
ples (from different tissues and organisms) from the four data sets. The
summary results are shown in Fig. 3b and the detailed results can be
found in Supplementary Table 6. The result confirm that C3 is robust in
producing accurate tissue/cell-type prediction when using a different
high quality compendium, Viewed together, the ENCODE and GTEx
analyses demonstrate that either combination of n and t enable accurate
cell/tissue identification when comparing the mouse and human

compendium data within each parameter set, with n=1000 and
t=0.1 being preferable.

Notably, further assessing the n and t parameter settings (by chan-
ging them to: n= 300, t= 0.05; n=500, t= 0.04; n=700, t= 0.03;
etc.) gave consistent cell type identifications using the ENCODE com-
pendium (data not shown), with, the best results obtained using
n=1000 and t=0.10. Similarly, when we tested the five different
query samples with the GTEx compendium (Fig. 3b), the parameter
values of n=1000 and t=0.10 gave accurate results for all cases. Thus
values of 1000 and 0.10 for the parameters n and t (respectively) appear
optimal for accurate identification of query samples regardless of the
source of the compendium data.

Examining the cell type identifications for each of the datasets in
more detail, GSE43013 (Fushan et al., 2015) contains a gene expression

Fig. 3. Evaluation of C3.
Gene expression profiles of tissues from 13
different organisms were selected from four
GEO data sets. These profiles were used to
evaluate whether C3 could correctly identify
its cell type of the sample when compared
against a human ENCODE compendium
(Human) or a mouse ENCODE compendium
(Mouse) (a). The five different samples from
different GSE IDs also been tested with the
GTEx human compendium (b). n: top number
of highly expressed genes; t: cut-off threshold
value; 1 = Statistically significant and in top
position; 2 = Statistically significant but in top
2-3rd position; 3 = Statistically significant but
in top 4–5 t h position; 4 = Not statistically
significant but in top position; 5 = Not statis-
tically significant but in top 2–5 t h position; 6
= Not statistically significant and not in
2–5 t h position
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data set from three different tissue types (brain, kidney and liver) in 33
mammalian species, among which 10 have homology mapping in-
formation available via ENSEMBL. C3 was able to correctly identify the
cell types in all the brain and liver samples across all 10 species. For the
kidney data, C3 correctly identified the cell type when compared
against the mouse compendium across 10 species, but was much less
effective when compared against the human compendium. Interest-
ingly, this comparison against the human compendium resulted in most
of the kidney gene sets being identified as liver samples ahead of the
human kidney samples. Nonetheless, comparison of the mouse and
human predictions for GSE43013 allowed correct assignment of kidney
as the most likely cell type for the kidney samples.

We also tested three more GSE datasets that contained data from 3
additional species; D. rerio (GSE74754; brain) (Mayrhofer et al., 2017),
T. truncates (GSE78770; blood) (Morey et al., 2016), and M. mulatta
(GSE53393; skeletal muscle) (Chapalamadugu et al., 2014). Through
these analysis C3 correctly identified the cell types of D. rerio brain and
T. truncates blood. The M. mulatta skeletal muscle samples were cor-
rectly identified by C3 when they compared to the mouse compendium
but were not as effectively identified using the human compendium
(top hit was heart/tongue sample) (Fig. 3a). Nevertheless, comparison
of the mouse and human predictions for GSE53393 allowed correct
assignment of skeletal muscle as the most likely cell type for these
samples.

Overall, a total of 160 C3 analyses were performed (80 against the
ENCODE mouse compendium and 80 against the ENCODE human
compendium) using two combinations of n/t parameters (i.e., 500/0.05
and 1000/0.1). Notably, all the cell type identity predictions made by
C3 using the mouse compendium were correct for at least one of the
parameter combinations (i.e., typically at least 1000/0.1 if not also
500/0.05). For comparison against the human compendium: correct
predictions were made for 67.5% of the queries, and for a further 25%
of the queries the correct prediction was ranked second or third by C3
(i.e., the correct prediction was in the top 3 positions 92.5% of the time
using the human compendium). Only 1 out of the 80 predictions made
by C3 using the human compendium (0.625%; F. cattus, kidney) did not
include the correct identification in the top 5 predictions. Notably, only
two cell types were not predicted correctly by the human compendium
(i.e., as the top prediction): kidney and skeletal muscle. These tissues
are both highly vascularised, and this may be a confounding factor
when comparing against human samples. However, as shown in Fig. 3,
all the kidney and skeletal muscle datasets were correctly identified
when compared against the mouse compendium. Thus, as mentioned
above, correct cell type identification is achieved by comparing the
predictions from both the human and mouse compendia.

To investigate the impact of data normalisation, we repeated the C3
analysis after performing quantile normalisation. In particular, we
performed quantile normalisation of the ENCODE compendium data
sets and then tested the selected query samples for both parameter
settings. The summary and detailed results are given in Supplementary
Tables 3–5. From the results we can see that the results are same as
those above. This result supports that the robustness of C3 against data
normalisation.

3.2. Comparison with other similar software programs

A comparison of the features of C3 and other similar methods is
illustrated in Table 1. The other four similar methods are primarily
web-based with only GEMINI offering a Python command-line version.
GEMINI lacks the ability to perform cross-species cell type identifica-
tion. It uses level 3 gene expression datasets from The Cancer Genome
Atlas (TCGA) project (The Cancer Genome Atlas Network, 2012). Also,
CellMontage can compare only the expression data from similar mi-
croarray platforms. As a result, neither GEMINI nor CellMontage could
be included in our comparative analysis. ProfileChaser supports cross-
species analyses using NCBI HomoloGene for only 6 species, and uses

only the set of genes that have one-to-one human homology mapping.
However, ProfileChaser searches only the curated GEO DataSets (GDS)
(i.e., supporting only 1815 GDS) for similar biological conditions based
on differential gene expression from reduced set of gene expression
features. Consequently, we were unable to meaningful include this tool
in our comparative analysis.

The only C3 alternative we are aware of that can compare a tran-
scriptomic profile to a compendium of data across species in order to
identify an unknown cell type is ExpressionBlast (Zinman et al., 2013).
ExpressionBlast is a web-based tool that takes a maximum of one
hundred differentially expressed genes with their expression values,
and compares it to microarray data from 8 different species on GEO. For
cross-species comparisons, ExpressionBlast uses homologous gene
groups from InParanoid and handles multiple homologs using the clo-
sest expression value of the input gene. In contrast, C3 is an open source
R package that takes gene expression profiles as input. C3 leverages
XGSA to perform cross-species analysis between any of species in the
growing list of species in Ensembl Compara (currently 85 species).

To compare the performance of ExpressionBlast with C3, we ana-
lysed the brain, kidney and liver sample data from R. norvegicus
(GSE43013) (Fushan et al., 2015) using both methods, as the rat is one
of the eight species supported by ExpressionBlast. For C3, we tested
against the human and mouse compendiums with parameter values
n=1000 and t=0.10. For ExpressionBlast, we input the 100 highly
expressed tissue specific genes with their log2(FPKM+1) expression
values. The summary results for C3 and ExpressionBlast are shown in
Table 2, and the detailed results are presented in Supplementary
Table 2 (for C3) and Supplementary Fig. 1 (for ExpressionBlast). From
the comparative test results, it is clear that C3 can identify cell types at
least as accurately as ExpressionBlast. However, C3 has markedly
greater flexibility than ExpressionBlast in that: i) it can handle the
whole query gene expression profile; ii) it can be applied to data from a
wide range of organisms; and iii) its R package enables it to be easily
incorporated into any analytical pipeline.

4. Discussion

This work highlights the utility of cross-species analysis in cell-type
identification using a gene expression compendium-based approach.
This is particularly important when considering that the majority (two
thirds) of transcriptomic data in the GEO database is from human and
mouse, with the remaining third of data shared between over 1000
organisms (Fig. 1), most of which have very scant genomic resources.
Our aim with C3 was to leverage the many published data sets from the
well characterised human and mouse organisms to identify an unknown
cell type from a potentially poorly characterised organism, or a new/
previously undescribed cell type (e.g., cells obtained from differentiated
stem cell cultures). We demonstrated that the accuracy of C3 cell type
predictions is independent of the data source used (i.e., C3 provides
accurate predictions using both ENCODE and GTEx data). Moreover, C3
outperforms the few other methods available for cross-species cell type
identification. Accurate C3 predictions can be obtained using a range of
values for the parameters n and t, however, values of 1000 and 0.10
(respectively) are optimal.

Recently we have used a preliminary version of C3 to discover the
identity of a novel PAX7+ cell population in lizard Anole carolinensis
(Palade et al., 2018). Without C3, definitively demonstrating the
identity of a novel cell-type in a relatively under-studied organism such
as A. carolinensis is very challenging as there are very few Anole-specific
transcriptomic data available for this organism. The PAX7+ cells
analysed by C3 are implicated in the regeneration that occurs after
amputation of the tail in A. carolinensis. Using a preliminary version of
C3, we were able to identify from both the human and mouse ENCODE
compendia that the PAX7+ cell-type resembles muscle satellite cells.
This information has allowed us to further investigate the cellular and
molecular basis of lizard muscle regeneration. As another real-life
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application, we used the C3 method to demonstrate that an ROR1+ cell
population derived from human pluripotent stem cells is similar to lens
epithelial cells in both human and mouse (Murphy et al., 2018). Both of
these examples highlight the power of C3 in determining or confirming
the identity of a cell type using a compendium of gene expression
profiles from different species, including poorly characterised species.

C3 can only correctly identify the cell type of an unknown tran-
scriptomic profile if a similar cell type is represented in the compen-
dium. With this in mind, the quality, variety and size of the compen-
dium is paramount and future work should investigate larger
compendiums such as based on ARCHS4 (Alexander Lachmann et al.,
2017), as well as domain specific compendiums such as for identifying
cancer subtypes.

5. Conclusion

Overall, we have demonstrated that C3 can prioritise identification
of the correct corresponding cell type as the most significant hit. We
believe C3 should facilitate rapid cell type identification for less-well
characterised species, or for poorly characterised cell types obtained
from stem cell differentiation strategies.
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Table 1
Comparison of software features of C3 and other similar methods.

C3 ExpressionBlast ProfileChaser GEMINI CellMontage

Cross-species
method

Ensembl BioMart portal,
complete homology structure
using XGSA

Inparanoid, handles multiple
orthologues using closest value of
input gene

One-to-one human
homolog

Not supported Not mentioned

How many species As many as ENSEMBL mapping 8 6 – –
Input Gene expression matrix Max 100 differentially expressed

genes with expression values
Gene expression matrix Gene expression matrix Gene expression matrix

with raw expression values
User interface R command line Web Web Web and Python

command-line
Web

Availability Open source Free Free Free Free
Application General General Specific to GDS Level 3 gene expression

from TCGA project
Specific to similar
microarray platforms

Dependency Previously made compendium Differentially expressed genes Reduced set of gene
expression features

Reduced dimension of
expression profile

UniGene names for gene ids

Table 2
Comparison of cross-species cell type identification using C3 and
ExpressionBlast.

Identified cell type
by C3

Identified cell type by
ExpressionBlast

R. norvegicus brain with
Human compendium

brain other than brain (no brain
sample among top 5)

R. norvegicus brain with
Mouse compendium

brain brain

R. norvegicus kidney with
Human compendium

liver at top position
and then kidney

liver (no kidney sample
among top 5)

R. norvegicus kidney with
Mouse compendium

kidney kidney

R. norvegicus liver with
Human compendium

liver liver

R. norvegicus liver with
Mouse compendium

liver liver
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The functionality and performances of C3 were compared with some other gene expression 
profile matching tools. The evaluation shows that C3 is a simple and effective method for cell 
type identification. 
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Chapter 3 
 

Light-focusing human micro-lenses generated from 
pluripotent stem cells model lens development and 

drug-induced cataract in vitro 
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The C3 method described in the previous chapter was developed as part of a larger study to 
characterise ROR1+ cells derived from human pluripotent stem cells. The C3 method was 
applied to RNA-seq data obtained from these ROR1+ cells. This analysis showed the purified 
ROR1+ cells are most similar to primary human lens epithelial cells. This finding result was 
supported by further bioinformatics studies including principal component analysis as well as 
extensive cell biology-based characterisation techniques.  
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Light-focusing human micro-lenses generated from pluripotent
stem cells model lens development and drug-induced cataract
in vitro
Patricia Murphy1,2,*, Md Humayun Kabir1,2,3,*, Tarini Srivastava1,2,*, Michele E. Mason1,2,*, Chitra U. Dewi1,2,
Seakcheng Lim1,2, Andrian Yang3,4, Djordje Djordjevic3,4, Murray C. Killingsworth5, Joshua W. K. Ho3,4,
David G. Harman1,2 and Michael D. O’Connor1,2,‡

ABSTRACT
Cataracts cause vision loss and blindness by impairing the ability of
the ocular lens to focus light onto the retina. Various cataract risk
factors have been identified, including drug treatments, age, smoking
and diabetes. However, the molecular events responsible for these
different forms of cataract are ill-defined, and the advent of modern
cataract surgery in the 1960s virtually eliminated access to human
lenses for research. Here, we demonstrate large-scale production
of light-focusing human micro-lenses from spheroidal masses of
human lens epithelial cells purified from differentiating pluripotent
stem cells. The purified lens cells and micro-lenses display similar
morphology, cellular arrangement, mRNA expression and protein
expression to human lens cells and lenses. Exposing the micro-
lenses to the emergent cystic fibrosis drug Vx-770 reducesmicro-lens
transparencyand focusing ability. These humanmicro-lenses provide
a powerful and large-scale platform for defining molecular disease
mechanisms caused by cataract risk factors, for anti-cataract drug
screening and for clinically relevant toxicity assays.

KEY WORDS: Lens development, Stem cell, Organoid, Focus,
Cataract, Vx-770

INTRODUCTION
During embryogenesis, the ocular lens arises from the lens placode
in the surface ectoderm opposite the optic cup (Mann, 1964;
Tholozan and Quinlan, 2007). Although the exact process can differ
between vertebrate species, key lens features shared by vertebrates
include an anterior lens epithelial cell (LEC) monolayer expressing
α-crystallins overlying a mass of lens fibre cells expressing α-, β-
and γ-crystallins (Thomson and Augusteyn, 1985). In mammals,
invagination of the lens placode is followed by formation of the lens
vesicle – a spherical LEC monolayer surrounding an acellular

lumen. Differentiation of the posterior LECs into lens fibre cells fills
the lens vesicle lumen to establish the basic lens architecture. For
decades these features have provided a framework for in vitro lens
and cataract studies using explanted primary rat LECs. For example,
our group reported in vitro regeneration of light-focusing rat lenses
from paired rat LEC monolayers arranged to mimic lens vesicles
(O’Connor and McAvoy, 2007). The size, cellular arrangement and
protein expression within these in vitro regenerated rat lenses
closely resembled newborn rat lenses. Continued culture of these
regenerated rat lenses resulted in formation of a human-like cataract,
as seen by reduced light transmission and reduced focusing ability.

To improve the suitability of in vitro lens regeneration for targeted
and large-scale cataract studies, we investigated human pluripotent
stem cells (hPSCs) as a source of LECs. A handful of studies have
differentiated hPSCs to relatively impure populations of lens cells or
‘lentoids’ – small aggregates of randomly organised LECs and lens
fibre cells (Fu et al., 2017; Li et al., 2016; Yang et al., 2010).
Limitations with these approaches include the presence of
contaminating non-lens cells, the spontaneous and random nature
of lentoid production, and the production of only tens-to-hundreds
(Fu et al., 2017; Li et al., 2016) or thousands (Yang et al., 2010) of
lentoids. Although one report describes limited magnification
ability of the lentoids (Fu et al., 2017), none of the published
methods have been shown to produce biconvex lentoids that focus
light to a point – the fundamental functional requirement of the lens
– due to abnormal attachment of the lentoids to culture surfaces and/
or other cell types.

Here, we describe a simple and efficient system for production of
106-108 purified LECs from hPSCs, and the subsequent controlled,
robust and reproducible production of 103-105 light-focusing
human micro-lenses. These micro-lenses possess anatomical and
molecular features of primary human lenses, and exposing the
micro-lenses to the cystic fibrosis drug Vx-770 decreases their
ability to transmit and focus light. This platform provides a robust
and accessible human system for modelling lens and cataract
development, anti-cataract drug screening, and drug toxicity
studies.

RESULTS
Characterisation of ROR1 as a LEC marker
We hypothesised that the impurity of LECs generated from PSCs
via published methods, together with suboptimal culture conditions
for these LECs, leads to uncontrolled lentoid production,
uncontrolled lentoid shape, random detachment and loss of
lentoids from the culture, and the inability to focus light.
By modifying (Fig. 1A) an elegant three-stage growth factor
treatment for lens cell differentiation (Yang et al., 2010), weReceived 8 June 2017; Accepted 15 November 2017
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increased lentoid production, lentoid retention, and expression of
LEC and lens fibre cell genes (Fig. S1). Nevertheless,
heterogeneous cell morphologies were still obtained, lentoid
production was still uncontrolled, lentoids still detached and were
lost, and the lentoids did not focus light when assessed via light
microscopy. As an alternative approach, analysis of published lens
microarray data (Hawse et al., 2005) identified the receptor tyrosine

kinase-like orphan receptor 1 (ROR1) as a potential LEC
purification antigen (Fig. S2). In situ hybridisation showed ROR1
is highly expressed by mouse LECs at embryonic day 14, and PCR
showed ROR1 transcript expression at a similar stage of the three-
stage lens differentiation protocol.

Magnetic-activated cell sorting (MACS) using an anti-ROR1
antibody during stage 2 of the lens differentiation protocol (Fig. 1A)

Fig. 1. Identification and characterisation of ROR1 as a LEC marker. (A) Schematic diagram showing the three-stage lens differentiation protocol, with
modification to enable ROR1-based purification of LECs. (B,C) ROR1+ cells cultured at high cell densities showed uniform polygonal morphologies that formed
tightly packed monolayers (B). When cultured at low cell densities or passaged in medium containing only FGF2 (C), ROR1+ cells became large and vacuolated
(arrow) with stress fibres (arrowheads; cells shown 18 days after plating; n=3). Scale bars: 100 µm. (D-G) Flow cytometry data showing expression levels of:
ROR1 prior to (D) and after (E) ROR1-based purification; CRYAB after ROR1-based purification (F); and average expression levels before and after purification
(G). (H) Relative mRNA transcript expression levels for PAX6, CRYAB and the lens fibre-specific gene CRYBB3 after ROR1+ cell separation (*P<0.05). (I)
Pearson correlation showing high similarity (>0.96) between RNA-seq libraries generated from two independent ROR1+ cell samples. (J) Principal component
analysis shows theROR1+RNA-seq transcriptomes aremost similar to primary human LECs (circled). (K) Representative data from theROR1+RNA-seq libraries
shows key genes required by LECs are expressed (CRYAA, CRYAB, PAX6, PROX1, SOX2, MEIS1, MAB21L1, BMP7). In contrast, genes expressed by lens
fibre cells (CRYBA1, CRYBA2) or various endodermal cells (GDF3, VWF), mesodermal cells (T, GSC), non-lens ectodermal cells (RPE65, NEUROD1) and
pluripotent cells (NANOG, POU5F1) are not expressed. Data shown in B,C and D-H are representative of 50 and four (respectively) independent differentiation
experiments using four different hPSC lines; data are mean±s.e.m. in G,H.
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consistently produced a homogeneous population of polygonal
cells (supplementary material File S2; Fig. 1B). However, this
LEC-like morphology changed to large and vacuolated when the
ROR1+ cells were cultured at low density or passaged in medium
containing only FGF2 (Fig. 1C). These polygonal (LEC-like) and
vacuolated (abnormal) cell morphologies are highly similar to
primary human foetal LECs either when first explanted or when
passaged (Ringens et al., 1982). Flow cytometry revealed that
95-100% of the captured cells were ROR1+, and over 99%
expressed CRYAB (crystallin αB) (Fig. 1D-G). Comparing the
ROR1+ cells with the starting population revealed that their
transcriptional profile is consistent with purification of LECs.
This included a threefold increase in PAX6, a 10-fold increase in
CRYAB and a 10-fold decrease in CRYBB3 (crystallin βB3)
expression (Fig. 1H). Comparing whole-transcriptome RNA-seq
profiles from different ROR1+ cell batches showed highly similar
expression patterns (Pearson correlation >0.96; Fig. 1I), indicating
high reproducibility of the cell separation. Principal component
analysis found the ROR1+ RNA-seq libraries to be most closely
related to primary adult human LECs (Fig. 1J). This was further
reinforced by gene set analysis where comparison of the ROR1+

RNA-seq data against a compendium of 145 human and 95 mouse
gene expression datasets revealed the ROR1+ transcriptomes to
be most similar to human LECs (Hawse et al., 2005) and mouse
LECs (Hoang et al., 2014) (false discovery rates <9.6×10−3 and
<5.88×10−8, respectively). Over 90 transcripts indicative of LECs
(Lachke et al., 2012) were reproducibly expressed in the ROR1+

RNA-seq libraries, whereas genes associated with various
endodermal, mesodermal, non-lens ectodermal or pluripotent cells
were not (Fig. 1K), thus supporting the high purity and LEC nature
of the ROR1+ cells. Consistent with this, transplantation of ROR1+

cells into immunocompromised mice showed no teratoma formation
unless hPSCs were deliberately transplanted with the ROR1+ cells
(Fig. S2).

Combinatorial growth factor screening for ROR1+

proliferation
To avoid the large vacuolated phenotype seen with initial
passaging of the ROR1+ cells, a combinatorial growth factor
screen was undertaken to test six signalling pathways (nine
growth factors) whose receptors are expressed by LECs (Fig. 2A).
As FGF signalling is crucial for lens development (Lovicu et al.,
2011; Wu et al., 2014) FGF2 was included in the basal medium
at 10 ng/ml (TM32; Fig. 2A) – a concentration known to
stimulate rat LEC proliferation and migration but not
differentiation to fibre cells. All combinations of the remaining
five test pathways were assayed on ROR1+ cells derived from four
hPSC lines. Imaging Hoechst-stained nuclei revealed that media
containing insulin and IGF1 (insulin-like growth factor 1) greatly
increased ROR1+ cell yield (Fig. 2B-I). Mass spectrometry
revealed ROR1+ cells cultured in these media expressed α- but
not β-crystallin proteins (Fig. S3). The high CRYAA sequence
coverage obtained indicates that it is one of the most abundant
proteins expressed by the cultured ROR1+ cells. In contrast,
media that contained BMPs had lower cell yield (Fig. 2H,I), and
ROR1+ cells cultured in these media expressed lens fibre cell
crystallin proteins, including CRYBB1, CRYBB2 and CRYBB3
(Fig. S3). As TM17 was among the best-performing proliferation
media for ROR1+ cells derived from all four PSC lines in both
low and high cell-seeding conditions, it was used as the routine
ROR1+ maintenance medium. TM17 supported ROR1+ cell
freeze/thawing with retention of α-crystallin protein expression

and cell morphology (Fig. 2J,K and Table S1). After ∼2 weeks of
high density culture in TM17, or after exposure to media
containing FGF2 and BMP4/7, random lentoid production and
lens fibre cell crystallin expression was seen (Fig. 2L,M and
Table S2).

