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Abstract

High-throughput single-cell RNA-seq (scRNA-seq) is a powerful tool for studying gene
expression in single cells. Most current scRNA-seq bioinformatics tools focus on
analysing overall expression levels, largely ignoring alternative mRNA isoform
expression. We present a computational pipeline, Sierra, that readily detects differential
transcript usage from data generated by commonly used polyA-captured scRNA-seq
technology. We validate Sierra by comparing cardiac scRNA-seq cell types to bulk
RNA-seq of matched populations, finding significant overlap in differential transcripts.
Sierra detects differential transcript usage across human peripheral blood mononuclear
cells and the Tabula Muris, and 3′UTR shortening in cardiac fibroblasts. Sierra is
available at https://github.com/VCCRI/Sierra.

Keywords: scRNA-seq, Alternative polyadenylation, mRNA isoforms, Differential
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Background
Regulation of cellular transcriptional activity includes