Large-scale production of light-focusing human micro-
lenses
For controlled and large-scale production of in vitro lenses suitable
for drug-screening, ROR1+ cells underwent forced aggregation to
generate small (∼100 µm diameter) LEC aggregates similar to the
LEC mass seen during zebrafish lens development. This approach
is capable of generating 1200 spherical aggregates per well of a
24-well plate (Fig. S3). These aggregates were embedded in
agarose to minimise attachment to each other or the culture dish,
and then maintained for up to 6 weeks in stage 3 lens
differentiation medium (Yang et al., 2010) on top of the
agarose. The cultured aggregates were imaged at various times
using phase microscopy (their small size precluding non-phase
imaging). Initially, these spherical aggregates transmitted less light
than the surrounding culture medium due to an underlying opacity
throughout the aggregates (Fig. 3A). However, as culture
progressed, this opacity gradually reduced in both size and
intensity, such that by ∼2 weeks of culture the aggregates
transmitted similar levels of light to the surrounding culture
medium (Fig. 3C,E,H,Q). Concomitant with this increase in light
transmittance was a striking increase in light-focusing ability. At
the beginning of the culture, the cell aggregates displayed very
little focusing ability, with the light intensity at the maximal focal
point only equivalent to the light intensity of the surrounding
culture medium (Fig. 3B). However, as the culture progressed and
the light transmittance increased, so too did the light intensity at
the focal point below the cell aggregates (Fig. 3D,F). Detailed
characterisation of this light-focusing property immediately after
aggregation (Fig. 3G,I,K,M,O,Q) compared with after ∼3 weeks
of culture (Fig. 3H,J,L,N,P,Q) revealed the cell aggregates
developed a remarkable capacity to focus light. In some
experiments, some micro-lenses were seen to have clusters of
non-transparent cells located adjacent to the micro-lens periphery,
likely due to damage during the embedding process (Fig. S4);
these clusters tended not to prohibit assessment of light
transmittance or focusing ability. Taken together, these data
demonstrate that the initial shape and internal composition of the
ROR1+ cell aggregates is insufficient for either transparency or
significant focusing ability, and that gross morphological changes
observed over a number of weeks are associated with the
development of both maximal light transmittance (relative to the
culture medium alone) and maximal light-focusing ability.

Micro-lens functions are associatedwith lens fibre crystallin
expression
To determine whether the observed changes in light transmittance
and focusing ability were associated with changes in crystallin
expression, PCR, immunofluorescence and mass spectrometry were
used to assess the expression of α-, β- and γ-crystallins at various
times during the aggregate culture. The PCR analyses (Fig. 4A)
revealed the opposite trend from that seen with ROR1 cell
purification (Fig. 1H): i.e. culture of the ROR1+ cell aggregates
resulted in decreased relative expression of PAX6 and CRYAB
mRNA but increased expression of CRYBB3 mRNA. The
immunofluorescence analyses showed homogenous expression
of CRYAA protein at day 14 (Fig. 4C), whereas expression of
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both β- and γ-crystallins was sometimes variable (Fig. 4E,G).
Immunofluorescence at day 24 showed homogenous expression of
CRYAA (Fig. 4I) and more homogenous expression of β- and γ-
crystallins (Fig. 4K,M). Expression of lens fibre cell crystallins was
similarly supported by mass spectrometry analyses that routinely
identified predominantly α- and β-crystallin proteins among the
most abundant proteins expressed by the light-focusing micro-
lenses (Table S3 and Fig. S5).

Micro-lens functions are associated with lens fibre cell
maturation
As specific ultrastructural changes have also been associated with
lens fibre cell development, electron microscopy was performed to
characterise the cellular organisation within the developing micro-
lenses. Early in culture, these analyses revealed LEC-like cells with

large nuclei at the periphery of the aggregates (Fig. 5A). At this
stage, the bulk of the aggregates consisted of relatively small cells
with large nuclei and numerous organelles (Fig. S6A). The nuclei in
these bulk cells were typically rod-shaped, with prominent nucleoli
and darker nuclear substance compared with the surrounding
cytoplasm (Fig. 5B) – similar to the nuclear morphology seen
during the early stages of lens fibre cell differentiation in vivo
(Kuwabara and Imaizumi, 1974; Vrensen et al., 1991).

Later in culture, LEC-like cells could be found at the periphery of
the transparent and focusing micro-lenses (Fig. 5C). In larger
aggregates (∼200 µm and more diameter) multi-layering of the
LECs could be seen that was not apparent in smaller micro-lenses
(Fig. S7A). In these later cultures, the bulk of the micro-lenses of all
sizes were composed of large cells with varied cross-sectional sizes
and relatively homogenous cytoplasm (Fig. S6B,C). These lens
fibre-like cells were typically joined by complex membrane
interdigitations (Fig. 5D); enlarged and degenerating organelles
such as mitochondria could also be found (Fig. 5E) similar to those
seen in lens fibre cells in vivo (Vrensen et al., 1991). The nuclei
within some of these lens fibre-like cells were large and circular-
profiled with spoke-like nucleoli (Fig. 5F). In other cells, the
nuclear membranewas only recognisable as a chain of vesicles, with
some of the nuclear substance appearing to be indistinguishable
from the cell cytoplasm (Fig. 5G) – these nuclear morphologies
being similar to those seen in vivo within terminally differentiating
fibre cells of the late bow zone (Kuwabara and Imaizumi, 1974). In
some instances, secondary lens fibre-like cells could be seen at the
periphery of the aggregates overlying the bulk cells and adjacent to
LEC-like cells (Fig. S6D).

Micro-lenses show evidence of lens capsule formation
As a first step towards investigating production of lens capsule-
related material within the ROR1 system, the ROR1+ RNA-seq
libraries were examined. This analysis revealed ROR1+ cells
express a range of integrins, collagens and laminins that are
known to be required for normal lens development in vivo
(Table S4). Subsequent immunofluorescence experiments
localised laminin and collagen IV expression within the micro-
lenses to peripherally located LEC-like cells, which appeared multi-
layered in larger micro-lenses (Fig. S8). Electron microscopy
revealed the presence of a thin, lens capsule-like material around the

Fig. 2. Combinatorial growth factor screening identified media for ROR1+

cell expansion and differentiation. (A) Schematic diagram showing
composition of the test media. FGF2 was included in the basal medium
(TM32), with all combinations of the five other test pathways (eight growth
factors) tested as shown [B, BMP4, BMP7; E, EGF, TGFα, H, HGF; I, insulin,
IGF1; P, PDGF-AA; green square represents factor(s) present; red square
represents factor(s) absent]. (B-I) Data from Hoechst-stained ROR1+ cells
cultured in TM17 (B,E), TM30 (C,F) and TM32 (D,G) after seeding at low (B-D)
and high (E-G) cell density, as well as average Hoechst-stained nuclei counts
for all media (H,I). These data reveal that TM17 promoted expansion of ROR1+

cell cultures while maintaining expression of α- but not β-crystallins (see
supplementary material Fig. S3). Scale bar: 20 µm. (J,K) Flow cytometry and
light microscopy data show ROR1+ cells expanded, frozen, thawed and
cultured for 6 days in TM17 retain high levels of CRYAB expression (J) with
expected morphology (K) but without detectable expression of β-crystallins
(see Table S1 and Fig. S4). Scale bar: 40 µm. (L,M) Light microscopy images
show spontaneous production of lentoid-like structures after being expanded,
frozen and thawed in TM17, then cultured in stage 2 lens differentiation
medium. Cells in these cultures expressed α- and β-crystallins (see Table S2
and Fig. S3). Scale bars: 200 µm in L; 40 µm in M. The data shown in B-I are
each representative of three independent differentiation experiments; data are
mean±s.e.m. in H,I
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micro-lenses that appeared thicker in micro-lenses that had been
cultured for longer (Fig. S7A-D).

Vx-770 induces cataract in micro-lenses
The underlying reason for generating functional human lenses
in vitro was to provide a source of functional human lens tissue for
investigating cataract risk factors. To determine whether the micro-
lens system might be suitable for investigation of clinically relevant
cataracts, the micro-lenses were exposed to Vx-770 – a potentiator
of activity for the cystic fibrosis transmembrane conductance
regulator (CFTR) protein. This emerging cystic fibrosis drug is
reported to have caused cataracts in rats (McColley, 2016). Cataracts
have also been reported in children and adolescents receiving Vx-
770 (Talamo Guevara and McColley, 2017), and clinical trials are
yet to discount an association with its use and cataract formation in
paediatric patients (Dryden et al., 2016; McColley, 2016; Van Goor
et al., 2009). The concentrations used to test the effect of Vx-770 on
ROR1+ aggregates (i.e. up to 2000 ng/ml) covered the plasma
concentration range reported for children treated with Vx-770
(Davies et al., 2016). When included from the start of culture, the
ROR1+ cell-aggregates exposed to vehicle or 200 ng/mlVx-770
transmitted similar levels of light compared with the culture
medium (Fig. 6A,B). In contrast, the aggregates exposed to 500 ng/
ml and higher were less transparent, transmitting significantly less
light than the culture medium and the vehicle- and 200 ng/ml-
treated aggregates (Fig. 6C,D). Continued culture of these treated
aggregates resulted in focusing ability developing in both the
vehicle- and 200 ng/ml-treated aggregates (Fig. 6E,F,H), but not the
aggregates treated with 500 ng/ml Vx-770 or more (Fig. 6G,H).
To test whether Vx-770 would affect micro-lens function

after focusing ability had developed, aggregates were first allowed
to develop focusing ability and only then were they exposed to

Vx-770. Interestingly, comparison of micro-lens transparency
before and after treatment revealed no measurable decrease in
light transmittance with any of the treatments (Fig. 6I-O). When
comparing micro-lens focusing ability before and after treatment,
neither control-treatment nor 200 ng/ml Vx-770 decreased the
focusing ability (Fig. 6P,Q,S,T,V). In contrast, micro-lenses treated
with 2000 ng/ml Vx-770 showed a large and significant reduction in
focusing ability (Fig. 6R,U,V). Notably, these Vx-770-induced
effects occurred regardless of the micro-lens size (i.e. from 80 µm to
200 µm in diameter).

DISCUSSION
ROR1+ cells closely resemble human LECs
The inability to reliably access large amounts of functional human
lens tissue has hampered cataract research for decades. Until now,
no effective conditions have been identified for simple, robust and
large-scale generation of either purified LEC populations or light-
focusing lenses, from PSCs of any species. Previous reports of
hPSC-based LEC models have been limited by the presence of
contaminating non-lens cells, in some cases up to ∼60% non-
CRYAA-expressing cells (Yang et al., 2010). Other limitations
include the requirement for either: successive rounds of minimally
scalable manual purification of LEC progenitor cells that display
spontaneous lentoid body formation (Fu et al., 2017; Li et al., 2016);
or complex five-colour flow cytometry that requires simultaneous
positive and negative selection to obtain small numbers of partially
purified LEC progenitors that undergo spontaneous lentoid
production (Mengarelli and Barberi, 2013). In contrast, the
extensive characterisation data shown here demonstrate simple,
robust and large-scale MACS-based purification of ROR1+ human
LECs. This semi-automated process is capable of generating 106 to
108 ROR1-purified human LECs (from 1×35 mm dish to 6xT175

Fig. 3. ROR1+ cell aggregation leads to transparent
and light-focusing micro-lenses. (A-Q) Light
microscopy data from ROR1+-cell aggregates and the
maximal focal point below them. After 3 days of culture,
the aggregates transmitted less light than the
surrounding culture medium (A) and did not focus light
(B). As culture progressed, the aggregates transmitted
more light (C, day 7; E, day 14) and began focusing
light (D, day 7; F, day 14). More-detailed
characterisation of a single aggregate shows it had
limited transparency (G) and focusing ability (I,K,M,O)
on day 3 of culture, but by day 27 it transmitted the
same amount of light as the surrounding culture
medium (H) and had developed significant focusing
ability (J,L,N,P). Quantification of the light
transmittance and focusing ability confirms these
findings (Q). Scale bar: 40 µm. The images are
representative of five micro-lenses from two biological
replicates; data in Q are mean±s.e.m.
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flasks, respectively). Morphological, transcriptomic and proteomic
analyses of these ROR1+ cells demonstrate them to be most similar
to human LECs, thereby providing a simple and large-scale source
of purified human LECs for lens and cataract research.

ROR1+ cells for investigation of posterior capsule
opacification
The defined, proliferation-inducing culture conditions identified here
provide an extended period of time for investigation of factors that
affect human LEC biology compared with previously reported PSC-
based lentoid systems. The identification of insulin and IGF1 as
significant inducers of ROR1+ cell proliferation, and BMPs as
inducers of β-crystallin expression, is consistent with known roles for
these factors in lens cells from other species (Lovicu et al., 2011). A
variety of chick- and rat-based studies have shown that insulin and
IGF1 can induce a proliferative response inLECs, andBMPsignalling
can potentiate aspects of lens fibre cell differentiation (which has also

been shown for insulin/IGF1 in some circumstances). The observation
that ROR1+ cells plated at low density change into large, vacuolated
cells with stress fibres suggests they might be suited to investigating
posterior capsule opacification (PCO) – the most common
complication arising from cataract surgery. The simplicity and
scalable nature of the ROR1+ cells may provide advantages over
existingprimary humanLECmodels of PCO (Wormstone andEldred,
2016). Ongoing work is aimed at further elucidating how TGFβ
signalling integrates with signalling via FGF, insulin and IGF1, BMP
and other pathways in ROR1+ cells, for comparison with what is
currently known of the molecular development of PCO.

Functional human organoids from non-mammalian
developmental templates
Previous work from our group demonstrated that physiologically
sized, transparent and light-focusing rat lenses could be generated
in vitro by mimicking aspects of the lens vesicle stage of
mammalian lens development (O’Connor and McAvoy, 2007).
These paired explant-derived in vitro lenses contained LEC
monolayers and bulk compartments of lens fibre cells undergoing
terminal differentiation. The desire to generate much smaller yet still
functional human micro-lenses (suitable for developmental biology
and drug screening applications) led to the hypothesis that partially
mimicking aspects of teleost lens development using ROR1+ LECs
might produce transparent and light-focusing lenses. Zebrafish lens
development was chosen as a template as these teleosts have small
lenses, and because anatomical features of their lens development
have been well described (Greiling and Clark, 2012).

In zebrafish, cells of the surface ectoderm delaminate to form a
lens cell mass, rather than a lens vesicle, that measures ∼80 µm in
diameter during primary lens fibre cell differentiation.
Differentiation of the cells within the lens cell mass forms the
primary fibre cells, while at the same time the lens epithelium forms
from cells at the periphery of the lens placode. To approximate these
events in vitro, ROR1+ cells underwent forced aggregation to
generate spheroidal masses of LECs. The aggregates were then
embedded in agarose to minimise attachment to each other or the
culture surface, before being asymmetrically exposed to medium
containing FGF2 and Wnt3a (Yang et al., 2010) to mimic growth
factor delivery to the lens. This approach generated both transparent
and light-focusing humanmicro-lenses, and is the first demonstration
of its kind. This approach also provides significantly greater control
over the size, timing and location of micro-lens generation compared
with existing methods of hPSC-based lentoid generation. Notably,
no spontaneous loss of micro-lenses occurs, and the process can
generate ∼2.5×103 to ∼2.5×105 light-focusing micro-lenses (from
1×35 mm dish to 6×T175 flasks, respectively). The appearance of
LECmulti-layering in the larger micro-lenses (∼200 µm diameter or
more, or ∼2.5× the diameter of equivalently staged zebrafish lens
masses) suggests there is an upper size limit to the utility of this
approach. Nevertheless, the establishment of more anatomically
correct functional lens tissue below this size limit (achieved by
varying the input cell number during ROR1+ cell aggregation)
suggests mimicking non-human anatomical templates may be a
useful approach for generating small, rudimentary functional tissues
for developmental biology and drug screening applications.

Lens fibre cell differentiation in micro-lenses mimics events
seen in vivo
The gradual appearance of transparency and light-focusing within
the micro-lenses indicates these functional properties developed as a
result of specific cellular and molecular changes that occurred

Fig. 4. Aggregation of ROR1+ cells induces lens fibre cell crystallin
expression. (A) Real-time PCR analysis of aggregated ROR1+ cells results in
decreased relative expression of PAX6 andCRYAB, and increased expression
of CRYBB3 (*P<0.01; data obtained from four biological replicates and
presented as mean±s.e.m.). (B-M) Immunofluorescence analysis shows that
after 14 days of culture, αA-crystallin (C) was expressed uniformly throughout
the bulk of the micro-lenses, whereas β-crystallin (E) and γ-crystallin (G) were
not. After 24 days of culture, αA-crystallin (I), β-crystallin (K) and γ-crystallin (M)
were all expressed relatively uniformly throughout the bulk of the micro-lens.
The location of DAPI-stained nuclei within the day 14 (B,D,F) and day 24
(H,J,L) aggregates are shown. Scale bar: 40 µm. Each image is representative
of five micro-lenses from two biological replicates.
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within the ROR1+ cell aggregates over a period of weeks. Thus,
neither the initial shape nor the internal composition of the freshly
aggregated ROR1+ cells is the main determinant of either
transparency or focusing ability.
In vivo, the establishment of lens transparency and focusing

ability is thought to result from a combination of specific events that
occur in parallel. Maintenance of an anterior LECmonolayer occurs
while cells at the edges of this monolayer differentiate into primary
and then secondary lens fibre cells. At the same time, lens fibre cell
production is associated with: cell elongation (the increasing cell
size helping to provide the required lens shape); cell alignment (to
minimise extracellular light scatter); expression and accumulation
of α-, β- and γ-crystallins (to provide the required refractive index);
loss of organelles, including the nucleus (to remove intracellular
light-scattering particles); and accumulation of complex membrane
interdigitations (to maintain maximal alignment of the fibre cells
and thus minimise the possibility of light-scattering due to
intercellular spaces).
Loss of the opaque phenotype initially seen in the aggregated

ROR1+ cells, and concomitant development of transparency and

light focusing, appear to recapitulate key aspects of the above
lens-development processes. Regions of LEC-like cells were
present at the periphery of the aggregates. Within the bulk of the
aggregates, lens fibre-like cells became larger and their cross-
sectional profiles were varied, as seen in mouse, bovine and chick
primary lens fibre cells (al-Ghoul and Costello, 1997; Shestopalov
and Bassnett, 2000; Taylor et al., 1996). The cytoplasm of these
fibre-like cells became more homogenous as β- and γ-crystallins
were expressed, with some evidence suggestive of rudimentary
secondary fibre cell production. Organelles in these lens fibre-like
cells showed evidence of being degraded, including progressive
appearance of classic nuclear degradation morphologies indicative
of terminal lens fibre cell denucleation (i.e. rod-shaped nuclei
early in culture; later in culture spoke-like nucleoli and evidence
of nuclear membrane breakdown) (Kuwabara and Imaizumi,
1974; Vrensen et al., 1991). The lens fibre-like cells also
accumulated complex membrane interdigitations that are
characteristic of the lens, such as ‘ball-and-socket’ type
junctions, a feature not described before in other PSC-derived
lentoids.

Fig. 5. Evidence of progressive lens fibre cell
differentiation in ROR1+ cell aggregates.
Electron microscopy data from cultured
aggregates. (A,B) A micro-lens cultured for
14 days shows amonolayer of LEC-like cells at the
periphery of the tissue (A), and cells with small,
rod-shaped nuclei (asterisk) and numerous
organelles within the bulk of the tissue (B).
(C) LEC-like cell with numerous organelles
present at the periphery of a micro-lens after
24 days of culture. (D-G) Ultrastructural indicators
of lens fibre cell differentiation within a micro-lens
cultured for 42 days. (D) Ball-and-socket type
membrane interdigitations (arrows) between
adjacent lens fibre-like cells (inset shows a higher
magnification of the region indicated with an arrow
and asterisk). (E) A swollen mitochondria (arrow).
(F) An enlarged nuclei with spoke-like nucleolus
(inset). (G) A degraded nuclei with nuclear
membrane visible as a series of vesicles
(arrowheads). Scale bars: 5 µm in A-C; 2 µm in D,
F,G; 0.5 µm in E. Images are representative of
seven micro-lenses obtained from two biological
replicates.
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Production of the lens capsule and expression of associated
integrins are also crucial elements of lens development; loss of
capsule components or related integrins leads to lens malformations
(Walker and Menko, 2009; Wederell and de Iongh, 2006). The data
presented here shows ROR1+ LECs express transcripts for key
extracellular matrix molecules and lens-related integrins.
Additionally, LEC-like cells within the light-focusing micro-
lenses expressed laminin and collagen IV. Thin, nascent lens
capsule-like material could also be found, of a similar thickness to
that seen with published stem cell-derived lentoids (Fu et al., 2017;
Li et al., 2016; Yang et al., 2010). These observations – when
combined with evidence of LEC maintenance, terminal lens fibre
cell differentiation and well-contained lens substance in the
majority of micro-lenses – suggest that integrin-related signalling
pathways are being sufficiently stimulated for development and
maintenance of transparency and focusing. The role of this lens
capsule-like material in development of the ROR1+ micro-lenses
could be further tested, e.g. by generating micro-lenses from hPSCs
that have been derived from individuals known to develop lens
capsule-related cataract, such as those with Alport syndrome (Chen
et al., 2015; Song et al., 2011).

Towards a systems biology blueprint for development of lens
function
Given that key features of normal lens development were observed
as the micro-lenses become transparent and focused light, these
micro-lenses may be useful for defining and testing an emerging

systems biology blueprint for development of lens function.
Namely, how signalling via defined growth factors leads to
integration of multiple intracellular signalling cascades that
activate progressive transcriptional changes (and other changes –
membrane dynamics, protein packing, etc.) that lead to
establishment of a functional three-dimensional tissue. Decades of
important research have identified growth factors (including FGFs,
insulin and IGF, BMPs, Wnt) and related kinases (Lovicu et al.,
2011), as well as transcription factors (PAX6, FOXE3, etc.) and
target genes (Cvekl and Zhang, 2017) required for normal lens
development – and how some of these elements interact. Recent
studies have added to this body of knowledge, with this new
information yet to be fully incorporated with prior knowledge
(Anand and Lachke, 2017). The defined ROR1+ cell type and
associated culture media of the micro-lens system suggests it may be
possible to integrate this new information to create and test a
comprehensive molecular blueprint for development of lens
transparency and focusing, e.g. via growth factor variation, time-
course transcriptional profiling, as well as gain- and/or loss-of-
function studies. Interesting studies could include investigation of
lens capsule production, which appears less extensive in all of the
PSC-based lentoid systems compared with the normal lens.
Similarly, variability in the timing of denucleation between fibre-
like cells has been described in each of the PSC-based lentoid
systems. These observations could be due to influences such as the
limited growth factor set used to induce lens fibre cell differentiation
(i.e. FGF2 and Wnt3a), and/or the relatively large space around the

Fig. 6. The CFTR potentiator Vx-770 inhibits light focusing
in ROR1 micro-lenses. (A-D) Light microscopy data showing
ROR1+ micro-lenses treated with DMSO-only (A) or 200 ng/ml
Vx-770 (B) transmitted light at similar levels to the culture
medium after 24 days of culture, whereas a micro-lens treated
with 2000 ng/ml Vx-770 transmitted less light (C). Scale bar:
40 µm. Quantitative data are shown in D. (E-H) Light microscopy
data showing ROR1 micro-lenses treated with DMSO-only
(E) or 200 ng/ml Vx-770 (F) had developed focusing ability
after 24 days in culture, whereas micro-lenses treated with
2000 ng/ml Vx-770 had not (G). Scale bar: 40 µm. Quantitative
data are shown in H. (I-O) Light microscopy data showing
micro-lenses treated after they had developed focusing ability.
Micro-lenses treated with DMSO-only (I,L), 200 ng/ml Vx-770
(J,M) or 2000 ng/ml Vx-770 (K,N) all transmitted similar levels of
light after 7 days of treatment (L-N) compared with before
treatment (I-K). Scale bar: 40 µm.Quantitative data are shown in
O. (P-V) Light microscopy data showing micro-lenses treated
after having developed focusing ability. Micro-lenses treated
with DMSO-only (S) and 200 ng/ml Vx-770 (T) retained focusing
ability after 7 days of treatment compared with before treatment
(P,Q, respectively). Amicro-lens treated with 2000 ng/ml Vx-770
focused light prior to treatment (R) but did not after 7 days of
treatment (U). Scale bar: 40 µm. Quantitative data are shown in
V. In D,O,H,V, *P<1×10−4. The data shown (mean±s.e.m.) were
each obtained from measurements of 15 micro-lenses from
three biological replicates.
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lentoids (compared with the lens in vivo) that could alter the
concentration, and therefore effectiveness, of autocrine and
paracrine factors. The ROR1+ micro-lens system has the potential
to further interrogate these issues and provide human-specific
information related to development of lens function. A human-
specific lens development blueprint could also have relevance for
understanding how changes resulting from congenital mutation,
environmental insults and ageing lead in isolation or combination to
presbyopia and cataracts.

Investigating human cataracts using ROR1+ cells and micro-
lenses
The clinical relevance of the micro-lens system is supported by the
finding that focusing ability was decreased by treatment with high
concentrations of Vx-770 (at the upper-range of minimum
circulating plasma concentrations detected in paediatric patients
treated with Vx-770). This loss of focusing ability occurred
regardless of the timing of Vx-770 treatment (i.e. with treatment
before or after development of micro-lens focusing) and
independently of micro-lens diameter.
Nuclear and posterior subcapsular cataracts have been noted in rat

pups treated with Vx-770, and cataracts have also been noted in
child and adolescent cystic fibrosis patients treated with Vx-770.
Eye examinations are therefore recommended for children being
treated with Vx-770 (Talamo Guevara and McColley, 2017). Little-
to-no detail is available on the histology or mechanism of Vx-770-
induced cataract in either rats or humans. Thus, the ROR1+ micro-
lens system appears to be a relevant and useful human model of lens
function for future investigations into the molecular mechanisms of
Vx-770-induced cataract (e.g. assessing protein aggregation,
changes to membrane properties, vacuolisation, cell death, etc.).
The findings that neither transparency nor focusing ability
developed when Vx-770 was included from the start of culture
suggests that LECs are affected by high Vx-770 concentrations.
Whether the lens fibre-like cells are also affected needs to be
determined – a possibility based on the loss of focusing observed
when Vx-770 treatment was applied after focusing had developed.
The Vx-770 data also suggest that the micro-lens systemmay be a

relevant model for investigating other known cataract risk factors,
the mechanisms of action of which are yet to be fully defined (e.g.
genetics, age, diabetes, smoking, UV light, radiation, drugs, etc.)
(Robman and Taylor, 2005; Shiels and Hejtmancik, 2017). Recent
studies have identified small molecules that can reverse some forms
of cataract that arise due to protein aggregation (Makley et al., 2015;
Quinlan, 2015; Zhao et al., 2015), though their efficacy in
individuals with cataracts remains to be demonstrated. Although
protein aggregates have been identified in cataractous human lenses,
the common and unique molecular events initiated by different
cataract risk factors are currently unclear. Moreover, other particles
that appear distinct from protein aggregates have been identified in
human lenses that may account for the light-scattering associated
with some forms of cataract (Costello et al., 2010; Gilliland et al.,
2001). Thus the micro-lens system holds potential for elucidating
cataract mechanisms resulting from individual risk factors, and for
identifying additional candidate anti-cataract therapeutic targets.

Summary
The cellular, molecular and functional features of human ROR1+

LECs and micro-lenses suggest they share sufficient similarities
with human LECs and lenses to provide a useful in vitro tool with
which to investigate lens and cataract development. In addition, the
simplicity, scalability and defined nature of these systems represent

a significant advance over existing hPSC-based approaches. The
ROR1+ LECs and micro-lenses will enable: functional genomic
studies with relevance to developmental biology; investigation of
PCO and a wide variety of primary cataract risk factors; clinical
toxicity assays; as well as targeted and/or high-throughput anti-
cataract drug screening. The capacity to generate disease-specific
hPSCs suggests the micro-lenses are also a likely platform for
investigating a wide range of poorly understood whole-body
syndromes that include cataract as a symptom. For all of these
studies the micro-lenses provide a large-scale, predictable, robust and
highly purified human system with two reliable and fundamentally
appropriate functional assays: the ability to quantify effects on lens
transparency and on focusing ability.

MATERIALS AND METHODS
Pluripotent cell culture
Human pluripotent cells were obtained as follows: embryonic stem cells
were provided by A. Nagy (CA1 line) (International Stem Cell Initiative
et al., 2007) and the StemCore facility (MEL1 line), University of
Queensland, Australia; induced pluripotent stem cells hiPSC-TT and
hiPSC-LacZ were obtained from E. Stanley and A. Elefanty, Murdoch
Children’s Research Institute (Melbourne, Australia). Approval for use of
these cells was obtained from the Western Sydney University Human
Research Ethics Committee (Australia). Pluripotent cells were cultured in
mTeSR1 (StemCell Technologies) on plates coated withMatrigel (Corning),
and passaged as clumps using 1 mg/ml dispase as previously described
(O’Connor et al., 2008a). For differentiation experiments, pluripotent cells
were plated as single cells on Matrigel-coated dishes and cultured in
mTeSR1 until confluent, after which the cells were exposed to the stage 1
lens differentiation medium.

Lens differentiation and ROR1+ cell separation/culture
A three-stage differentiation protocol was used to generate heterogeneous
cultures containing lens cells (Yang et al., 2010). Growth factors were
sourced from Miltenyi Biotec and Peprotech, and the base medium for each
stage was DMEM:F12 (Thermo Fisher Scientific). Initial modification of
this protocol involved increasing the concentration of noggin to 500 ng/ml
and including 10 nM SB431542 in the stage 1 medium, followed by
reducing the concentration of FGF2 to 10 ng/ml in stage 3. For purification
of ROR1+ cells via magnetic cell separation, single-cell suspensions were
obtained using TrypLE (Thermo Fisher Scientific) during stage 2 of the lens
differentiation protocol. The cells were then incubated with a biotinylated
anti-human ROR1 antibody (BioScientific; AF2000) and labelled cells
purified using anti-biotin microbeads and an autoMACS cell separator
(Miltenyi Biotec). Purified ROR1+ cells were plated on Matrigel-coated
dishes in M199 medium (Thermo Fisher Scientific) containing 10 ng/ml of
FGF2 or in test media (TM) consisting of M199 and combinations of the
following growth factors: BMP4/BMP7 (20 ng/ml each); EGF/TGFα (5 ng/
ml each); HGF (10 ng/ml); IGF1/insulin (10 ng/ml and 10 µg/ml); and
PDGF-AA (10 ng/ml). All four human pluripotent stem cell lines (two
embryonic and two induced pluripotent) tested behaved similarly.

Micro-lens formation, culture and focal point image analysis
ROR1+ cells were aggregated via centrifugation at 300 g for 5 min using
AggreWell plates (StemCell Technologies; 1200 micro-wells per 24-well
plate well). Aggregates were cultured in the plates for 1 to 2 days before
being collected and embedded in 0.25% agarose (Amresco) in M199, and
then cultured for up to 42 days in stage 3 medium described above. At
various times during culture, the developing micro-lenses were assessed for
light transmission and focusing ability via light microscopy, using an
adaptation of our published method for assessment of in vitro-regenerated
rat lenses (O’Connor and McAvoy, 2007; O’Connor et al., 2008b). Briefly,
using an inverted microscope, individual micro-lenses were brought into
focus and an image taken. The objective lens was then lowered until a focal
point was reached, at which location another image was taken and the
distance travelled to this point recorded. The objective lens was lowered
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again an equivalent distance and a third image taken. The objective lens was
then raised and two more images taken, half-way between the first and
second images and the other half-way between the second and third images.
Measures of transmitted light and focal points were obtained by quantifying
the grey-level approximately within the central quarter diameter of each
micro-lens using ImageJ. Measurements were compared using the Student’s
t-test and are shown as mean±s.e.m.

Flow cytometry
Single cell suspensions of differentiated cells were obtained using TrypLE
and stained as previously described (O’Connor et al., 2008a,b; Ungrin et al.,
2007). Primary antibodies used included anti-human ROR1 (BioScientific)
and anti-human CRYAB (ENZO Life Sciences; ADI-SPA-223); the
secondary antibody used was an AlexaFluor-488 anti-IgG antibody
(Thermo Fisher Scientific; A11001). Labelled cells were analysed using a
MACSquant cell analyser (Miltenyi Biotec) and data analysed using the
Student’s t-test (mean±s.e.m.).

RNA-seq, PCR and in situ hybridisation
RNA from ROR1+ cells was collected immediately after cell separation and
purified using an Isolate II RNA purification kit (Bioline) as per the
manufacturer’s instructions. The quality of purified RNA samples was
assessed using a Bioanalyser (Agilent) before RNA-seq libraries were
prepared using a TruSeq Stranded Total RNA Sample Preparation Kit
(Illumina). Samples were sequenced on an Illumina HiSeq 2500 instrument
using 2×100 paired end reads, and the data have been deposited in GEO
(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE94296.
Reads were analysed using FastQC to assess the quality of the data and
processed using the Falco framework (Yang et al., 2016), with HISAT2
(Kim et al., 2015) as the aligner and featureCounts (Liao et al., 2014) as the
read quantification tool (extra arguments for featureCounts: -s 2 -t exon -g
gene_name –primary). The hg19 genome reference and GTF annotation
used for building the alignment index and quantification, respectively, were
obtained from GENCODE (GRCh37.p13) (Harrow et al., 2012). Gene
expression was normalised as reads per million reads (RPM) per sample. For
principal component analysis of cell-type specific genes, the ROR1+ RNA-
seq data was compared against a set of published gene expression data that
consisted of adult human LECs and lens fibre cells (Hawse et al., 2005), as
well as various ENCODE samples, including foetal lens tissue, pluripotent
stem cells, and other foetal and adult tissues. To minimise the batch effect
when comparing gene expression profiles from different data sets,
expression values were discretised to a value of 1 for the 1000 most
highly expressed genes in each cell type, or 0 otherwise. Genes expressed in
>20% of the datasets were removed before computing a pairwise
dissimilarity matrix using the binary distance function in R. The
dissimilarity matrix was then used as the input to the principal component
analysis (PCoA) function implemented in an R package CIDR (Lin et al.,
2017). Results were visualised using the first two principal components
(PC1 and PC2). For gene-set analysis against published gene expression
data, a large compendium of tissue-specific gene expression was generated
consisting of 144 human and 94 mouse ENCODE datasets, as well as
published lens transcriptomic data sets for human (Hawse et al., 2005) and
mouse (Hoang et al., 2014; Khan et al., 2015; Lachke et al., 2012) (i.e. 145
human and 95 mouse cell/tissue types total). Where more than one replicate
was available for any tissue or cell type, the mean expression value for each
gene was calculated. To ensure a consistent gene universe across this large
compendium, non-ubiquitously mapped gene symbols were removed. To
generate a compendium of cell/tissue-specific marker genes, the top 3000
highest expressed genes in each tissue were filtered to only keep genes that
were highly expressed in 5% or fewer tissue/cell types. The highest-
expressed ROR1+ cell-specific genes were determined using the same
approach, and then compared against the compendium of cell/tissue-specific
marker gene set using Fisher’s exact tests and Benjamini-Hochberg
correction on the resulting P-values (Djordjevic et al., 2016). For semi-
quantitative real-time PCR analysis, cDNA was synthesised from >100 ng
purified RNA using Bioscript (Bioline) and a Mastercycler (Stratagene).
Semi-quantitative real-time PCR was performed using Go-Flexi Taq and
SYBR Green (Bioline) and an MX3005P real-time PCR machine (Agilent

Technologies); PCR primer sequences used are shown in Extended Data
Fig. 1. Data were analysed using Student’s t-test (mean±s.e.m.). In situ
hybridisation analysis was performed using the mouse embryo in situ
hybridisation resource at www.genepaint.org.

Teratoma assay
All experiments involving animals were approved by the Animal Research
Ethics Committee at Western Sydney University. Assessment of the
teratoma-forming ability of purified, ROR1+ cells was undertaken as
previously described (O’Connor et al., 2011). Grafts containing single cell
suspensions of 106 cultured ROR1+ cells were transplanted in 100 µl of
∼10 mg/ml Matrigel under the back flank of 12-week-old NOD/SCIDmice;
grafts were randomly assigned amongst littermates, with the number of mice
used minimised by transplanting multiple grafts in each animal. Control
grafts contained, in addition to the ROR1+ cells, single-cell suspensions of
up to 5×105 undifferentiated pluripotent cells. Mice were housed for up to
12 weeks post-transplantation, euthanized with CO2, and grafts were fixed
in 10% neutral buffered formalin and assessed without blinding.

Immunofluorescence staining
Cultured micro-lenses were fixed at room temperature without removal from
the surrounding agarose which was ∼2 mm thick. Fixation was performed
with 10% neutral buffered formalin for 1 h for laminin and collagen IV
detection (though section shrinkage was noted) or 24 h for crystallin
detection (leakage of crystallins into the surrounding agarose was noted at
lower fixation times). The fixed agarose samples containing micro-lenses
were washed three times with phosphate-buffered saline. Samples were
dehydrated in a Microm STP-120 Tissue Processor (Thermo Fisher
Scientific) in 50%, 70% and 80% ethanol (each for 60 min), followed by
90% and 100% ethanol (each 2×90 min), xylene (3×90 min) and paraffin at
60°C (1×60 min and 1×90). Samples were embedded in paraffin and 5 µm
sections cut. Immunofluorescent staining was performed as previously
described (O’Connor andMcAvoy, 2007; O’Connor et al., 2008b) using the
following anti-human primary antibodies at ∼4 µg/ml (Santa Cruz
Biotechnology): anti-CRYAA (sc-22743); anti-β-crystallin (sc-22745);
and anti-γ-crystallin (sc-22746). Control primary antibody staining was
performed using rabbit IgG (Innovative Research; 121266101). Secondary
antibody staining was performed using an Alexafluor-488 anti-rabbit IgG
antibody (Thermo Fisher Scientific; A11078). Nuclei were counterstained
with 1 µg/ml Hoechst or DAPI (Thermo Fisher Scientific). Images were
photographed using a CKX-41 microscope (Olympus) and digital camera
with QCapture 6 software (QImaging); images are shown with no digital
manipulation.

Mass spectrometry
For detection of only the most-abundant proteins, cultured ROR1+ cells or
whole micro-lenses were collected directly from culture in 15 µl of 0.5%
RapiGest SF (Waters) in 50 mMNH4HCO3. Samples were homogenised on
ice for 5 min before reduction with 100 µl of 5 mM dithiothreitol
(Cabriochem) in 50 mM NH4HCO3 for 1 h at 60°C, then alkylated with
100 µl of 15 mM iodoacetamide (Merck) in 50 mM NH4HCO3 for 1 h at
room temperature. Samples were proteolysed overnight at 37°C with 10 ng/
ml of trypsin (Promega) in 75 mM NH4HCO3. Peptides were purified by
solid phase extraction using Waters Oasis HLB cartridges (30 mg, 1 ml).
Pre-cleaning with 1 ml acetonitrile (ACN) was followed by conditioning
with 1 ml 0.1% trifluoroacetic acid (TFA). Samples were acidified with
250 μl of 0.4% aqueous TFA prior to loading. Samples were washed
consecutively with 1 ml of 0.1% TFA to remove salts, 1 ml of ultrapure H2O
to remove aqueous soluble contaminants and TFA, then peptides were
eluted into low-binding microcentrifuge tubes using 500 μl of 70% aqueous
ACN. Solvents were removed using rotational vacuum concentrator for 2-
3 h. Dried peptide samples were treated with 15 μl of 0.1% aqueous formic
acid and rested for 30 min. Samples were triturated prior to centrifugation at
14,000 g for 10 min. Supernatants containing peptides were analysed by
LC-MS/MS using a nanoAcquity UPLC and Xevo QToFmass spectrometer
(Waters); 3 μl of sample were loaded at 3 μl/min onto a C18 Symmetry
trapping column of dimensions 180 µm×0 mm (Waters) and desalted at this
flow rate for 5 min using 1% ACN in water with 0.1% formic acid. Peptides
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were washed off the trap at 400 nl/min onto a C18 BEH analytical column
(Waters) packed with 1.7 μm particles of pore size 13 nm of dimensions
100 µm×100 mm, using a rampedmethod from 1% to 85%ACN (with 0.1%
formic acid) over 37 min. Eluting peptides were identified by MS/MS using
a Xevo QToF mass spectrometer (Waters), fitted with a nanospray source
with an emitter tip tapered to 10 µm at 2300 V in positive ion mode. Data-
dependent acquisition was performed with continuous scanning for 2+ to 4+

charged peptides, an intensity of >50 counts and a maximum of three ions in
any given 3 s scan (precursor peptides were excluded for 30 s). TheMS/MS
data files were analysed using Mascot Daemon and queried against the
SwissProt database using Homo sapiens-specific searches. Variable
modifications of carbamidomethyl (C), deamidated (NQ), oxidation (M)
and propionamide (C) were used with peptide and MS/MS mass tolerances
of 0.05 Da. Only peptide hits with P<0.05 were reported. Peptides identified
by Mascot were further validated by manual inspection of the MS/MS
spectra for the peptide to ensure the b- and y-ion series are sufficiently
extensive for an accurate identification. Percolator-based decoy searches
(Käll et al., 2007) were also performed on the samples, and these revealed
false discovery rates of 0%.

Electron microscopy
Micro-lenses were fixed for 1 h at room temperature in 2.5%
glutaraldehyde in 0.1 M phosphate buffer, pH 7.4. A 3 mm biopsy
punch and tweezers were used to isolate micro-lenses from the agarose gel.
Samples were then fixed in 2.5% glutaraldehyde for a further 48-72 h at
4°C, after which they were washed four times at hourly intervals with 5 ml
phosphate buffer at 4°C. Samples were then transferred to 0.1 M sodium
cacodylate buffer (pH 7.4) for 2 h, post-fixed in 2% OsO4 for 4 h then
rinsed in cacodylate buffer. Samples were then stained with 1% tannic acid
for 30 min at room temp and rinsed in cacodylate buffer. This was followed
by rinsing in 2% sodium acetate, en bloc staining with 2% uranyl acetate
for 1 h, dehydration in a series of graded alcohols and dry acetone,
infiltration with Spurr’s resin diluted in acetone, and polymerisation in
100% standard hardness Spurr’s resin at 70°C. The embedded micro-lenses
were sectioned at 90 nm using a Powertome ultramicrotome (RMC
Boeckeler) and imaged with a Morgagni 268D transmission electron
microscope (FEI) at 80 kV.
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Supplementary Figure S1. Modification of the 3-stage lens differentiation 
protocol increased lentoids and lens gene expression but did not produce pure 
LEC populations. (A-C) Images of lentoids (red arrows) generated after 
modification of the published 3-stage lens differentiation protocol (Yang et al., 
2010). Increasing the concentration of Noggin from 100 to 500 ng/mL and including 
10 nM SB431542 (Activin/BMP/TGF-β pathway inhibitor) in the Stage 1 medium 
produced large numbers of lentoids (A). Some lentoids had light-refractive borders 
(B), however they did not focus light. As described in the published protocol, the 
lentoids detached from the culture surface and were lost when changing the culture 
medium (C). Scale bars, 500 mm, 100 mm and 500 mm, respectively. (D-G) Time-
course comparison of lentoid production and lens-related gene expression between 
the published 3-stage lens differentiation protocol (blue) and two modified protocols 
(red, green; n = 3). Increasing the concentration of Noggin to 500 ng/mL and 
including 10 nM SB431542 in the Stage 1 medium (red) increased: the number of 
lentoids produced per 35mm dish and the time they were retained in the culture (D); 
PAX6, CRYAB and CRYBB3 expression as detected by semi-quantitative real-time 
PCR (E-G). Subsequently reducing the concentration of FGF2 in Stage 3 from 100 
ng/mL to 10 ng/mL (green) in an attempt to maintain LECs decreased lentoid 
production (D) as well as PAX6 and CRYBB3 mRNA expression, while maintaining 
CRYAB expression (E-G: green). Despite this, heterogeneous morphologies and 
random lentoid production still occurred (A-C). (H) PCR primers used for analysis of 
differentiating cells. The data shown in A-G were obtained from 3 independent 
differentiation experiments. 
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Supplementary material Fig. S2 

Supplementary Figure S2. ROR1 expression in embryos and ROR1 teratoma 
assay data. (A) In situ hybridisation data (www.genepaint.org) showing ROR1 
transcript expression is predominantly expressed by LECs at embryonic day 14. (B) 
ROR1+ cells plated at high cell densities after purification showed uniform polygonal 
morphologies (cells shown 2 days after plating). Scale bar: 100 mm. (C) Twelve 
grafts, each containing 106 ROR1+ cells, show that teratoma formation only occurred 
when undifferentiated pluripotent cells were deliberately included with the ROR1+ 
cells in control grafts (i.e., the 1st and 2nd grafts on the left were seeded with 500,000 
and 50,000 disaggregated pluripotent stem cells, respectively, equivalent to ~5,000 
and 500 colony-forming cells). (D) Higher magnification of the left-hand control 
graft shown in (C). (E) Higher magnification of a graft that received only ROR1+ 
cells. Control grafts were collected 6 weeks after transplantation; all other grafts were 
collected 12 weeks after transplantation. Scale bar: 1 mm. 
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Supplementary Figure S3. Mass spectrometry analysis of ROR1+ cells cultured 
in TM17 express LEC but not lens fibre cell crystallins. (A) Schematic diagram 
summarising the crystallin proteins detected in ROR1+ cells cultured in the test 
media. (B) MS/MS analysis revealed 28% CRYAA protein sequence coverage 
obtained from ROR1+ cells expanded, frozen, thawed and then cultured for 6 days all 
in TM17. (C) Raw mass spectrometry data showing identification of the CRYAA 
peptide underlined in (B). (D) MS/MS analysis revealed 12% CRYBB1 protein 
sequence coverage obtained from ROR1+ cells expanded, frozen and thawed in TM17 
and then cultured for 6 days in Stage 2 lens differentiation medium. (E) Raw mass 
spectrometry data showing identification of the CRYBB1 peptide underlined in (D). 
These data are representative of data obtained from 3 independent differentiation 
experiments. (F) Light microscopy image showing relatively homogenous and large-
scale production of ROR1+ cell aggregates. Scale bar: 400 mm. 
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Supplementary material Fig. S4 
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Supplementary Figure S4. Occasional micro-lens features. (A-C) Light microscopy 
data showing clusters of non-transparent cells (A, asterisks), adjacent to the periphery 
of two micro-lenses, that did not preclude assessment of light-transmitting regions (A) 
or focusing ability (B). The presence of ‘bleb’-like structures on some aggregates (A, 
arrow) had little effect on focusing (B) and were typically relatively infrequent (C). 
Scale bar: 40 mm. 
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Supplementary Figure S5. Mass spectrometry analysis of LEC and lens fibre cell 
crystallins in micro-lenses. (A-H) MS/MS analysis of micro-lenses cultured for 27 
days in Stage 3 lens differentiation medium revealed 35% protein coverage of CRYAA 
(A), 38% coverage of CRYBB1 (C), 6% coverage of CRYBA4 (E) and 5% coverage 
of CRYBB2 (G). Example raw data peptide identifications are shown for the 
underlined sequences in CRYAA (A, B), CRYBB1 (C, D), CRYBA4 (E, F) and 
CRYBB2 (G, H). These data, obtained from 10 pooled micro-lenses, are representative 
of data obtained from 2 independent micro-lens experiments. 
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Supplementary material Fig. S6 
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C 

Supplementary material Figure S6. Cellular organisation in ROR1+ cell 
aggregates. (A-C) Electron microscopy data from an aggregate cultured for 14 days 
(A) shows the bulk of the tissue consisted of small cells. Scale bar: 50 mm. (B, C) 
Images of aggregates cultured for 42 days show the bulk of the tissues consist of 
larger cells with fewer organelles. Scale bars: 50 mm (B) and 10 mm (C, composite 
image). (D) Lens fibre-like cell adjacent to a LEC-like cell in an aggregate cultured 
for 24 days, suggestive of rudimentary secondary lens fibre cell differentiation. Scale 
bar: 10 mm. Images representative of 6 micro-lenses from 2 biological replicates. 
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Supplementary material Fig. S7 
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Supplementary material Figure S7. Lens capsule surrounding ROR1+ cell 
aggregates. (A-C) Electron microscopy data from a large aggregate (diameter >200 
mm) cultured for 42 days. (A) Multilayering of peripheral LEC-like cells adjacent to 
lens capsule-like material (arrows). Scale bar: 5 mm. Inset: a small area of 
multilayering adjacent to the peripheral LEC-like cells. Scale bar: 10 mm. (B, C) Lens 
capsule-like material adjacent to lens fibre-like cells. (B, inset: higher magnification of 
region indicated by asterisk). Scale bars: 1 mm. (D) Lens capsule-like material 
(indicated by arrows) adjacent to LEC-like cells. Scale bar: 250 nm.  
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Supplementary material Fig. S8 
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Supplementary material Figure S8. Lens capsule components expressed by LEC-like 
cells in ROR1+ cell aggregates. (A, D, G, J) Consecutive peripheral sections of a large 
aggregate (diameter ~200 mm) cultured for 24 days (A is the outermost section). The short 
fixation time (60 min) permitted detection of laminin and collagen IV (C, F), however, it 
also resulted in significant shrinkage of the sections that was not observed with longer (24 
hour) fixation times. The surrounding agarose used to embed the aggregates during culture 
is indicated by arrows. (B, E, H, K) DAPI staining of the same sections shown in A, D, G, 
and J shows the location of nuclei within the fixed micro-lenses. (C, F, I, L) The same 
sections shown in A, D, G and J after immunofluorescence using anti-laminin (C), anti-
collagen IV (F), anti-g-crystallin (I) and anti-aA-crystallin (L) antibodies. Dotted white 
lines estimate the original micro-lens boundary. Scale bar: 40 mm. Data representative of 7 
micro-lenses from 2 biological replicates. 
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Supplementary Table S1 and S2. Mass spectrometry analysis of ROR1+ cells cultured 
in TM17 express LEC but not lens fibre cell crystallins. A list of proteins identified 
from ROR1+ cells expanded, frozen, thawed and then re-cultured for 6 days in TM17 
reveals expression of a- but not b-crystallins.  (B) A list of proteins identified from ROR1+ 
cells expanded, frozen and thawed in TM17 and then cultured for 6 days in Stage 2 lens 
differentiation medium. These data show expression of a variety of lens fibre cell-specific 
crystallin proteins. 

Supplementary Table S3. Mass spectrometry analysis of micro-lenses derived from 
ROR1+ cells. A list of proteins identified from ROR1+ cell-derived micro-lenses cultured 
in Stage 3 lens differentiation medium for 27 days shows expression of a-crystallin as well 
as a variety of lens fibre cell-specific b-crystallin proteins. These data, obtained from 10 
pooled micro-lenses, are representative of data obtained from 2 independent micro-lens 
experiments. 

Supplementary Table S4. Expression of capsule components and integrins by ROR1+ 
cells. A list of the most highly expressed integrin, collagen and laminin mRNA transcripts 
detected in the ROR1+ RNA-seq libraries. 

Click here to Download Table S1-S2

Click here to Download Table S3

Click here to Download Table S4
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The C3 method was applied to build two different compendia consisting of large number of 
cell sample data from human and mouse organisms and then compared the ROR1+ cells data 
with the compendia to characterize it. Without C3 it was very hard to characterize the ROR1+ 
cells as lens epithelial cells because there were almost no or very few previous cell 
populations like ROR1+ cells derived from stem cells. Although the C3 provides an efficient 
approach to identify the cell type of a gene expression profile a method for identifying active 
signal pathways for the profile is required to provide more information for clinical 
applications. 
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Signaling pathways are the key biological mechanisms that transduce extracellular signals to 
affect transcription factor-mediated gene regulation within cells. We have developed a new 
method – named SPAGI (Signal Pathway Analysis for Gene regulator network Identification) 
– associated with an R package that can simultaneously predict the set of active signaling 
pathways in a cell, together with their pathway structure. This is done by integrating protein-
protein interaction network and gene expression data. The method was validated using gene 
expression data sets from a variety of cell types. 
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Abstract

Background: Signaling pathways are the key biological mechanisms that transduce extracellular signals to affect
transcription factor mediated gene regulation within cells. A number of computational methods have been developed
to identify the topological structure of a specific signaling pathway using protein-protein interaction data, but they are
not designed for identifying active signaling pathways in an unbiased manner. On the other hand, there are statistical
methods based on gene sets or pathway data that can prioritize likely active signaling pathways, but they do not make
full use of active pathway structure that link receptor, kinases and downstream transcription factors.

Results: Here, we present a method to simultaneously predict the set of active signaling pathways, together with their
pathway structure, by integrating protein-protein interaction network and gene expression data. We evaluated
the capacity for our method to predict active signaling pathways for dental epithelial cells, ocular lens epithelial cells,
human pluripotent stem cell-derived lens epithelial cells, and lens fiber cells. This analysis showed our approach could
identify all the known active pathways that are associated with tooth formation and lens development.

Conclusions: The results suggest that SPAGI can be a useful approach to identify the potential active signaling
pathways given a gene expression profile. Our method is implemented as an open source R package, available via
https://github.com/VCCRI/SPAGI/.

Keywords: Signaling pathway, Gene expression, Protein-protein interaction, Dental epithelial cells, Lens epithelial cells,
Lens fiber cells, Pluripotent stem cells, ROR1+ cells

Background
A key role cell signaling (also known as signal transduction)
plays within biological systems is to relay extracellular sig-
nals in order to regulate intracellular gene expression. The
signal transduction process is typically initiated by the bind-
ing of a ligand to a membrane-bound receptor, which trig-
gers a cascade of intercellular signaling activities through
multiple kinases - ultimately impacting on how transcrip-
tion factors regulate downstream gene expression [1]. The
coordinated activity of different signaling pathways within

and between multiple cell types is the basis of many im-
portant biological processes, such as development, tissue
repair and immunity [2, 3].
Activation of different signaling pathways can lead to

numerous physiological or cellular responses, such as
cell proliferation, death, differentiation, and metabolism
[4, 5]. Any interruption that occurs within these extra
−/intra-cellular communication chains can cause dis-
eases including developmental disorders and cancers [6–
9]. Conversely, a clear understanding of the activity of,
and interaction between, signaling pathways can help to
design rational disease treatment and tissue regeneration
strategies [10]. It is therefore important to understand
the signaling pathways that are activated in a cell, in
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order to provide a framework for understanding critical
pathways affected by disease.
In principle, it should be possible to identify the im-

portant signaling pathways of a cell by using gene ex-
pression and protein-protein interaction (PPI) data sets.
Extensive, publically-available PPI data provide an op-
portunity to establish a general signaling pathway blue-
print, to which cell type-specific gene expression data
can be mapped so as to refine the general signaling path-
way blueprint into a cell-type specific blueprint. In this
way it should be possible to construct a set of cell-type
specific active signaling pathways for any cell that sum-
marizes the information flow from a receptor (R) to ki-
nases (Ks), then to transcription factors (TFs).
PPI data is a direct source of information about the

structure of signaling pathways [3, 11]. A number of PPI
databases are available for human and model organisms
such as STRING [12]. A number of bioinformatics
methods have been proposed for the reconstruction of
known signaling pathways by using PPI data. For ex-
ample, CASCADE_SCAN generates a specific pathway
for a list of protein molecules using a steepest descent
method. That is, the method takes the input proteins
and then finds their interaction partners iteratively based
on some evidences (i.e., high scored interactions) [1]. On
the other hand, Pathlinker reconstructs the known sig-
naling pathways by taking a subnetwork of PPI that con-
sists of the Rs and TFs of interest [13]. The PathLinker
App is a software tool of the Pathlinker method imple-
mented as a Cytoscape app [14]. PathFinder identifies
signaling pathways from a specific R protein to a TF pro-
tein in PPI networks by extracting the characteristics of
known signal transduction pathways and their functional
annotations in the form of association rules [15].
A number of methods use PPI data alone to infer sig-

naling pathway structure. Gitter et al. proposed a
method to handle the orientation problem in weighted
protein interaction graphs as an optimization problem
and present three approximation algorithms based on ei-
ther weighted Boolean satisfiability solvers or probabilis-
tic assignments [16]. Mei et al. proposed a multi-label
multi-instance transfer learning method to simultan-
eously reconstruct 27 human known signaling pathways,
and model their cross-talk [17]. Scott et al. proposed a
method to reconstruct the known signaling pathways ef-
ficiently in protein interaction networks by assigning
well-founded reliability scores to PPI data and by apply-
ing a color coding algorithm [18].
There are also methods that combine PPI and genetic

interaction data to identify signaling pathway structure.
The activity pathway network (APN) approach utilizes
high-throughput genetic interaction data and applies the
Bayesian learning method to identify detailed structure of
known signaling pathways [19]. Another method utilizes

the same approach to restructure the pathway by also
combining PPI data with genetic interaction data [20].
A number of computational methods utilize PPI data

along with gene expression data to uncover known sig-
naling pathways [2, 3, 21, 22]. In these methods the gene
expression data sets are usually used to calculate the
edge weight by gene expression correlation for the net-
work. One approach utilizes PPI and gene expression
data sets and applies integer linear programming to get
an optimal subnetwork from the PPI network starting
from membrane proteins and ending at transcription
factors [3]. A recently published method called HISP
uses the same approach, but in addition applies genetic
algorithms with operations including selection, cross-
over, and mutation to select the candidate topologies of
resultant signaling pathways and uses gene knockout
data to get directionality of the signaling pathways [2].
Netsearch determines networks by integrating protein-
protein interaction data with microarray expression data
by extracting subnetworks of the protein interaction
dataset whose members have the most correlated ex-
pression profiles [22]. It generates a specific pathway
based on the input proteins (R and TF) and the PPI net-
works. Another method highlights the order of signaling
pathway components, assuming all the components on
the pathways are known [21]. It constructs a score func-
tion based on the correlations between each gene pair to
determine the final signal transduction network.
All of the above methods aim to restructure the top-

ologies of known signaling pathways. However, to our
knowledge, no open-source methods have been reported
that simultaneously and comprehensively identify the set
of active signaling pathways and the likely pathway
structures for a gene expression profile (i.e., all R, K and
effector TF paths for each identified pathway). Addition-
ally, most of the above methods were evaluated and ap-
plied to yeast PPI data, with only a few methods
designed specifically to deal with the significantly greater
complexity of mammalian data. Here we propose an ap-
proach to systematically identify the set of active recep-
tor-mediated signaling pathways within any given cell,
by combining PPI and gene expression data. This
method is implemented as an open source packaging
using the ‘R’ programming language. This open source
software is called SPAGI (Signaling Pathway Analysis for
putative Gene regulatory network Identification), and is
available via https://github.com/VCCRI/SPAGI/.

Methods
Building background pathway data
The overall workflow of the SPAGI approach is approach
is depicted in Fig. 1. First we collected the known R, K
and TF signaling molecules (2134 genes/proteins in total)
from public data sets [23–25]. The list of R proteins was
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collected from a curated database of the Fantom5
project [24]. The list of K proteins was collected from
the Uniprot curated database [23]. The list of TF pro-
teins was obtained from a database of sequence-spe-
cific DNA-binding TFs identified by gene ontology
(GO) based annotation [25]. Next we separately used
both the mouse and human PPI data from STRING
database (version 10) [26] to obtain all currently
known PPIs for the 2134 known R/K/TF signaling
molecules - while keeping the human and mouse sep-
arate. Please note that we have considered here all
the physical and other inferred (e.g., co-expression)
interactions when defining PPIs to maximize our abil-
ity to detect the full network structure. The confi-
dence (combined_score) values assigned to interactions
within STRING range from 0 to 999. We selected
PPIs defined by STRING as ‘high confidence’ (i.e.
confidence_score > = 700) to further maximise our

ability to construct networks representative of true
biological pathways. This thresholding yielded 16,550
and 19,502 PPIs for mouse and human respectively.
After obtaining these highly scored PPIs both for the
human and mouse organisms we have merged all the
PPIs by assuming that the molecules have one-to-one
homology mapping between the organisms. Note that
after filtering and considering the presence of
bi-directional interactions within STRING (e.g., R to
K and K to R), the set of all known R/K/TF interac-
tions involves 39,004 PPIs in human and 33,100 PPIs
in mouse (with 27,790 PPIs common to both). We
then took the union of all PPIs and have assigned the
larger score value of a PPI if it is present in both or-
ganisms. The merged PPI network has 44,314 edges
(See Table 1 for details).
From the combined high scored PPIs, we collected

only the PPIs for the signaling pathways that have

Fig. 1 The workflow diagram of the SPAGI method

Table 1 SPAGI pathway path background data summary

For Mouse For Human

# R, K, TF 2134 2134

# R/K, K/K, K/TF interactions (combined_score > 0) 234,603 249,571

# high-confidence (combined_score > = 700) R/K, K/K, K/TF interactions (assuming bi-directional interaction) 33,100 39,004

# common interaction 27,790

# combined unique interaction 44,314

# high-confidence complete R/K/TF paths 102,842

# high-confidence complete R/K/TF paths without housekeeping gene paths (# of R-defined pathways) 89,161 (548)
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interactions able to make full paths from R to K to TF.
This process included interactions from:

(a) R (not directly connected with K) to R (directly
connected with K)

(b) R to K
(c) K to K and
(d) K to TF

Finally, we collected all the filtered PPIs from the
above step, keeping their associated PPI combined_score
value for each of the interactions. Note that for clarity,
the word ‘path’ is defined as a single R/K/TF prediction,
whereas the word ‘pathway’ is defined as the collection
of paths that all start from the same R (i.e., all paths de-
fined by a single R constitutes a pathway).
To make the signaling pathway paths, we first made a

directed weighted graph from the PPI data using the
igraph R package. As igraph considers the weight of the
interaction as a cost (i.e., higher weight means it needs
more effort to travel), we have modified the PPI combi-
ned_score value as weight by calculating 1000-combi-
ned_score. After assigning the combined_score as weight
we collected the reachable shortest paths from each R
protein to each TF protein by utilizing the shortest_path
function of the package. The shortest_path function uses
the Dijkstra’s graph algorithm for the weighted directed
graph. We have collected all the complete paths (a path
is being called complete if it starts from a R protein and
ends up to a TF protein) that have a length from 3 to 7,
allowing for at most 2 layers for RP, 5 layers for KN and
1 layer for TF. To identify cell type-specific paths, we
then filtered out the complete paths where all factors
were designated as housekeeping genes (see the next
section for how the list of housekeeping genes was gen-
erated). As a result of these steps, the final collection of
complete paths consists only of those that are not desig-
nated as housekeeping paths. These paths are used as
background pathway path data for our method.

Housekeeping genes identification
We collected the published RNA-seq gene expression
data sets for different cells and tissues both for mouse
and human from the ENCODE project [27, 28], and
processed them separately. We examined the expression
distribution pattern of these data sets and found that on
average the log2 (FPKM+ 1) = 1.5 value could be used as
the expression cut-off for the data sets. Using this
cut-off we identified the expressed genes for all the cells
and tissues. We then designated a gene as a housekeep-
ing gene if it was found to be expressed in at least 75%
of the total number of cells and tissues for that particu-
lar organism. This approach was used to identify both
the mouse and human housekeeping genes. These 2 lists

of housekeeping genes were then combined to generate
a unique list of housekeeping genes, assuming one-
to-one homology mapping between human and mouse
genes. This combined list of unique housekeeping genes
was used as background data.

Potential signaling pathway identification
The background signaling pathway path data was used
to identify the potential signaling pathways for a particu-
lar gene expression data set. As input we took the gene
expression data matrix of log2 transformation of RPKM/
FPKM/CPM values, an expression cut-off threshold to
identify the expressed genes, and a high expression
threshold (generally an expression value greater that the
expression value of the peak of distribution) to calculate
the activity score of the pathways.
Processing steps

(1) From the gene expression data set, first we
calculated the average expression value of the
replicates and then identified the expressed genes
by using the cut-off threshold described above.

(2) From the background path data we obtained only
those paths for which all the protein factors are
expressed according to the input gene expression
data. This set of paths is treated as potential
signaling pathway paths for the gene expression
data set.

Ranking of the potential signaling pathways
For each potential signaling pathway, we first calculated
the proportion of active molecules (defined as highly
expressed genes based on the above high expression
threshold) for each path. We then summed all the pro-
portions of all the paths for the pathway and divided the
total proportion value by the total number of paths of
the pathway. This final value was termed the Activity
score (As) for a pathway and mathematically can be writ-
ten as:

As ¼
Pn

i¼1pi
n

Where pi denotes the proportion of active molecules
in each path and n denotes the number of downstream
TFs for the pathway. Next we plotted the values of n
and As to display the results of top ranked active signal-
ing pathways in the upper positions.

Assessment of SPAGI false positive rate
The SPAGI false positive rate was obtained by randomly
assigning gene expression data and then re-performed
the SPAGI analyses. The number of highly ranked active
pathways for each sample was then counted. The false
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positive rate for highly ranked pathways was obtained by
dividing the number of highly ranked pathways obtained
from the randomly assigned data by the number of
highly ranked pathways obtained from the original sam-
ple. GO analysis was also performed on the randomly
assigned gene expression data used to determine the
SPAGI false discovery rate. Each GO analysis was per-
formed separately using the online version of Enrichr for
biological processes [29]. Results were filtered to retain
only the significant terms and for signaling GO terms
using the raw p-value. The false positive rate for the GO
analysis was calculated by dividing the number of highly
ranked pathways obtained via the randomly assigned
data by the number of highly ranked pathways obtained
from the original data.

Results
The ability of SPAGI to identify known, critical,
tissue-specific signaling pathways was tested using four
cell types obtained from three different gene expression
data sets (two are RNA-seq and one is microarray).
These four cell types were chosen as there is an exten-
sive body of literature for them that has already identi-
fied critical pathways, thus enabling biological validation

of the SPAGI output. The first data set used is from
mouse dental epithelial cells at the development stage
E13.5 (n = 3) [30]. The remaining two data sets were
from the ocular lens: one is a newborn mouse lens data
set that consists of gene expression profiles from lens
epithelial cells (LECs; n = 3) and lens fiber (LF) cells (n
= 3) [31]; the other data set is from human pluripotent
stem cell-derived ROR1+ LEC–like cells (n = 2) [32].

SPAGI analysis of tooth
Published data have shown that BMP and WNT
(through FZD receptors) signaling pathways are import-
ant for embryonic mouse tooth development [30]. Loss
of function of BMPR1A in dental epithelial cells reduces
WNT expression and prevents tooth formation [30]. To
test whether SPAGI can identify BMP and WNT/FZD
pathways from published dental epithelial cell gene ex-
pression data, we applied the SPAGI method to gene ex-
pression data from embryonic development stage E13.5.
After all filtering, we have obtained 14,657 specific paths
(i.e., 14.25% of total paths) for the dental epithelial cell.
This analysis revealed SPAGI identified both the
BMPR1A and FZD7 receptor-mediated pathways (Fig. 2),
together with a range of other pathways.

Fig. 2 The result of mouse embryonic dental epithelium cell at E13.5. The red color indicates the known pathways. The details of BMPR1A pathway is
shown in the figure
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SPAGI analysis of lens gene expression data
A large number of studies over decades have described
the requirement for different signaling pathways during
lens development. As summarized in a recent review by
Cvekl and Zhang [33], while critical lens pathways have
been broadly identified, the precise R/K/TF signaling
paths utilized within each pathway are not fully under-
stood, nor are the path nodes (typically Ks and TFs)
where different signaling pathways intersect. An accurate
method for comprehensively identifying R/K/TF paths
that operate within lens (and other) tissue is therefore
needed. For example, the FGF pathway induces the
pre-placodal region required for lens formation, as well
as subsequent proliferation of LECs and differentiation
of LECs to LF cells. The BMP pathway is also involved
in pre-placodal induction, invagination of the lens pla-
code, LEC proliferation and survival, and LF cell differ-
entiation. The FZD pathway works as an inhibitor at the
pre-placodal region, and in LEC adhesion, integrity and

polarity. NOTCH signaling controls lens growth and
acts as a differentiator for both LECs and LF cells. Sig-
naling through different integrins is required early in
lens differentiation, and for cell adhesion, lens capsule
assembly and normal development of both LECs and
LFs. Cadherins are required for appropriate polarity, ad-
hesion and survival of LECs, and for LF cell elongation.
EPHs and Ephrins are involved in cell adhesion and po-
larity, and LF cell elongation and alignment. The TGFβ
pathway acts as an inhibitory signal in the pre-placodal
region for proper lens growth, and is implicated in lens
diseases such as anterior subcapsular cataract and pos-
terior capsule opacification. Critically, how molecular in-
tegration of all these pathways occurs during lens
development or formation of different cataract subtypes
is currently unclear [34].
Analysis of published mouse LEC gene expression data

[31] using our SPAGI method identified all of the path-
ways mentioned above (Fig. 3). After all filtering this

Fig. 3 The result of newborn mouse lens epithelial cell. The red color indicates the known pathways. The details of FGFR1 pathway is shown in
the figure
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analysis gave us 25,624 specific paths (i.e., 24.92% of
total paths) for the mouse LEC. Moreover, the activity
score with the number of downstream TFs was able to
preferentially rank these known critical lens pathways
over other pathways identified within the mouse LEC
data. Analysis of a large-scale source of human LECs
(ROR1+ cells) [32] similarly identified the known lens
signaling pathways (Fig. 4). This analysis also gave us
23,665 specific paths (i.e., 23.01% of total paths) for
ROR1+ cell after all filtering.
Analysis of published mouse LF cell data shows

that, as expected, LF cell signaling pathways are very
similar to LECs (Fig. 5). We have obtained 13,790
specific paths (i.e., 13.41% of total paths) after all
filtering for mouse LF cell. Differences in the rank-
ing of particular pathways provide indications of
how these pathways are integrated in the transition
from LECs to LF cells (e.g., EPHA2 in Figs 3, 4 and
5). Overall, these results show that the SPAGI R
package can accurately identify and rank known,
critically-important signaling pathways from the gene
expression profiles of different cell and tissue types.
As shown in Figs. 2 to 5, the SPAGI approach iden-
tifies each specific R, K and TF within each path

and pathway, thereby enabling critical pathway-spe-
cific nodes to be identified, as well as critical nodes
that interconnect between different pathways. Add-
itionally, new candidate critical tissue regulators can
be identified via the activity score ranking. For ex-
ample, KREMEN1and KREMEN2 are known to regu-
late Wnt signaling pathways [35, 36], so these can
be the potential active pathways for lens. Also
PVRL3 is known to be associated for congenital ocu-
lar disease [37], so this can also be a potential active
pathway for lens.

Comparison of SPAGI analysis on species-specific vs
combined PPI data
To determine the breadth of PPI data coverage
within the mouse and human STRING datasets, we
also performed the SPAGI analysis separately for the
human and mouse query data – i.e., mouse samples
compared only against the mouse STRING data and
the human sample compared only against the human
STRING data (see Additional File 1: Figures S1–4).
From these results we see that a number of known
pathways were identified for each sample. However,
pathways known from previous studies to be

Fig. 4 The result of human PSC-derived ROR1+ cell (lens epithelial cell-like). The red color indicates the known pathways. The details of ROR1
pathway is shown in the figure

Kabir et al. BMC Systems Biology 2018, 12(Suppl 9):120 Page 83 of 134

 
58



important for particular cell types were not identi-
fied using this species-specific STRING analysis ap-
proach. For example, the ROR1 pathway was not
identified in the human ROR1+ cell sample, despite
ROR1 being critical for capturing this population of
human LECs. Similarly, the EPHA2 pathway was not
identified within the mouse LF cell samples, despite
this being a key pathway that leads to disease (i.e.,
cataract) if disrupted [38]. Thus, combining the
mouse and human PPI datasets prior to SPAGI ana-
lysis led to more biologically-relevant results for the
query samples than obtained when using the human
and mouse PPI data separately.

Analysis of the SPAGI false positive rate via random
expression level assignment
We investigated the false positive rate of the SPAGI
method by randomly assigning gene expression data
using both the mouse dental epithelial cell and mouse

LEC gene expression data sets. First, we have ran-
domly assigned the gene names amongst the gene ex-
pression values for each sample and then re-
performed the SPAGI analyses as done for the ori-
ginal data. We then counted the number of highly
ranked active pathways for each sample, and looked
for identification of known pathways within the high
ranked active pathways to investigate the SPAGI false
discovery rate for known pathways from the randomly
assigned expression data. Next we calculated the false
positive rate for each sample utilizing the number of
high ranked pathways of randomly assigned expres-
sion sample by dividing the number of high ranked
pathways of original sample. We repeated this analysis
10 times for each sample and calculated the average
false positive rate for each sample. The average false
positive rate for mouse dental epithelial cell is 0.128
and for mouse LEC gene expression data is 0.022 (see
Additional File 1: Tables S1 and S2).

Fig. 5 The result of mouse lens fiber cell. The red color indicates the known pathways. The details of EPHA2 pathway is shown in the figure
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Analysis of the SPAGI false positive rate versus GO
analysis
We also compared the performance of the SPAGI
method with GO analysis method. The GO analysis
was performed based on the unique set of molecules
(i.e., Rs, Ks and TFs) from the original mouse dental
epithelial cell and mouse LEC data. For comparison,
we also performed GO analysis based on the same
random assignment used to determine the SPAGI
false discovery rate described above. Each GO ana-
lysis was performed separately using the online ver-
sion of Enrichr [36], and captured all the results
associated with biological process. These results were
filtered to retain only the significant terms based on
raw p-value and for signaling GO terms. Finally we
searched for known pathways for each sample. Add-
itional File 1: Table S3 shows the comparison results
of the original cell samples, and Additional File 1:
Tables S4 and S5 show the comparison results ob-
tained using the randomly assigned cell samples. The
results show that both the SPAGI and GO methods
can identify almost all the known pathways for the
original sample data, although the GO method did
not identify the Cadherins pathways in the mouse
LECs data. However, the results of the randomly
assigned gene expression data showed that the false
identification rate of known pathways by SPAGI was
much smaller (0–0.2) than for the GO analysis
method (0.4–1) (Additional File 1: Table S6).

Discussion
In this manuscript we described a new bioinformatics
method, SPAGI, that can simultaneously and compre-
hensively discover the set of active signaling path-
ways and their putative defined path structures. Our
evaluation demonstrates that the SPAGI method can
accurately identify known and biologically-relevant
signaling pathways from multiple gene expression
data sets across different tissue types, while providing
specific detail of the molecular cascades involved in
these pathways. The SPAGI method therefore pro-
vides capabilities not available with other current
open-source software. While some pathway analysis
software is commercially available (e.g, IPA), SPAGI
provides a free and open-source approach that can
routinely provide updated data through updates to
the STRING database.
In addition to validation of the SPAGI method by

comparison against known biology, the SPAGI
approach was also validated by assessment of its
false positive rate - both on its own and in compari-
son to the false positive rate obtained via GO ana-
lysis. The SPAGI approach identified few pathways
when using randomly assigned gene expression data

for the mouse dental epithelial cells (0.128) and
mouse LECs (0.022). Moreover, the results of the
randomly assign gene expression data showed the
false positive rate was smaller for the SPAGI method
(0–0.2) than the false positive rate obtained via the
GO analysis method (0.4–1). These data provide
strong support for SPAGI being both more sensitive
and more specific than pathway identification via
GO analysis alone.
To assess whether the SPAGI method is best ap-

plied to species-specific PPI data or combined/multi--
species PPI data, were performed SPAGI analysis on
both single species and combined species PPI data.
While large numbers of pathways were identified via
the single species analyses, some biologically-relevant
pathways were not identified. This included the ROR1
receptor-mediated pathway not being identified via
the human PPI data, and the EPHA2 pathway not be-
ing identified in the mouse LF cell data. As both
these pathways appear to be important in their re-
spective cell types [32, 38], SPAGI is currently best
performed (i.e., identifies the largest number of
biologically-relevant pathways) using the combined
species PPI data.
It should be noted that as currently applied, the

SPAGI method detects receptor-mediated signaling
pathways. Modification of the SPAGI approach could
be used to identify other cellular control mechanisms
involving PPIs independent of TFs. Also, at this stage
it is not clear whether the other pathways highly
ranked by the activity score are truly active, as pro-
tein expression and protein activation state (e.g., via
phosphorylation) within a tissue cannot be deter-
mined from gene expression data. Nonetheless, the
breadth of data provided by SPAGI can provide spe-
cific testable hypotheses for cell biologists to guide
functional genomic studies to identify critical regula-
tors involved in health and disease. As such, more
studies are required to investigate these pathways.

Conclusions
The SPAGI method represents a new, interesting and
open-source method to comprehensively identify im-
portant receptor-mediated signaling pathways from a
gene expression data set. We have applied our
method to four different gene expression data sets
from three different cell types and shown that the
SPAGI method correctly identified all the known sig-
naling pathways for the cells, with low false discover
rate and lower false discovery than using GO analysis
alone. Our results suggest that SPAGI can be a useful
approach to identify the potential active signaling
pathways given a gene expression profile.
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Table S3. Identification of known pathways by SPAGI and GO analysis
methods. Table S4. Summary of known pathways identification by SPAGI
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Additional File: Supplementary figures and tables 
 

  

Figure S1. The result of mouse embryonic dental epithelium cell at E13.5 with only the mouse 
PPI background pathway data.   

 

 

 

Figure S2. The result of newborn mouse lens epithelium cell with only the mouse PPI 
background pathway data.   
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Figure S3. The result of human PSC-derived ROR1+ cell (lens epithelium cell-like) with only 
the human PPI background pathway data.   

 

 

 

Figure S4. The result of newborn mouse lens fiber cell with only the mouse PPI background 
pathway data.   
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Table S1. False positive rate calculation for SPAGI method of randomly assigns gene expression 
values of new born mouse lens epithelial cell and mouse tooth epithelial cell at embryonic day 
E13.5 

 

New born mouse LEC Mouse tooth epi at E13.5 
# of high ranked 

pathways  
False positive 

rate 
# of high ranked 

pathways  
False positive 

rate 
With original 
expression 66   21   

Random assignment 1 6 0.09 0 0 
Random assignment 2 0 0 7 0.33 
Random assignment 3 1 0.02 0 0 
Random assignment 4 0 0 8 0.38 
Random assignment 5 0 0 0 0 
Random assignment 6 0 0 0 0 
Random assignment 7 0 0 3 0.14 
Random assignment 8 7 0.11 9 0.43 
Random assignment 9 0 0 0 0 
Random assignment 
10 0 0 0 0 

 
Total false positive 

rate 0.22 Total false positive 
rate 1.28 

 
Average false 

positive rate 0.022 Average false 
positive rate 0.128 

 

 

Table S2. SPAGI test result for randomly assign gene expression values of new born mouse lens 
epithelial cell and mouse tooth epithelial cell at embryonic day E13.5 

 New born mouse lens epithelial cell Mouse tooth epithelial cell at 
embryonic day E13.5 

Random 
assignment 
1 
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Random 
assignment 
2 

 
 

Random 
assignment 
3 

  
Random 
assignment 
4 
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Random 
assignment 
5 

  
Random 
assignment 
6 

  
Random 
assignment 
7 
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Random 
assignment 
8 

  
Random 
assignment 
9 

  
Random 
assignment 
10 
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Table S3. Identification of known pathways by SPAGI and GO analysis methods  

  BMP Cadherins EPH/Ephrin FGF Integrins Notch TGFB Wnt 
Known for lens 
epithelial cell Y Y Y Y Y Y Y Y 

Identified by SPAGI Y Y Y Y Y Y Y Y 
Identified by GO  Y N Y Y Y Y Y Y 
Known for tooth 
epithelial cell  Y       Y 

Identified by SPAGI Y       Y 
Identified by GO  Y             Y 
 

 

 

Table S4. Summary of known pathways identification by SPAGI and GO methods for randomly 
assigns genes of mouse lens epithelial cell  

  
BMP Cadherins EPH/Ephrin FGF Integrins Notch TGFB Wnt 

SPAGI GO SPAGI GO SPAGI GO SPAGI GO SPAGI GO SPAGI GO SPAGI GO SPAGI GO 
Random 
assignment 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 1 

Random 
assignment 2 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 

Random 
assignment 3 0 1 1 0 0 1 0 0 0 1 0 1 0 1 0 1 

Random 
assignment 4 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 

Random 
assignment 5 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 

Random 
assignment 6 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 

Random 
assignment 7 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 

Random 
assignment 8 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 

Random 
assignment 9 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 

Random 
assignment 10 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 

Total 0 9 1 0 2 10 0 4 0 10 0 10 0 10 1 10 
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Table S5. Summary of known pathways identification by SPAGI and GO methods of randomly 
assigns genes for mouse tooth epithelial cell  

  
BMP Wnt (Fzd) 

SPAGI GO SPAGI GO 
Random assignment 1 0 0 0 1 
Random assignment 2 0 1 1 1 
Random assignment 3 0 1 0 1 
Random assignment 4 0 1 0 1 
Random assignment 5 0 1 0 1 
Random assignment 6 0 0 0 1 
Random assignment 7 0 1 0 1 
Random assignment 8 0 0 0 1 
Random assignment 9 0 0 0 0 
Random assignment 10 0 1 0 1 

Total 0 6 1 9 
 

 

Table S6. False positive rate of SPAGI and GO analysis method for known pathways 

  
  BMP Cadherins EPH/Ephrin FGF Integrins Notch TGFB Wnt 

Lens epithelial 
cell 

SPAGI 0 0.1 0.2 0 0 0 0 0.1 
GO 0.9 0 1 0.4 1 1 1 1 

Tooth 
epithelial cell  

SPAGI 0       0.1 
GO 0.6             0.9 
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The SPAGI is an efficient approach to identify active signalling pathways en masse from 
microarray or RNA-seq gene expression data. It outputs a ranking of signal paths – each 
consisting of receptor(s), kinases, and transcriptional regulators – with paths grouped as 
receptor-defined pathways. This result provides detail information of signal pathways for 
clinical applications.  
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Chapter 5 
 

Large scale profiling of lens epithelial cell signalling 
and gene expression networks reveals regulatory 

pathways for known cataract genes 
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An important application of systems biology is illumination of how inputs from large 
numbers of signaling pathways are integrated, in order to precisely regulate specific gene 
expression networks involved in tissue development, repair, regeneration or disease. Here we 
provide an in-depth characterisation of a published newborn mouse lens epithelial cell dataset 
using the SPAGI method. The results generated by the SPAGI analysis were extended by 
comparison with published lens epithelial cell target genes, and also cataract associated 
genes, to generate a transcriptional blueprint for lens epithelial cells.  
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Abstract 

A key frontier in systems biology is elucidation of how inputs from large numbers of signalling 

pathways are integrated, in order to precisely regulate specific gene expression networks involved in 

tissue development, repair, regeneration or disease. The relatively simple anatomy of the ocular lens - 

consisting of an anterior epithelial monolayer from which differentiate the lens fibre cells that form 

the bulk of the tissue - makes the lens a valuable model for investigating growth factor-mediated 

transcriptional events. To catalogue the breadth of signalling paths that could potentially operate in 

the lens, we first analysed public gene expression data to identify all lens-expressed receptors, kinases 

and transcription factors. We subsequently used experimentally-validated, one-to-one protein-protein 

interaction data to build lens signalling paths from receptors to transcriptional regulators. The 

pathways were extended to include publically-available target gene sets associated with lens-

expressed transcriptional regulators. Cataract-associated genes were then mapped onto the target gene 

sets, based on the hypothesis that identifying the gene regulatory networks for cataract-associated 

genes will identify important lens transcriptional regulation events. This approach identified a large 

number of interconnected signalling pathways and associated gene regulatory networks. One network 

identified in this way consisted of 64 transcriptional regulators controlling expression of 63 cataract-

associated genes. This network included a large number of known lens transcription factors and also 

known lens gene regulatory events, with known lens-related signalling pathways predicted to regulate 

different aspects of the network. Assessment of the degree of inter-regulation between the 64 

transcriptional regulators identified a higher-level network centred on Pax6, Sp1, Ets1, Creb3l1, Klf4, 

Egr1 and E2f4 in lens epithelial cells and Atf4, Creb4 and Rxrg in lens fibre cells. The utility of the 

integrated signalling pathways and gene regulatory networks identified here was confirmed by the 

demonstration that ELK1 is expressed and phosphorylated in ROR1+ human lens epithelial cells. Thus 

the integrated signalling pathway and gene regulatory networks compiled here provide a powerful 

new predictive blueprint for hypothesis-driven investigation of the molecular mechanisms controlling 

lens and cataract formation.   
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1. Introduction 

 Understanding how inputs from large numbers of extrinsic and intrinsic signalling pathways are 

integrated - to precisely regulate the expression of genes required for tissue specification, tissue repair 

and regeneration, or disease - is a major frontier in systems biology. The ocular lens has for over a 

century proven to be a valuable model for investigating factors that control tissue development  [1-3], 

regeneration [4-6] and disease [7, 8]. This is due in part to the lens’ relative anatomical simplicity in 

comparison to other tissues, namely, an anterior lens epithelial cell (LEC) monolayer, a mass of lens 

fibre (LF) cells and an overlying basement membrane (lens capsule). The lens also provides easily 

identifiable and quantifiable functional readouts of impaired development or disease, specifically 

transparency and focusing ability.  

 A large number of elegant studies over recent decades have begun to define important lens 

signalling pathways and gene regulatory networks. This includes studies of: receptors (Rs) for various 

growth factors (GFs) (reviewed by Lovicu et al [9]) and cell attachment/cell motility proteins (e.g., 

Eph/Efn [10, 11], integrins [12], cadherins [13], connexins [14]; kinases (Ks) [9, 15]; transcriptional 

regulators (TRs; such as transcription factors, histone modifiers, etc.) and target genes (TGs) as 

reviewed by Zhang and Cvekl, 2017 [16]. For example, an increasing anterior-to-posterior gradient 

[17] of fibroblast growth factor (FGF) signalling is thought to be a key driver of LF cell 

differentiation: FGFs, acting via FGF Rs, activate Ks such as PI3K and MAPKs leading to regulation 

of TRs such as PAX6 and subsequent alteration of gene expression (e.g., crystallin expression) [18-

20]. Similarly, bone morphogenic proteins (BMPs), acting at least via type I Bmp Rs, activate 

MAPKs leading to regulation of TRs such as Smad proteins and subsequent alteration of gene 

expression [21].  

 Transcriptional profiling studies of whole lenses or micro-dissected mouse and human LECs and 

LF cells have catalogued genes expressed by these different lens cell types. Most recently, RNA-seq 

profiling of micro-dissected E14.5 to P0.5 mouse lenses revealed cell-type specific gene expression 

patterns consistent with known lens biology (e.g., crystallin accumulation, autophagy, etc.). That 

study provided significant new and valuable information on non-signalling pathways implicated in 

lens biology but for which more detailed information is needed (e.g., Mtor, ubiquitination, 
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sumoylation), as well as a strong indication that little-known lens TRs need to be further investigated 

(e.g., Sp1, E2f1, E2f4, Ets1, Elk1).  

 The accumulated knowledge from the above and other lens studies provides a strong foundation 

for understanding how signalling through Rs, Ks and TRs might regulate the TGs required for lens 

formation, growth and maintenance. However, a major current challenge is to determine how the 

activity of individual pathways and gene regulatory networks is integrated to achieve normal lens 

development. In turn, this knowledge will provide a detailed molecular framework for understanding 

how disease (e.g., cataract) - caused by genetic or environmental factors - perturbs signalling 

pathways and gene regulatory networks, and potentially how disease activates lens protection 

mechanisms.  

 Defining how risk factors initiate disease by adversely modifying existing cell-cell interactions and 

growth factor expression cascades is recognized as a crucial frontier for development of improved 

disease treatments [22]. In this context the lens has broader relevance to human health and disease, as 

signalling pathways that operate in the lens also operate in many other cell types, including other 

ectodermal derivatives such as retinal and neural cells [23, 24]. An increased understanding of how 

lens signalling pathways, gene regulatory networks and cataract-associated genes are integrated will 

therefore define molecular mechanisms (potentially including protective mechanisms) that have more 

broad relevance to normal and disease development in other tissues. Progression of these studies will 

be aided by establishment of a predictive model – or transcriptional blueprint – that comprehensively 

integrates lens TRs and their TGs (including disease-associated genes) with the interconnected 

regulatory signalling pathways that control tissue development, growth, repair and regeneration.  

 To beginning addressing these issues, we analysed publically-available lens RNA-seq gene 

expression data and known protein-protein interactions (PPIs) to construct lens signalling pathways 

consisting of Rs, Ks and TRs. Correlating these R/K/TR paths with publically-available LEC TG sets 

[25] enabled establishment of a LEC transcriptional blueprint that predicts how expression of cataract-

associated genes is regulated.  

 Assessment of 3 new gene regulatory networks that arose empirically from the LEC blueprint 

showed they involve critical lens TRs and known lens regulatory events. Moreover, these new 
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networks were predicted by the LEC blueprint to be regulated by important lens signalling pathways, 

and gene ontology (GO) analyses not only supported these predictions but also highlighted previously 

unknown roles for poorly understood LEC TRs. Further validation of the predictive capacity of the 

LEC transcriptional blueprint is provided through demonstration that the poorly understood TR, 

ELK1, is both expressed and phosphorylated in human pluripotent stem cell-derived ROR1+ LECs.  

 The LEC transcriptional blueprint and associated signalling and gene regulatory networks 

described here provide new insights into how the molecular circuitry required for normal lens 

function is integrated and regulated. Importantly, the LEC blueprint and networks shown here offer a 

large and diverse array of discrete and testable molecular hypotheses for use in defining the molecular 

mechanisms of lens and cataract formation. 

 

2. Materials and methods 

2.1 Acquiring transcriptional and PPI datasets 

 All datasets used in this study were downloaded from the following public repositories: Rs were 

acquired from the Fantom5 project [26]; Ks were collected from Uniprot; TRs were obtained from a 

database of sequence-specific DNA-binding proteins identified by GO-based annotation [27]; 

experimentally-determined PPIs were obtained from the STRING database (version 10) [ref]; mouse 

and human RNA-seq gene expression datasets from various cells and tissues were collected from the 

ENCODE project [28, 29] with additional LEC expression profiling  data [30, 31] obtained from the 

Gene Expression Omnibus; and LEC TG data was collected from http://regulatorycircuits.org/ [25]. 

 

2.2 Identification of house-keeping genes 

 Lists of known Rs, Ks and TRs were obtained as described above. To identify ‘housekeeping’ Rs, 

Ks and TRs common to many cell types, 144 human and 94 mouse cell and tissue RNA-seq gene 

expression datasets were obtained from ENCODE and grouped by species. These two groups of 

datasets were processed separately, with genes being designated as ‘housekeeping’ genes if expressed 

in at least 75% of all cell and/or tissue datasets within a species data-grouping. A combined list of 
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unique housekeeping genes was then generated by assuming one-to-one homology mapping between 

human and mouse genes.  

 

2.3 Establishing a universe of known R/K/TR paths and pathways 

 Using the recently generated SPAGI algorithm [32] we identified a universe of all currently 

known, one-to-one PPIs for R, K and TR proteins expressed in any cell type. This process was 

performed separately for both mouse and human Rs, Ks and TRs. Scores were obtained for each PPI 

via STRING [33], with both directions of PPI being assessed. Scores of 700 or above were deemed as 

significant and these PPIs were kept. Where more than one PPI score was found between two 

proteins, the highest score was kept. The resulting mouse and human PPIs were compared, and where 

any particular PPI was identified in both species the larger PPI score was kept. Paths were then 

generated through the SPAGI method [32] by suppling possible R and TR combinations to the 

Dijkstra graph algorithm, together with all 1-to-1 PPIs identified by SPAGI. The highest scoring path 

for any R and TR combination was then obtained. Path lengths were permitted to range from 3 to 7 

PPIs, consisting of: up to one R/R PPI; one R/K PPI; up to 4 consecutive K/K PPIs; and one K/TR 

PPI. The resulting collection of completed R/K/TR paths was sub-divided according to the R at the 

start of the path, with each R-defined collection of paths termed a pathway. The subset of paths 

consisting solely of housekeeping Rs, Ks and TRs was also identified using the list of housekeeping 

genes (described in per 2.2). 

 

2.4 Identification and ranking of LEC-specific paths and pathways 

 To obtain all currently possible R/K/TR paths for LECs, RNA-seq data from p0 mouse LECs was 

used. Lists of LEC-expressed and LF cell-expressed genes were obtained using an expression cut-off 

threshold of log2(RPKM+1)=3 based on the expression distribution profile shown in Supplementary 

Figure S1. From the list of LEC-expressed genes, a sub-list of LEC-expressed Rs, Ks and TRs was 

created and used to search the above universe of R/K/TR paths (see 2.3) in order to identify: i) all 

possible LEC R/K/TR paths; ii) the subset of paths that contain only housekeeping Rs, Ks and TRs; 

and iii) the complementary subset of ‘LEC-specific’ paths that excluded any paths composed solely of 
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housekeeping Rs, Ks and TRs. From the resulting collection of lens-specific paths, each R-defined 

pathway was assigned an ‘activity score’ based on the expression levels of the Rs/Ks/TRs contained 

within the pathway (for details see Kabir et al. 2018) [32]. All lens-specific pathways were then 

ranked by plotting their activity scores against the total number of TRs contained with each pathway. 

 

2.5 Identification of TG sets and cataract-associated genes for LEC-expressed TRs 

 A list of non-house-keeping LEC TRs was obtained from the LEC-specific paths (see 2.4). 

Publically-available LEC TG sets (see 2.1) were obtained for these non-house-keeping LEC TR, with 

different thresholds used depending on the application for which the TG sets were used (as described 

in the Results section). Comparison against the Cat-Map [7] database enabled the frequency of 

cataract-associated genes within these LEC TG sets to be calculated, both for the TG of each 

individual TR and also for the combined set of TGs for all the TRs. 

 

2.6 Gene ontology and promoter analyses 

 GO analysis was performed using the David Gene Ontology Functional Annotation Clustering tool 

(https://david.ncifcrf.gov/home.jsp) [34, 35]. Promoter analyses were performed using the PASTAA 

web server [36] to identify transcription factor binding sites within +/- 400 base pairs of the 

transcription start sites of lens-expressed genes. 

 

2.7 Cell culture 

 CA1 human pluripotent stem (PS) cells [37] were provided by A. Nagy and used as per approval 

from the Western Sydney University Human Research Ethics Committee. The PS cells were passaged 

as aggregates using 1 mg/mL dispase [38] before being plated in mTeSR1 (StemCell Technologies, 

Canada) onto Matrigel-coated plates (Corning, Australia). Populations of ROR1-expressing LECs 

were obtained by differentiating the human PS cells as described by Murphy et al [39]. 
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2.8 Western blotting 

 Cultures of human PS cell-derived LECs were harvested for protein using a total protein lysis 

buffer (25 mM Tris, 150 mM NaCl, 1 mM EDTA, 1% Triton-X 100, 1 mM Na Vanadate, 1 mM 

PMSF, 5 g Aprotinin, X Protease Inhibitor, pH 7.4). Protein concentration was determined using the 

EZQ Protein Quantification kit (Thermo Fisher Scientific): 25 g protein per lane was separated via 

SDS-PAGE and transferred onto 0.2 m PVDF membrane (Merck, Massachusetts, USA) using 120V 

for 1 hour at 4C. Membranes were incubated with 2 g anti-ELK1 antibody (Abcam, Cambridge, 

UK) or 2 g anti-phospho-ELK1 antibody (Abcam) at 4 C overnight. Membranes were then probed 

with horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 hour at room temperature, 

before being visualised using a Luminata Cresendo Western HRP Substrate (Merck).  

 

3. Results and discussion 

3.1 Lens signalling pathways defined through gene expression and PPIs  

 Establishment of a testable transcriptional blueprint for growth factor-mediated control of LEC 

gene expression requires detailed and high-confidence knowledge of PPIs for lens signalling pathway 

molecules. Toward this end we first generated lists of all known mouse and human Rs, Ks and TRs 

(expressed in any tissue) and then identified all currently known one-to-one PPIs between these 2,137 

signal pathway proteins. This approach identified 44,672 one-to-one PPIs: 19,104 identified via the 

mouse STRING data, and 25,568 via the human STRING data (Table 1). This included 16,452 PPIs 

common to both the mouse and human data, and 28,220 PPIs unique to either the mouse or human 

data. These 44,672 one-to-one PPIs were then used to identify a universe of currently possible 

complete R to K to TR paths (74,856). After removal of paths that involve only house-keeping 

proteins, 63,629 individual paths remained constituting 464 R-defined pathways that are 

representative of all currently known signalling pathways that could operate in any known cell type.  

 We next used high-confidence lens transcriptional profiles to determine the set of R/K/TR paths 

that could operate in LECs. Published mouse LEC RNA-seq data [30] was analysed to determine the 

Rs, Ks, and TRs expressed at postnatal day 0 (534 in total: 253 Rs, 126 Ks, 155 TRs). This included 
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known lens Rs (e.g., Fgfr1-4, Bmprs, etc.), Ks (e.g., Mapk1, Pik3ca, Pik3cg, etc.) and TRs (e.g., Pax6, 

Prox1, Oct1, etc.).  

 By comparison with the universe of possible signalling pathways constructed above, the LEC-

expressed signalling molecules were shown to form 30,201 individual paths (253 pathways). Paths 

involving only house-keeping genes were then removed, leaving 20,245 lens-specific paths that could 

be condensed into 253 R-defined pathways (Table 2) involving a total of 155 TRs. Similar analysis of 

the LF cell gene expression data revealed 12,250 LF cell paths (186 pathways) involving 144 TRs 

(Table 3). This comprehensive database of lens signalling pathways enables assessment of lens 

signalling cascades via both ‘top-down’ (i.e., from R to TRs) or ‘bottom-up’ (i.e., from TR to Rs) 

analyses (Fig. 1), with the ability to identify Ks and TRs that are common to or distinct between 

different lens signalling pathways. 

 

Table 1: Summary of the known signal pathway universe identified via SPAGI 

 Mouse Human 

# R, K, TF 2,137 2,137 

#  R/K, K/K, K/TF interactions (known PPI score > 0) 11,353 18,603 

# high-confidence (score >= 700) R/K, K/K, K/TF 

interactions  

(assuming bi-directional interaction) 

19,104 25,568 

# common interaction 16,452 

# combined unique interaction 28,220 

# high-confidence complete R/K/TF paths 74,856 

# high-confidence complete R/K/TF paths without 

housekeeping gene paths    

(# pathways) 

 

63,629 

(464) 
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Table 2: Summary of SPAGI-identified signalling pathways in mouse LECs 

# LEC expressed all paths  

(# pathways) 

30,201 

(253) 

# LEC expressed all paths TFs 155 

# LEC expressed specific paths (i.e., without 

housekeeping gene paths) 

(# pathways) 

 

20,245 

(253) 

# LEC expressed specific paths TFs 155 

 

 

Table 3: Summary of SPAGI-identified signalling pathways in mouse LFs 

# LF expressed all paths  

(# pathways) 

19,321 

(186) 

# LF expressed all paths TRs 144 

# LF expressed specific paths (i.e., without 

housekeeping gene paths) 

(# pathways) 

 

12,250 

(186) 

# LF expressed specific paths TRs 144 

 

 

3.2 Mapping TGs, including cataract-associated genes, to the LEC blueprint  

 To expand the above collection of 253 high-confidence, experimentally-determined, R-defined 

lens signalling pathways into a comprehensive transcriptional blueprint of lens biology, we next 

investigated publically-available LEC TG sets generated by Marbach et al [25] from the Fantom5 

consortium cap analysis of gene xxpression (CAGE) data. These LEC TG sets map the TRs that are 

active in human LECs to gene transcripts (obtained via the Fantom5 consortium) [40, 41] that are 

expressed by human LECs. At present, only LEC TG data is available as LF cell data was not 

generated by the Fantom5 consortium [40, 41].  
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 As the LEC TG data can be accessed based on a threshold value, we first examined how varying 

the magnitude of this threshold impacted on the size of the TG list obtained for LECs. As shown in 

Fig. 1C, increasing the threshold value reduced the total number of TGs obtained for the 155 LEC-

expressed TRs. To determine the biological relevance of the TGs obtained, we assessed how many 

known cataract-associated genes were captured by these different TG access thresholds. Comparison 

of 311 cataract-associated genes obtained from the Cat-Map database [7] with the TG sets obtained 

via different threshold values revealed a gradual reduction in cataract genes captured as the threshold 

value was increased: from 248 at a threshold value of 0, to 11 at a threshold value of 0.5 (Fig. 1C and 

D). At the same time, the frequency of cataract-associated genes within the TG sets increased from 

~1.6% (the background frequency in the genome) at a threshold value of 0 to almost 50% at a 

threshold value of 0.5 (Fig. 1D). 

 

3.3 Ranking LEC pathways highlights pervasive as well as niche critical lens signalling pathways 

 To provide a large number of LEC TGs for subsequent analyses, while including known cataract-

associated genes at a higher frequency than they are present in the genome, the LEC TG threshold 

value of 0.1 was used. This process captured 1,390 LEC TGs. Comparison of these TGs against both 

mouse [8, 30] and human [31] LEC gene expression data (to confirm expression of these TGs in other 

LEC gene expression datasets) revealed 63 cataract-associated genes (at a frequency of ~4.8%) that 

are regulated by one or more of 64 LEC-expressed TRs. We next ranked the 253 LEC-specific 

signalling pathways by plotting their ‘activity score’ (a measure derived from the proportion of highly 

expressed genes within any given path) [32] against the total number of TRs regulated by each 

pathway (Fig. 2). This analysis revealed a trend in that pathways known to be important in LEC 

biology tended to: i) have relatively high activity scores (i.e., pathway members tended to be highly 

expressed); ii) regulate large numbers of LEC-expressed TRs; and iii) regulate large numbers of 

known cataract-associated genes.  

 Signalling pathways identified through this analysis included pathways known to be involved in 

lens development and/or growth (for extensive reviews of these pathways as relates to lens biology 

see Zhang and Cvekl 2017 and Lovicu  2011) [9, 16]. Some examples of the LEC pathways identified 
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here include: the Fgf pathway (including Fgfr1 to Fgfr4) involved in LEC proliferation and 

differentiation to LF cells; the Bmp pathway involved in LEC proliferation and survival, and LF cell 

differentiation; the Wnt pathway (via Fzds) that regulates LEC adhesion, integrity and polarity; the 

Notch pathway that controls lens growth through LEC formation and LF cell differentiation; integrins 

required for early lens differentiation, LEC/LF cell adhesion and normal development, as well as lens 

capsule assembly; cadherins required for LEC polarity/adhesion/survival, and LF cell elongation; 

Ephs and Efns involved in cell adhesion, cell polarity and LF cell elongation/alignment; and the Tgf 

pathway that provides an inhibitory signal in the pre-placodal region for proper lens growth, and is 

implicated in anterior subcapsular cataract and posterior capsule opacification. 

 Interestingly, the above trend (for critical lens pathways to have high activity scores, to regulate 

large number of TRs, and to regulate large numbers of cataract-associated genes) was not an 

invariable rule. For instance, normal levels of Lrp6 [42], Smo [43], Itgb1 [44-46] and Itga6 [47, 48] 

are required for normal lens development. While these pathways have high activity scores, they are 

shown here to involve relatively few LEC TRs and to regulate few known cataract-associated genes 

(Fig. 3). These data are consistent with the idea that while a few signalling pathways may control 

large parts of lens behaviour, additional pathways likely perform critical niche functions that may not 

always be predicted based on expression levels or breadth of transcriptional footprint. Thus, the LEC 

transcriptional blueprint enables a new way to visualise molecular hypotheses that describe pervasive 

and niche critical contributions to lens biology. 

 

3.4 Identification of overlapping and potentially niche roles for LEC signalling pathways 

 The above LEC transcriptional blueprint allows assessment of the specific molecular nodes that 

are either common to multiple pathways or unique to individual pathways at the level of Rs, Ks, TRs 

and TGs. To begin examining the interconnectivity between different LEC signalling pathways, 

comparison of the Fgfr and Pdgfr pathways was performed.  

 Fgfr pathways were chosen as Fgf signalling is critically-required for lens development [9, 19]. 

Analysis of the LEC transcriptional blueprint revealed that, individually, the Fgfr1 to Fgfr4 paths are 

quite highly expressed (Fig. 2). These Fgfr pathways individually regulate different numbers of TGs 
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and cataract-associated genes. With a LEC TG threshold of 0.1, the Fgfrs collectively are seen to 

regulate 142 LEC TRs (including Atf, Ets, Etv, Jun, Lef1, Myb, Myc, Mycn, Pax6, Pou2f1, Rara, 

Smad7) and 63 cataract-associated genes.  

 In comparison, in the normal lens Pdgf signalling is generally considered to regulate LEC 

proliferation, though in vitro it can also act as a potentiator of LF cell differentiation [9]. Analysis of 

the LEC blueprint showed that Pdgfr pathway members are quite highly expressed, and that with a 

LEC TG threshold of 0.1 the Pdgfr paths regulate 123 LEC TRs including known TRs (e.g., Atf, Ets, 

Etv, Jun, Lef1, Myb, Myc, Mycn, Pax6, Rara, Smad1, Smad, Yap) and relatively unknown lens TRs 

(e.g., Elk1). Additionally, with a LEC TG threshold of 0.1 the Pdgfr pathway was also seen to 

regulate all 63 cataract-associated genes.  

 Further comparison of the combined Pdgfr and combined Fgfr paths indicated that 49 Ks and 139 

TRs are common to both pathways; this represents 92.7% of the Pdgfr TRs and 97.9% of the Fgfr 

TRs. For the remaining 7.3% of Pdgfr TRs - i.e., those not shared with Fgfr pathways (e.g., Elk1, 

Ets1, Smad1, Smad3, Stat5a, Stat5b, Yap1) - GO analysis showed some of their TGs are involved in 

glycoprotein biosynthesis (but not lens fibre development), including Gcnt2, Pomgnt1, Vcan, each of 

which is a cataract associated gene. Conversely, GO analysis showed that some of the TGs for the 

2.1% of Fgfr TRs not regulated by Pdgfr paths are involved in lens fibre development (but not 

glycoprotein biosynthesis), including Epha2 and Bfsp2, both of which are cataract-associated genes.  

 Overall, these data are consistent with Fgfr signalling, but not Pdgfr signalling, being a driver of 

LF cell differentiation, and with reports that show manipulation of either pathway can lead to loss of 

normal lens biology [9]. Given the large overlap in TG regulation by Pdgfr and Fgfr paths, it is 

possible that both pathways provide redundancy during lens development and growth. There may also 

be niche functions of these pathways resulting from the small subsets of genes regulated by the few 

TRs unique to both the Fgfr and Pdgfr pathways. More broadly, the Pdgfr data suggest that important 

in vivo roles may exist for a wider range of lens signalling pathways than is currently understood. 
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3.5 The LEC blueprint accurately predicts known  roles for lens signalling pathways 

 To assess how accurately the LEC blueprint identifies functional roles for lens signalling 

pathways, the TGs for all TRs within particular pathways were grouped and analysed via GO. 

Encouragingly, this analysis identified GO categories that match known or suspected roles for these 

pathways in lens development (Table 4), indicating the LEC blueprint accurately reflects lens biology. 

 

Table 4: GO analysis of TGs of pathways known to be involved in LECs. 

 

 

3.6 The LEC blueprint accurately predicts known  LEC transcriptional regulation events 

 As the LEC blueprint shows lens signalling pathways regulate both multiple TRs and multiple 

cataract-associated genes (Fig. 2), the relationship between TRs and cataract-associated genes was 

further investigated. Using the 0.1 LEC TG threshold, 87 LEC TRs were captured (Fig. 3A) including 

Pathway (# paths) 
Example GO categories for pathway TGs 

(raw p<0.05; Benjamini p<0.05) 

# cataract 

genes 

FGF (320) GO:0040036 regulation of FGFR signalling 62 

BMP (72) GO:0071772 response to BMP 22 

WNT (846) GO:0016055 Wnt signalling pathway 61 

PDGF (186) GO: 0002009: morphogenesis of an epithelium 63 

NOTCH (309) GO:0008360 regulation of cell shape 56 

EPH (1337)  GO:0070307 lens fiber cell development 63 

EFN (855) GO:1905114 R signaling pathway in cell-cell signaling 63 

CDH (180) GO:0043010 camera-type eye development 57 

ITG (1728) GO:001654 eye development  63 
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extensively studied lens TRs (such as Pax6 [49], Ctcf [50, 51], Atf4 [52], Rxra [53], etc.) and other 

TRs with currently little or no known role in lens biology (such as Sp1 [54], Elk1, etc.).  

 A wide range was seen in the number of TGs regulated by each TR using the 0.1 LEC TG 

threshold, from 1 TG (e.g., EP300) to79 TGs for ELK1 and 667 TGs for SP1. Analysis of cataract-

associated genes within the TG sets showed that TRs with poorly understood current roles in lens 

development regulate varying numbers of cataract-associated genes. For example 35 cataract-

associated genes are regulated by SP1 and 3 by ELK1, whereas 23 TRs do not regulate any cataract-

associated genes (Fig. 3B).  

 Interestingly, for the TRs that regulate at least one cataract-associated gene, the frequency of 

cataract-associated genes per hundred TGs is inversely related to the total number of TGs (Fig. 3C). 

This suggests that some TRs may have quite niche functions in lens biology. For example, with the 

0.1 LEC TG threshold, SP1 regulates the largest number of TGs but has the lowest frequency of 

cataract-associated genes (~4.9%, though this is still higher than the genome frequency of ~1.6% for 

cataract-associated genes). In contrast, EP300 is shown to regulate only a single TG, the cataract-

associated gene CRYBB3 - indicating that EP300 has the highest frequency of cataract-associated 

genes (100%) at the 0.1 LEC TG threshold. This data is consistent with the published 100-fold loss of 

Crybb3 expression seen in CBP/Ep300 knockout mice [55]. Moreover, mutation or loss of Ep300 is 

associated with cataract in both mice and humans as seen in Rubinstein-Taybi syndrome [56]. These 

data suggest that the number of TGs a TR regulates does not necessarily indicate the importance of 

that TR to the lens. This is reinforced by the finding that 33 of the 63 cataract-associated genes are 

shown to be regulated by only 1 TR with the 0.1 LEC TG threshold.  

 

3.7 Different lens TRs regulate specific subsets of cataract-associated genes 

 Examination of the classes of cataract-associated genes regulated by each LEC TR (Fig. 3D) 

showed that: 33 TRs regulate crystallin genes associated with cataract; 38 TRs regulate TRs that are 

themselves associated with cataract; 3 TRs regulate extracellular matrix proteins associated with 

cataract; 11 TRs regulate membrane proteins associated with cataract; and 38 TRs regulate other types 

of proteins associated with cataract. Individual cataract-associated genes varied in how many TRs 
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were involved in their regulation. For example, the 0.1 LEC TG threshold showed that the cataract-

associated gene PAX6 was regulated by the most TRs (17) whereas 21 cataract-associated genes were 

regulated by only 1 TR each (Fig. 4A) - again suggesting some TRs have niche functions compared to 

other lens TRs.  

 As the LEC transcriptional blueprint shows that each LEC TR is regulated by more than one 

pathway, each cataract-associated gene is regulated by more than one pathway (Fig. 4B). Importantly, 

the top-down and bottom-up data analysis approaches provided by the LEC blueprint enable 

identification of the specific Rs, Ks and TRs that regulate specific (e.g., cataract-associated) LEC 

genes, as well as identification of key interconnections between signalling pathways via particular Ks 

or TRs.  

 

3.8 A new, large LEC gene regulatory network involving known critical lens regulators 

 As normal lens development requires precise transcriptional regulation of genes associated with 

cataract formation, we examined whether any gene regulatory network is formed by the 64 LEC TRs 

and 63 cataract-associated genes captured via the 0.1 human LEC TG threshold. To assist 

interpretation of the resulting interconnected LEC gene regulatory network, genes were colour-coded 

based on whether their expression is higher in LECs, higher in LF cells, or similar in LECs and LF 

cells. Additionally, to identify networks that were common to lens biology of multiple species, the 0.1 

LEC TGs were compared against both mouse [8, 30] and human [31] LEC gene expression data. 

 The resulting LEC gene regulatory network for 63 cataract-associated genes (Fig. 5A) involves 

many known lens TRs including Pax6, Sox2, Prox1, Maf, Myb, Atf4/Creb2, Pou2f1/Oct1, Smads, 

Otx2, Myc and Ep300. Within the network Sp1, Pax6 and Sox2 are identified as key nodes: Sp1 is 

shown to regulate key lens TRs (e.g., Prox1, Pzx6, Sox2) [57, 58]  as well as crystallins and other 

genes; Pax6 is shown to be regulated by 17 different TRs; and Sox2 is regulated by 14 TRs.  

 The network also identifies known gene regulatory interactions, including: regulation of Pax6 by 

Oct1 (Oct1-/-, Sox2+/- mice lack both Pax6 expression and lens placode induction [59]); regulation of 

Pax6 by ETS TRs (there are ETS binding sites in the Pax6 promoter [16]); and EP300 regulation of 

Crybb3 (Wolf et al show a 100-fold decrease in Crybb3 in CBP/p300-/- mice [55]). 
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3.9 A higher-level transcriptional network of 10 TRs predicted to control LECs 

 The LEC TG data provides TG sets for all the 64 TRs shown in the network in Fig. 5A, thus 

enabling GO analyses to infer functional roles not just for subsets of TGs but also for the TR and 

signalling pathways that regulates these TGs.  

 To begin this process, we first examined whether any hierarchy existed among the 64 TRs in the 

large LEC cataract-associated gene network shown in Fig. 5A - i.e., whether a subset of the 64 TRs 

controlled expression of any of the LEC TRs and cataract-associated genes. This analysis revealed 27 

TRs controlled expression of 9 of the 64 TRs and 51 of the 63 cataract-associated genes (Fig. 5B). 

Strikingly, Pax6 is at the centre of this higher-level network where it is regulated by 17 TRs: 3 TRs 

more highly expressed in LECs (Sp1, E2f4 and Ets1), 12 TRs similarly expressed in LECs and LF 

cells (including Elk1), and 3 TRs more highly expressed in LF cells (Atf4, Creb3 and Rxrg).  

 The graphical presentation of this higher-order network was then altered to show only the relative 

fold change in gene expression between LECs and LF cells for the 27 TRs (Fig.5C). As a result, the 

role of 10 TRs was highlighted, suggesting that: i) Pax6, Etx1, Creb3L1, Klf4, Sp1, Egr1 and E2f4 are 

important for regulating expression of the LEC network controlling expression of cataract-associated 

genes shown in Figure 5A; and ii) Atf4, Creb4 and Rxrg might play important roles in regulating this 

same network during differentiation to LF cells.  

 

3.10 The LEC blueprint ascribes relevant functional roles to lens TRs and signalling pathways 

 Characterisation of the TGs for the 10 TRs involved in the higher-level network shown in Fig. 5C 

was performed using GO analyses. These GO analyses were coupled with bottom-up analyses using 

the SPAGI signalling pathway data in an attempt to identify the signalling pathways that regulate each 

of the 10 TRs. The GO categories shown in Figures 6 and 7 (and Supplementary Table S1) indicate 

that each of the 10 TRs in the higher-level gene regulatory network appear to perform specific 

functions within LECs that match known LEC biology (e.g., morphogenesis of a polarised 

epithelium). The TGs and cataract-associated genes regulated by this 10 TR higher-level network are 

shown in Supplementary Figures S2 and S3. 
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 Further analysis of the TG GO categories for the 10 TRs shown in Figures 6 and 7 (and 

Supplementary Table S2) suggests that each of the TRs is regulated by different combinations of 

signalling pathways. Encouragingly, the GO-based pathway predictions support both the SPAGI-

generated lens signalling pathway predictions and known lens biology, such as Wnt, Pdgf, Fgf, Egf, 

and Notch. Additionally, the mutual identification of Tgf signalling by both the GO analysis and 

SPAGI signalling pathway analysis indicates underlying LEC networks that may be involved in 

development of posterior capsule opacification, and warrants more detailed investigation in future 

studies.  

 Noticeably smaller p-values were found for the GO terms arising from the TGs of the 7 TRs more 

highly expressed in LECs. The larger p-values associated with the 3 TRs more highly expressed in LF 

cells indicates CAGE data for LF cells should be obtained to better define the signalling and 

transcriptional networks that regulate LF cell differentiation. However, the current GO and SPAGI 

pathway analyses for these 3 TRs both highlight the role of Fgf and Wnt signalling in LF cell 

differentiation (Fig. 7 and Supplementary Table S2) - consistent with known roles for these pathways 

in LF cell production both in vivo and in vitro.  

 Taken together, the GO and SPAGI analyses identify a novel lens regulatory circuit centred around 

Pax6, Ets1, Creb3L1, Klf4, Sp1, Egr1 and E2f4 as important for establishing and/or maintaining the 

LEC phenotype, as well as Atf4, Creb4 and Rxrg as playing roles in driving or facilitating LEC 

differentiation to LF cells). These data also support the LEC transcriptional blueprint as a new and 

valuable resource for targeted molecular hypotheses to better define lens and cataract formation. 

 

3.11 Additional lens gene regulatory networks remain to be discovered 

 It is worth noting that only ~20% (63 of 311) of the known cataract-associated genes are involved 

in the networks shown in Fig. 5A, and fewer in Fig. 5B and C. Clearly then, while the new LEC 

transcriptional networks shown here fit lens biology and are supported by the literature, they are not 

the only ones that operate in the lens. Lowering the LEC TG threshold to 0 increased the total number 

of TGs to 13,801 and the number of cataract-associated genes to 248 (after mapping against both 

mouse [8, 30] and human [31] LEC gene expression data to broadly confirm lens expression of the 
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TGs). Possible reasons why the remaining 63 (i.e., 311-248) cataract-associated genes may not be 

captured include species-specific differences, differences in the developmental timing of gene 

expression, expression in other tissues that affect lens transparency, and/ restricted expression to LF 

cells (that cannot be fully assessed due to the current lack of LF cell CAGE data). Future investigation 

of all 248 cataract-associated genes not directly addressed in the present study - and their 

accompanying signalling pathways - using the LEC transcriptional blueprint will further expand our 

understanding of the molecular circuitry controlling lens and cataract formation. 

 

3.12 ELK1: confirmation the LEC transcriptional blueprint identifies new lens biology  

 The 3 novel LEC networks described in Figure 5 contain a large number of well-characterised 

LEC TRs as well as known transcriptional regulatory events. However, little is known of the roles 

played in the lens by some of the other TRs. For example, Elk1 was shown to regulate LEC TGs (Fig. 

3A), including Pax6 (Fig. 5). In support of this finding, a role for Elk1 in the mouse lens has recently 

been suggested through promoter analyses of micro-dissected embryonic mouse LECs and LF cells 

[60]. To assess whether ELK1 might also be involved in human lenses we performed promoter 

analyses of published adult human lens gene expression data [31]. These analysis identified ELK1 

binding sites within +/- 400 base pairs of the transcriptional start site for a large number of genes 

expressed by both LECs and LF cells (Fig. 8A). This is consistent with the gene expression data 

shown ELK1 is not differentially expressed between LECs and LF cells. 

 To assess whether ELK1 protein is expressed by human lens cells, we performed PCR and 

Western blot analysis using a recently described population of human (ROR1+) LECs obtained from 

pluripotent stem cells. The PCR analysis (not shown) demonstrated expression of ELK1 mRNA, and 

the Western blot analysis confirmed expression of both ELK1 protein and phosphorylated ELK1 

protein in the human LECs (Fig. 8B). These data suggest that more detailed investigation of lens 

signalling pathways and TGs related to Elk1 in mouse and/or human lens biology is warranted, and 

that ROR1+ human LECs and micro-lenses present a useful human system for these studies.  
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 The data also demonstrate that the LEC transcriptional blueprint can be used to identify new 

biology relevant to both mouse and human lenses. Examples of additional important questions that 

can be isolated as testable molecular hypotheses using the LEC blueprint include:  

- How is expression of - and -crystallins regulated by Ets TRs, as indicated by Figure 5?  

- Is BMP signalling involved in the Smad-mediated regulation of crystallin gene expression shown in 

Figure 3D?  

- What are the molecular mechanisms by which Atf and Creb family members regulate lens 

development, given that Atf4 and Creb3 are shown to regulate Pax6 (Fig. 5A-C) and Creb3 is shown 

to regulate Maf, Epha2, Sox2 (Fig. 5A) and Creb3l1 is shown to regulate Cryba4 (Fig. 5A)?  

- Do Sp1 and Rxrg interact to control expression of the cataract-associated gene Gfer in the lens (Fig. 

5), given published reports of Sp1/Rxr interactions in non-lens cells [61, 62]? 

 

4. Conclusion 

 The LEC transcriptional blueprint presented here (i.e., LEC signalling pathways and associated 

gene regulatory networks) is defined by known lens mRNA expression levels [30], experimentally-

validated PPIs [33], empirically-determined transcript initiation sites [25], and known cataract-

associated genes [7]. The LEC blueprint provides a comprehensive, integrated, multi-pathway 

framework for describing R-mediated transcriptional control of LEC behaviour. The R-mediated 

transcriptional networks presented here and derived from the LEC blueprint are consistent with 

known LEC biology accumulated over decades, as well as emerging molecular detail of critical lens 

TRs and cataract-associated genes. Demonstration that ELK1 is both expressed and phosphorylated in 

human ROR1 LECs - as predicted by the LEC blueprint - shows both that the blueprint enables 

hypothesis-driven interrogation of lens biology and that it can accurately predict new lens biology. 

The LEC blueprint thus provides a new and powerful tool for defining the molecular control of lens 

formation and growth, including investigation of niche functions specific to particular signalling 

pathways and/or TRs. The specificity of the molecular hypotheses within the LEC blueprint suggests 

it may also be applicable to investigation of the molecular events that occur during the initial stages of 

primary human cataract formation. As many of the signalling pathways and TGs contained within the 
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LEC transcriptional blueprint are involved in regulation of other tissues, particularly eye and neural 

tissues, further investigation of the LEC blueprint will provide a more detailed understanding of 

molecular events broadly relevant to human health. 
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Fig. 1. SPAGI-generated LEC signalling paths and LEC TGs. A. Example of a ‘top-down’ 

analysis that identifies signalling cascades relating to a single R. B. Example of a ‘bottom-up’ analysis 

that identifies different signalling pathways that regulate a particular TR. C. Increasing the LEC TG 

threshold decreased both the number of known cataract-associated genes obtained (y-axis) and the 

total number of TGs obtained (numbers above open circles). D. Increasing the LEC TG threshold 

increased the frequency of known cataract associated genes captured (y-axis; absolute numbers of 

known cataract-associated genes captured at each threshold is indicated by the numbers above the 

open circles). 

 

Fig. 2: Relationship between signalling pathway activity scores, TR numbers per pathway and 

number of cataract-associated genes per pathway. A. LEC pathways identified by the SPAGI 

pipeline and then mapped against the LEC TG data (0.1 threshold). A selection of signalling pathways 

known to be important for LEC biology are circled in red. Label colours indicate the number of 

cataract-associated genes regulated by the pathway (i.e., green: 0 to 20; blue: 21 to 40; orange: 41 to 

60; dark red: >61). 

 

Fig. 3. Assessment of 64 LEC TRs and their TGs. A. Bar-plot showing the number of TGs 

regulated by each of the 64 LEC TRs as shown by the 0.1 LEC TG threshold. B. The number of 

cataract-associated genes regulated by each of the 64 LEC TRs. C. The proportion of cataract-

associated genes relative to the total number of TGs for each of the 64 LEC TRs. D. Classes of 

cataract-associated genes regulated by LEC TRs. 

 

Fig. 4. The number of regulatory TRs and pathways for 63 cataract-associated genes. A. Bar-

plot showing PAX6 is seen to be regulated by the largest number of TRs in the 0.1 LEC TG threshold 

data, whereas 21 cataract-associated genes are regulated by only 1 TR. B. Bar-plot (with the same x-

axis arrangement as A) showing the number of pathways that regulate each of the 63 cataract-

associated genes shown in A.  
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Fig. 5. Gene regulatory networks present in LECs. A. The gene regulatory network consisting of 

64 LEC TRs and the 63 cataract-associated genes obtained using the 0.1 LEC TG threshold (yellow 

circles indicate known lens TRs; blue indicates higher expression in LECs; red indicates higher 

expression in LF cells; grey indicates similar expression in LECs and LF cells; black border indicates 

a known cataract-associated gene). B. A network of 27 TRs that regulate 9 of the 64 LEC TRs and 53 

of the 63 cataract-associated genes shown in (A). C. A reduced version of the network shown in (B) 

obtained by showing the gene expression differences between LECs and LF cells (large expression 

difference is represented by large circles, small expression difference is represented by no or small 

circles). 

 

Fig. 6. Gene regulatory network involving 7 TRs with higher expression in LECs. Mapping of 

GO terms - that arose from GO analysis of TGs regulated by the 7 TRs indicated - shows that 

particular GO terms are both unique to each TR and indicative of LEC functions. GO terms related to 

particular signalling pathways were also identified that correlate with the signalling pathways 

identified by the SPAGI analysis. (Legend for text in red boxes: italicized text for GO terms specific 

to that TR; black text for GO terms with Benjamini p < 0.05; grey text for GO terms with raw p < 

0.05; bold text indicates where GO analysis matches SPAGI predictions) 

 

Fig. 7. Gene regulatory network involving 3 TRs with higher expression in LF cells. Mapping of 

GO terms - that arose from GO analysis of TGs regulated by the 3 TRs indicated - shows a GO term 

that is unique to ATF4 and a non-unique GO term for RXRG and CREB3. GO terms related to 

particular signalling pathways were also identified that correlate with the signalling pathways 

identified by the SPAGI analysis. (Legend for text in red boxes: italicized text for GO terms specific 

to that TR; black text for GO terms with Benjamini p < 0.05; grey text for GO terms with raw p < 

0.05; bold text indicates where GO analysis matches SPAGI predictions) 

 

Fig. 8. Analysis of ELK1 DNA-binding motifs and ELK1 protein expression in human lens cells. 

A. PASTAA-based promoter analyses show that ELK1 binding sites are present within +/-400 base 
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pairs of transcription start sites in human LEC and LF cell genes. B. Western blot analysis shows 

ELK1 (n = 2) and phospho-ELK1 (n = 2) protein are expressed in human ROR1+ LECs. 
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Supplementary Table S1. Selected GO terms arising from the TGs for the 10 TRs shown in Figure 6C.  

TR # cat. 
genes 

# 
unique 

cat. 
genes 

TG GO results excluding signalling pathways raw p-
value 

Benjamini 
p-value Black text indicates Benjamini p<0.05. Italicised terms are specific to TGs of that TR. 

Ets1 6 1 

morphogenesis of a polarized epithelium 1.8E-03 4.8E-02 
establishment of planar polarity 1.1E-03 3.2E-02 
regulation of MAPK cascade 2.2E-04 8.4E-03 
regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle  (+1 GO terms with 
Benjamini p<0.02) 7.9E-04 2.5E-02 
establishment of spindle localization (+4 GO terms with Benjamini p<0.01) 3.2E-05 1.7E-03 
cellular respiration 1.4E-04 5.9E-03 

Pax6 2 0 apoptotic nuclear changes 5.9E-04 3.3E-02 
positive regulation of transcription, DNA-templated 9.4E-04 4.6E-02 

E2f4 3 0 

positive regulation of chromosome segregation (+1 GO term with Benjamini p<0.03) 3.1E-05 1.7E-03 
DNA replication initiation 2.0E-06 1.3E-04 
DNA strand elongation 1.6E-04 7.8E-03 
regulation of glycolytic process (+1 GO term with Benjamini p<0.03) 2.2E-04 9.8E-03 
response to hydrostatic pressure 1.3E-03 4.5E-02 

Egr1 7 2 

response to steroid hormone 4.5E-05 2.2E-03 
sterol biosynthetic process 7.3E-04 2.2E-02 
extrinsic apoptotic signaling pathway in absence of ligand 5.5E-04 1.8E-02 
regulation of establishment of protein localization to plasma membrane 1.7E-03 4.3E-02 
microtubule cytoskeleton organization 1.4E-03 3.7E-02 

Sp1 35 16 

positive regulation of cell cycle phase transition (+3 GO terms with Benjamini p<0.05) 1.8E-03 3.4E-02 
regulation of cyclin-dependent protein kinase activity 2.8E-03 4.9E-02 
positive regulation of DNA biosynthetic process (+2 GO terms with Benjamini p<0.05) 1.6E-04 4.3E-03 
regulation of gene expression (+4 GO terms with Benjamini p<1E-26) 7.6E-34 1.0E-30 
RNA biosynthetic process (+3 GO terms with Benjamini p<1E-22) 9.7E-30 7.7E-27 
positive regulation of cell morphogenesis in differentiation (+9 GO terms with Benjamini p<0.01) 6.1E-07 3.0E-05 
adherens junction assembly 2.3E-03 4.2E-02 
TOR signaling (+1 GO term with Benjamini p<0.05) 2.1E-04 5.7E-03 
ER-associated ubiquitin-dependent protein catabolic process 2.9E-04 7.5E-03 
mitochondrial outer membrane permeabilization involved in programmed cell death 2.7E-05 8.9E-04 

Klf4 9 2 

mitotic metaphase plate congression 3.2E-05 2.0E-03 
regulation of mRNA processing 1.1E-03 3.6E-02 
regulation of mRNA metabolic process 2.8E-04 1.2E-02 
intracellular protein transmembrane transport 6.2E-04 2.2E-02 
protein transmembrane transport 1.0E-03 3.3E-02 

Creb3l1 1 0 

vesicle targeting 6.24E-06 2.6E-02 
ER to Golgi vesicle-mediated transport 8.62E-06 1.2E-02 
vesicle targeting, rough ER to cis-Golgi 1.91E-05 1.3E-02 
Golgi vesicle transport 2.14E-05 1.3E-02 

Atf4 2 0 

negative regulation of response to endoplasmic reticulum stress (+1 GO term with Benjamini 
p<0.02) 1.5E-04 9.7E-03 
positive regulation of ER-associated ubiquitin-dependent protein catabolic process 5.5E-04 2.6E-02 
negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling 
pathway 5.8E-04 2.7E-02 
regulation of endoplasmic reticulum unfolded protein response 9.2E-04 4.0E-02 
regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway 1.2E-03 4.9E-02 

Creb3 4 0 

RNA metabolic process (+10 GO terms with Benjamini p<0.05) 4.6E-22 1.1E-18 
chromatin silencing (+3 GO terms with Benjamini p<0.01) 2.0E-18 3.1E-15 
chromatin assembly (+5 GO terms with Benjamini p<1E13) 9.5E-17 5.9E-14 
regulation of transcription, DNA-templated (+9 GO terms with Benjamini p<1E-3) 9.4E-14 2.2E-11 
telomere organization (+1 GO term with Benjamini p<1E-3) 5.6E-11 9.2E-09 
beta-catenin-TCF complex assembly 1.5E-07 1.8E-05 
ER to Golgi vesicle-mediated transport 4.9E-06 4.9E-04 
Golgi vesicle transport 7.1E-05 6.1E-03 
vesicle targeting, rough ER to cis-Golgi 4.0E-04 2.9E-02 

Rxrg 2 1 

cellular macromolecule biosynthetic process (+8 GO terms with Benjamini p<0.05) 1.2E-10 3.1E-07 
regulation of gene expression (+2 GO terms with Benjamini p<1E-3) 2.4E-08 3.1E-05 
regulation of signal transduction (+9 GO terms with Benjamini p<0.05) 1.2E-07 9.0E-05 
RNA biosynthetic process (+6 GO terms with Benjamini p<0.05) 1.3E-07 8.5E-05 
negative regulation of cell death (+6 GO terms with Benjamini p<0.05) 3.1E-05 8.2E-03 
positive regulation of cell communication (+1 GO terms with Benjamini p<0.02) 6.5E-05 1.3E-02 
regulation of cell morphogenesis 1.8E-04 2.6E-02 
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Supplementary Table S2. Correlation of GO & LEC blueprint signal pathway predictions for 10TRs.  

TR 

TR is 
regulated 
by these 

LEC 
pathways 

TG GO analysis results relating to signalling pathways 
raw p-
value 

Benjamini 
p-value Black text indicates Benjamini p<0.05. Italicised terms are specific to TGs of that TR. 

Ets1 P, Fzd, C, N, 
A 

negative regulation of EGF R signaling pathway 2.3E-04 8.8E-03 
positive regulation of canonical Wnt signaling pathway 4.4E-04 1.5E-02 
positive regulation of Wnt signaling pathway 1.1E-03 3.2E-02 
Wnt signaling pathway (+5 GO terms with Benjamini p<0.001) 1.3E-07 1.1E-05 
regulation of EGF R signaling pathway 2.3E-04 3.9E-02 
response to TGF (+1 GO term with Benjamini p<0.1) 2.0E-03 5.2E-02 
response to FGF (+2 GO terms with Benjamini p>0.1) 2.2E-03 5.7E-02 
response to PDGF 1.5E-02 2.2E-01 
response to EGF 2.2E-02 2.8E-01 
response to insulin (+2 GO terms with Benjamini p>0.1) 4.0E-02 4.1E-01 

Pax6 F, P, Fzd, N, 
C, B, A, T 

response to TGF (+1 GO term with Benjamini p=0.01) 8.3E-05 1.0E-02 
negative regulation of TGF R signaling pathway  (+2 GO terms with Benjamini p>0.1) 9.4E-03 2.2E-01 
response to PDGF 1.1E-02 2.4E-01 
regulation of Wnt signaling pathway (+7 GO terms with Benjamini p>0.1) 1.7E-02 3.0E-01 
regulation of insulin R signaling pathway (+2 GO terms with Benjamini p>0.1) 1.5E-02 3.1E-01 

E2f4 F, P, Fzd, N 

Notch signaling involved in heart development 4.1E-03 1.1E-01 
positive regulation of EGF R signaling pathway (+1 GO term with Benjamini p>0.1) 6.3E-02 5.4E-01 
Notch signaling pathway 7.3E-02 5.8E-01 
positive regulation of FGF R signaling pathway 8.1E-02 6.0E-01 
positive regulation of insulin R signaling pathway 8.5E-02 6.2E-01 

Egr1 F, P, Fzd, N, 
C, B, A, T 

Wnt signaling pathway (+5 GO terms with Benjamini p<0.05) 8.9E-08 8.1E-06 
response to TGF (+1 GO term with Benjamini p<0.01) 9.9E-05 4.1E-03 
negative regulation of EGF R signaling (+2 GO terms, 1 Benjamini p<0.1, 1 p>0.1) 2.3E-03 5.4E-02 
regulation of TGF R signaling pathway (+3 GO terms with Benjamini p>0.1) 4.1E-03 8.5E-02 
response to FGF 8.8E-03 1.5E-01 
response to insulin (+1 GO term with Benjamini p>0.1) 1.2E-02 1.8E-01 
Notch signaling pathway (+2 GO terms with Benjamini p>0.1) 1.6E-02 2.3E-01 

Sp1 F, P, Fzd, N, 
C, A 

response to EGF (+1 GO term with Benjamini p=0.01) 5.6E-04 1.3E-02 
Wnt signaling pathway (+5 GO terms with Benjamini p<0.02) 3.8E-15 8.3E-13 
response to TGF (+1 GO term with Benjamini p<0.001) 7.8E-06 2.9E-04 
response to insulin 3.1E-04 7.8E-03 
regulation of TGF R signaling pathway (+5 GO terms with Benjamini p>0.1) 3.1E-03 5.3E-02 
negative regulation of EGF R signaling pathway (+2 GO terms with Benjamini p>0.1) 3.2E-03 5.5E-02 
positive regulation of Wnt signaling pathway (+1 GO term with Benjamini p>0.1) 3.3E-03 5.5E-02 
regulation of Notch signaling pathway (+2 GO terms with Benjamini p>0.1) 4.9E-03 7.7E-02 
regulation of insulin R signaling pathway (+1 GO term with Benjamini p>0.1) 3.9E-02 3.6E-01 
response to FGF 2.0E-02 2.3E-01 

Klf4 F, P, Fzd, N, 
C, B, T 

Wnt signaling pathway (+1 GO term with Benjamini p<0.02) 4.3E-04 1.6E-02 
response to insulin 5.5E-04 2.0E-02 
TGF receptor signaling pathway (+1 GO term with Benjamini p<0.1 and 3 with p>0.1) 2.1E-03 6.1E-02 
regulation of Notch signaling pathway (+1 GO term with p>0.1) 4.2E-03 9.9E-02 
regulation of Wnt signaling pathway (+2 GO terms with Benjamini p>0.1) 4.8E-03 1.1E-01 
negative regulation of insulin R signaling pathway  (+1 GO term with p>0.1) 5.8E-03 1.2E-01 
response to EGF (+2 GO terms with Benjamini p>0.1) 9.7E-03 1.8E-01 
response to FGF 3.4E-02 4.1E-01 

Creb3
l1 

F, P, Fzd, N, 
C, B, A, T 

response to insulin 9.3E-03 5.7E-01 
Wnt signaling pathway (+5 GO categories with Benjamini p>0.1) 4.0E-02 7.4E-01 
response to TGF 5.8E-02 7.8E-01 

Atf4 F 

Wnt signaling pathway (+1 GO term with Benjamini p<0.1 and 4 with p>0.1) 1.6E-03 6.0E-02 
response to insulin 3.0E-03 9.9E-02 
response to FGF 7.8E-03 1.9E-01 
Notch signaling pathway (+1 GO term with Benjamini p>0.1) 3.3E-02 4.0E-01 
response to EGF 3.6E-02 4.1E-01 
TGF R signaling pathway 7.2E-02 5.6E-01 

Creb3 F, P, Fzd, N 
Wnt signaling pathway (+1 GO term with Benjamini p<0.1 and 3 with p>0.1) 8.3E-04 5.4E-02 
regulation of EGF R signaling pathway (+2 GO terms with Benjamini p>0.1) 2.7E-02 5.5E-01 
response to FGF 7.4E-02 7.7E-01 

Rxrg F, P, Fzd, N, 
C, B, A, T 

negative regulation of EGF R signaling pathway (+1 GO term with Benjamini p>0.1) 6.7E-04 6.5E-02 
response to FGF (+1 GO term with Benjamini p>0.1) 2.6E-03 1.7E-01 
TGF R signaling pathway (+1 GO term with Benjamini p>0.1) 3.2E-03 1.9E-01 
Wnt signaling pathway (+4 GO terms with Benjamini p>0.1) 3.7E-02 5.7E-01 
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The SPAGI R package was applied here to get the signalling pathways for the lens epithelial 
cell data set. The results were then extended by incorporating other published data sets that 
were analysed by developing in-house R scripts. These results provide an interconnected, lens 
epithelial cell transcriptional blueprint of signalling pathways and associated target genes. 
Comparison of these target genes with the known cataract-associated genes identified three 
new gene regulatory networks and associated signal pathways predicted to control the 
networks. 
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General discussion 

Summary of outcomes from this thesis 

Four main outcomes have arisen through my research: 

1. Development of a new, cross-species, compendium-based cell-type identification 

software, called C3. I demonstrated that C3 can accurately identify a cell type based on its 

gene expression profile through comparison to either a mouse or human compendium of 

gene expression profiles. 

2. Development of a novel bioinformatics software for signalling pathway analysis, called 

SPAGI. I demonstrated that SPAGI can identify biologically-relevant signalling pathways 

using gene expression and protein-protein interaction (PPI) data. 

3. Using the C3 method I showed that ROR1+ cells, derived from human pluripotent stem 

cells, molecularly and functionally resemble human lens epithelial cells (LECs). 

4. Using the SPAGI method, together with data from the Fantom5 consortium, I generated a 

transcriptional blueprint for LECs and used it to identify both known and new interactions 

between key lens signalling pathways and their target genes. 

Future work that can arise from these four outcomes is discussed below. 

Advances in cell type identification 

Compendium-based bioinformatics methods can provide a robust and objective approach to 

identify a cell type based on its gene expression profile. In these methods, the unknown 

sample’s gene expression profile is used as a query profile against a large gene expression 

compendium consisting of many cell types. Most of the current methods implicitly assume 

there is a one-to-one correspondence between genes in the query and the compendium 

samples. This intrinsic assumption is violated when comparing data from different species, 

especially evolutionarily divergent organisms. Additionally, none of the current methods 

handle a cross-species query in a statistically rigorous fashion. Current methods are restricted 

to using a compendium generated from the same species as the query sample. For many 

model organisms, a compendium-based approach has been practically impossible as most 

publicly available data sets are only available for a small number of species (notably mouse 

and human).  
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Here, I showed that C3 accurately identified a range of cell types against compendia 

generated from different species. For example, C3 was applied to identify five different tissue 

types from 13 different species. It is expected that C3 will enable cell type identification for 

species other than mouse and human, thereby facilitating knowledge transfer from other 

species to understanding of human biology.  

The ability of C3 to predict the identity of cells generated from pluripotent stem cells (i.e., 

ROR1+ LECs) was extensively validated by principal component analysis and a wide range 

of biological assays including in vitro regeneration of light-focusing lenses. Thus C3 offers a 

rigorous approach to validating cell types generated from stem cells, and therefore will be a 

useful tool for both research and industry/clinical applications in the stem cell field. 

C3 is implemented as an open source R package to enable adoption and application of C3 by 

other groups. It should be noted though that the performance of C3 depends on the quality, 

variety and size of the compendium and whether or not a similar sample exists in the 

compendium. With 94 samples currently in the mouse compendium and 144 in the human 

compendium, a large variety of cell type identifications are currently possible. As more gene 

expression profiles are uploaded to public databases (e.g., GEO, ENCODE and GTEx), the 

breadth of identifications available to C3 will increase. 

An interesting future research area is application of C3 to single cell RNA-seq (scRNA-seq) 

data. These datasets are increasingly gaining interest, and with this is a desire to 

identify/characterise individual cells within the single cell datasets. For this purpose, a 

compendium can be generated from either scRNA-seq data sets alone or by combining both 

bulk and scRNA-seq data sets. As scRNA-seq data sets consist of a large number of samples 

(typically tens of hundreds) some improvement of the method, such as improving the runtime 

and parallelisation, might be required to cope with both the query and compendium data sets. 

Application of C3 to scRNA-seq data could enable more accurate understanding of how 

individual cells contribute to the overall gene expression profiles within bulk-population gene 

expression data – thereby enabling better understanding of normal and or cancer cell 

behaviour (e.g., identification of cancer stem cells that may be present at a low frequency). 

Advances in identification of active signalling pathways  

Computational methods have been developed to identify the topological structures of 

signalling pathways using PPI data, but these methods are not designed for identifying active 

(i.e., biologically-relevant) signalling pathways from a gene expression profile. On the other 
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hand, there are statistical methods that use gene expression data to prioritize likely active 

signalling pathways. However, they typically only relate receptors and transcriptional factors 

and do not make full use of signalling pathway structures that link receptor, kinases and 

transcription factors. Additionally, most of the current methods were evaluated and applied to 

yeast PPI data, with only a few methods designed specifically to deal with the significantly 

greater complexity of mammalian data. 

A generic signalling pathway database is available through the Kyoto Encyclopaedia of 

Genes and Genomes (KEGG), though this is of limited use for comprehensively obtaining a 

catalogue of cell type-specific signalling pathways. Commercial software are available (e.g., 

Ingenuity Pathway Analysis), however, the underlying assumptions used by these software 

are not fully disclosed due to the proprietary nature of the software. To our knowledge, the 

SPAGI method presented here is the only open-source method available that uses a gene 

expression profile to simultaneously and comprehensively identify an integrated set of 

candidate active (i.e., biologically-relevant) signalling pathways, including the likely pathway 

structures for every path (from receptor, through kinases, to transcriptional regulators).  

The SPAGI method was used to generate a universe of possible signalling pathways based on 

known PPIs assuming one-to-one homology mapping of genes between human and mouse. 

This approaches means that the SPAGI pathway universe can be continually updated as new 

PPI data is added to the STRING database. Cell type-specific pathway catalogues are then 

generated by using the list of cell-expressed receptors, kinases and transcriptional regulators. 

By ranking the output SPAGI pathways by expression level vs transcriptional regulators, 

SPAGI simultaneously predicts a set of candidate active/biologically-relevant signalling 

pathways together with their pathway structure from an input of a gene expression profile. 

Many of the highly ranked pathways from multiple cell types were pathways known to be 

biologically important. Additionally, the false positive identification rate for the ranked 

signalling pathways was low. However, given that mRNA expression levels do not guarantee 

protein expression or protein activity (e.g., phosphorylation status), it is not clear at this stage 

whether all the highly-ranked pathways are truly active. Further comparison of highly-ranked 

pathways against protein expression/protein activity data, and/or functional genomics 

analysis, would be useful to examine novel and highly-ranked pathways. As more human and 

mouse PPI data is uploaded to public databases, the SPAGI universe establishment process 

can be re-run, thereby improving the breadth of SPAGI predictions. Given the rate at which 

new data is added to the STRING PPI database, re-establishing the signalling pathway 
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universe could occur every 1 to 2 years. Similarly, as PPI data is obtained for proteins 

specific to other species, it will be possible to apply SPAGI to identify signalling pathways 

specific to other species.  

Another worthy goal would be to convert the SPAGI method into a web tool or mobile phone 

app so that other researchers can perform SPAGI analysis on their datasets of interest. This is 

an attractive approach given that the SPAGI analysis performed for this thesis has already 

generated a universe of cell signalling paths suitable for use with other cell types. 

Additionally, as the Fantom5-based target gene analysis is available for 394 cell types 

(Marbach et al. 2016), there is a strong foundation for generating cell type-specific 

transcriptional blueprints as done here for LECs. 

Future application of the SPAGI method to single cell RNA-seq data would be of interest, in 

order to assess the extent to which individual cells vary from the signalling pathway 

predictions obtained from the bulk expression profiling data. For example, optimizing the 

SPAGI approach for single cell gene expression profiling data could identify novel 

approaches for targeting low frequency cancer stem cells within a tumour population. 

Finally, the SPAGI method could also be modified to identify cellular control mechanisms 

other than growth factor signalling pathways. For example, by utilizing PPIs involved in 

phagocytosis, cell division, cell death, migration, etc. This would require would be to change 

the input proteins (which are user-defined), and then deciding on starting and ending proteins 

(so that the method can build path for the defined starting and ending points). 

A more detailed molecular understanding of lens epithelial cell biology 

For my thesis, I developed and applied C3 and SPAGI to analyse gene expression data 

obtained from different populations of LECs including human pluripotent stem cell-derived 

ROR1+ LECs (Murphy et al. 2018), and published newborn mouse LECs (Hoang et al. 2014). 

These analyses were correlated with LEC target gene datasets derived through a published 

analysis of Fantom5 LEC data (Marbach et al. 2016), as well as a publicly available list of 

cataract-associated genes (Shiels et al. 2010). The resulting LEC transcriptional blueprint 

represents a comprehensive framework for investigating signalling and transcriptional control 

of LEC biology. Encouragingly, this blueprint was shown to include known key LEC 

transcriptional regulators (e.g., PAX6, SOX2, MYC, etc) and known transcriptional 

regulatory events (e.g., Ep300/Crybb3, Ets/Pax6 and Oct1/Pax6). Furthermore, promoter 

analyses and Western blotting support a role for ELK1 in human LEC biology as predicted 
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by the LEC transcriptional blueprint. The blueprint therefore provides a wealth of high-

confidence, specific molecular hypotheses for functional genomics studies of lens and 

cataract development. 

Interesting future bioinformatics-based extensions of this LEC blueprint include: making the 

data publically-accessible through a web interface (so that other lens researchers can use it to 

guide functional genomics studies); and expanding the blueprint to include lens fibre cells, 

(for example, through the generation of cap analysis of gene expression data for lens fibre 

cells). 

Concluding remarks 

Due to the advancement and availability of gene expression technologies, the generation of 

transcriptomic profile data for any given cell type is within reach for essentially any research 

group. Potential insights to be gained from this data include more detailed knowledge of 

normal and disease states, which in turn can lead to identification of better candidate 

treatments. This PhD thesis successfully developed and applied new gene expression analysis 

methods for cell type identification and the prediction of active/biologically-relevant 

signalling pathways. The utility of these new methods are supported by their application to 

identification of example cell types (including stem cell-derived LECs) and identification of 

new cell signalling/target gene networks in LECs. Thus this thesis has made strong 

contributions to the fields of bioinformatics, stem cell biology, and lens/cataract biology (as 

shown by the publications that have developed from each chapter). Equally importantly, the 

thesis results have led to clearly identifiable, interesting, relevant and achievable avenues for 

progressing the work contained within this thesis. 
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Appendix A 

Supplementary material for Chapter 2 

Supplementary Table 1 : Test result with different species’ different cells/tissues with n=500, t=0.05 

Data Test result with human compendium  Test result with mouse compendium 

Cattle (Bos 
taurus) brain 
GSE43013 
PMID: 25677
554 

 
 

 
Dog (Canis 
lupus 
familiaris) 
GSE43013 
PMID: 25677
554 
 

 
 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
brain 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/pubmed/25677554
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https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
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https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Horse (Eqqus 
caballus) 
brain 
GSE43013 
PMID: 25677
554 
 

 
 

Hedgehog 
(Erinaceus 
europaeus) 
brain 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cat (Felis 
catus) brain 
GSE43013 
PMID: 25677
554 
 
 

 
 

Mouse (Mus 
musculus) 
brain 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
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https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
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Rabbit 
(Oryctolagus 
cuniculus) 
brain 
GSE43013 
PMID: 25677
554 
 

 
 

Rat (Rattus 
norvegicus) 
brain 
GSE43013 
PMID: 25677
554 
 
 

 
 

Pig ( Sus 
scrofa) brain 
GSE43013 
PMID: 25677
554 
 

 
 

Cattle (Bos 
taurus) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

 
Dog (Canis 
lupus 
familiaris) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
kidney 
GSE43013 
PMID: 25677
554 

 
 

Horse (Eqqus 
caballus) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Hedgehog 
(Erinaceus 
europaeus) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Cat (Felis 
catus) kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Mouse (Mus 
musculus) 
kidney 
GSE43013 
PMID: 25677
554 
 

  
Rabbit 
(Oryctolagus 
cuniculus) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Rat (Rattus 
norvegicu) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Pig ( Sus 
scrofa) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Cattle (Bos 
taurus) liver 
GSE43013 
PMID: 25677
554 

 

 
 
Dog (Canis 
lupus 
familiaris) 
liver 
GSE43013 
PMID: 25677
554 
 

 

 

 
129

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
liver 
GSE43013 
PMID: 25677
554 

 

 
Horse (Eqqus 
caballus) liver 
GSE43013 
PMID: 25677
554 
 

 
 

Hedgehog 
(Erinaceus 
europaeus) 
liver 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cat (Felis 
catus) liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Mouse (Mus 
musculus) 
liver 
GSE43013 
PMID: 25677
554 
 

 
 

Rabbit 
(Oryctolagus 
cuniculus) 
liver 
GSE43013 
PMID: 25677
554 
 

 
 

Rat (Rattus 
norvegicus) 
liver 
GSE43013 
PMID: 25677
554 
 
 

 
 

Pig ( Sus 
scrofa) liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Zebrafish 
(Danio rerio) 
control brain 
GSE74754 
PMID: 27935
819 

 
 

Zebrafish 
(Danio rerio) 
tumour brain 
GSE74754 
PMID: 27935
819 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (hua) 
GSE78770 
PMID: 27608
714 
 
Note: 
GM12878 
is a 
lymphobla
stoid cell 
line 
produced 
from the 
blood of a 
female 
donor 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74754
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74754
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714


 

Dolphin 
(Tursiops 
truncatus) 
blood (kai) 
GSE78770 
PMID: 27608
714 
 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (keo) 
GSE78770 
PMID: 27608
714 
 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (pele) 
GSE78770 
PMID: 27608
714 
 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
BPA) 
GSE53393 
 PMID: 2458
6524 
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524


 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
control) 
GSE53393 
 PMID: 2458
6524 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (late 
BPA) 
GSE53393 
 PMID: 2458
6524 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (late 
control) 
GSE53393 
 PMID: 2458
6524 

 
 

 

Note: Here, we have selected the top 500 highly expressed genes for each cell/tissue of the compendium and set the 
cut-off threshold value 5 percent of total number of cell/tissue; and then performed the test for each of the query 
data set with both the human and mouse compendium separately. 
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524


 

Supplementary Table 2 : Test result with different species’ different cells/tissues with n=1000, 
t=0.10 

Data Test result with human compendium  Test result with mouse compendium 

Cattle (Bos 
taurus) brain 
GSE43013 
PMID: 25677
554 

 
 

 
Dog (Canis 
lupus 
familiaris) 
GSE43013 
PMID: 25677
554 
 

 
 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
brain 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Horse (Eqqus 
caballus) 
brain 
GSE43013 
PMID: 25677
554 
 

 
 

Hedgehog 
(Erinaceus 
europaeus) 
brain 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cat (Felis 
catus) brain 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Mouse (Mus 
musculus) 
brain 
GSE43013 
PMID: 25677
554 
 

 
 

Rabbit 
(Oryctolagus 
cuniculus) 
brain 
GSE43013 
PMID: 25677
554 
 

 
 

Rat (Rattus 
norvegicus) 
brain 
GSE43013 
PMID: 25677
554 
 
 

 
 

 
137

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Pig ( Sus 
scrofa) brain 
GSE43013 
PMID: 25677
554 
 

 
 

Cattle (Bos 
taurus) 
kidney 
GSE43013 
PMID: 25677
554 

 
 

 
Dog (Canis 
lupus 
familiaris) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
kidney 
GSE43013 
PMID: 25677
554 

 
 

Horse (Eqqus 
caballus) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Hedgehog 
(Erinaceus 
europaeus) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Cat (Felis 
catus) kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Mouse (Mus 
musculus) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Rabbit 
(Oryctolagus 
cuniculus) 
kidney 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Rat (Rattus 
norvegicu) 
kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Pig ( Sus 
scrofa) 
kidney 
GSE43013 
PMID: 25677
554 
 

 
 

Cattle (Bos 
taurus) liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

 
Dog (Canis 
lupus 
familiaris) 
liver 
GSE43013 
PMID: 25677
554 
 

 
 

Domestic 
Guinea pig 
(Cavia 
porcellus) 
liver 
GSE43013 
PMID: 25677
554 

 
 

Horse (Eqqus 
caballus) liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Hedgehog 
(Erinaceus 
europaeus) 
liver 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cat (Felis 
catus) liver 
GSE43013 
PMID: 25677
554 
 
 

 
 

Mouse (Mus 
musculus) 
liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Rabbit 
(Oryctolagus 
cuniculus) 
liver 
GSE43013 
PMID: 25677
554 
 

 
 

Rat (Rattus 
norvegicus) 
liver 
GSE43013 
PMID: 25677
554 
 
 

 
 

Pig ( Sus 
scrofa) liver 
GSE43013 
PMID: 25677
554 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554


 

Zebrafish 
(Danio rerio) 
control brain 
GSE74754 
PMID: 27935
819 

 
 

Zebrafish 
(Danio rerio) 
tumour brain 
GSE74754 
PMID: 27935
819 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (hua) 
GSE78770 
PMID: 27608
714 
 
Note: 
GM12878 
is a 
lymphobla
stoid cell 
line 
produced 
from the 
blood of a 
female 
donor 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74754
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74754
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714


 

Dolphin 
(Tursiops 
truncatus) 
blood (kai) 
GSE78770 
PMID: 27608
714 
Note: Karpas-
422_adult_73
year is a B 
cell line 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (keo) 
GSE78770 
PMID: 27608
714 
 

 
 

Dolphin 
(Tursiops 
truncatus) 
blood (pele) 
GSE78770 
PMID: 27608
714 
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714


 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
BPA) 
GSE53393 
 PMID: 2458
6524 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
control) 
GSE53393 
 PMID: 2458
6524 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (late 
BPA) 
GSE53393 
 PMID: 2458
6524 

 
 

 
147

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524


 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (late 
control) 
GSE53393 
 PMID: 2458
6524 

 
 

 

Note: Here, we have selected the top 1000 highly expressed genes for each cell/tissue of the compendium and set 
the cut-off threshold value 10 percent of total number of cell/tissue; and then performed the test for each of the 
query data set with both the human and mouse compendium separately. 

 

 

 

 

 

 

 

Supplementary Table 3: Summary test results of selected five samples after quantile normalization 
of the data sets  

 
  n=500, t=0.05 n=1000, t=0.10 

 Sample name Human Mouse Human Mouse 
Data set 1 

(GSE43013) 
R. norvegicus kidney 2 1 2 1 

B. taurus liver 1 1 1 1 
Data set 2 

(GSE74754) D. rerio brain (control) 1 1 1 1 
Data set 3 

(GSE78770) T. truncatus blood (hua)  1 1 1 1 
Data set 4 

(GSE53393) M. mulatta skeletal muscle (early BPA) 1 1 2 1 
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524


 

Supplementary Table 4: Detail test results of selected five samples after quantile normalization of 
the data sets with parameter settings n=500, t=0.05 

Data Test result with human compendium  Test result with mouse compendium 

Rat (Rattus 
norvegicu) 
kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cattle (Bos 
taurus) liver 
GSE43013 
PMID: 25677
554 

 
 

Zebrafish 
(Danio rerio) 
control brain 
GSE74754 
PMID: 27935
819 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE43013
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/pubmed/25677554
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74754
https://www.ncbi.nlm.nih.gov/pubmed/27935819
https://www.ncbi.nlm.nih.gov/pubmed/27935819


 

Dolphin 
(Tursiops 
truncatus) 
blood (hua) 
GSE78770 
PMID: 27608
714 
 
Note: 
GM12878 
is a 
lymphobla
stoid cell 
line 
produced 
from the 
blood of a 
female 
donor 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
BPA) 
GSE53393 
 PMID: 2458
6524 
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
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Supplementary Table 5: Detail test results of selected five samples after quantile normalization of 
the data sets with parameter settings n=1000, t=0.10 

Data Test result with human compendium  Test result with mouse compendium 

Rat (Rattus 
norvegicu) 
kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cattle (Bos 
taurus) liver 
GSE43013 
PMID: 25677
554 

 
 

Zebrafish 
(Danio rerio) 
control brain 
GSE74754 
PMID: 27935
819 
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Dolphin 
(Tursiops 
truncatus) 
blood (hua) 
GSE78770 
PMID: 27608
714 
 
Note: 
GM12878 
is a 
lymphobla
stoid cell 
line 
produced 
from the 
blood of a 
female 
donor 

 
 

Monkey 
(Macaca 
mulatta) 
skeletal 
muscle (early 
BPA) 
GSE53393 
 PMID: 2458
6524 
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Supplementary Table 6: Detail test results of selected five samples of the data sets with GTEx 
human compendium 

Data Paramaters: n=500, t=0.05 Paramaters: n=1000, t=0.10 

Rat (Rattus 
norvegicu) 
kidney 
GSE43013 
PMID: 25677
554 
 
 

 
 

Cattle (Bos 
taurus) liver 
GSE43013 
PMID: 25677
554 

 
 

Zebrafish 
(Danio rerio) 
control brain 
GSE74754 
PMID: 27935
819 
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blood (hua) 
GSE78770 
PMID: 27608
714 
 
Note: 
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stoid cell 
line 
produced 
from the 
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Monkey 
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skeletal 
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 PMID: 2458
6524 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
154

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9739
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78770
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/pubmed/27608714
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9544
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53393
https://www.ncbi.nlm.nih.gov/pubmed/24586524
https://www.ncbi.nlm.nih.gov/pubmed/24586524


 

Supplementary Figure 1 : ExpressionBlast test result (screenshot) for 3 different tissues of Rattus 

norvegicus 

 

Supplementary Figure 1(a): Test result of R. norvegicus brain sample data with H.sapiens 

 

 

Supplementary Figure 1(b): Test result of R. norvegicus brain sample data with M.musculus 
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Supplementary Figure 1(c): Test result of R. norvegicus kidney sample data with H.sapiens 

 

 

Supplementary Figure 1(d): Test result of R. norvegicus kidney sample data with M.musculus 
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Supplementary Figure 1(e): Test result of R. norvegicus liver sample data with H.sapiens 

 

 

Supplementary Figure 1(f): Test result of R. norvegicus liver sample data with M.musculus 
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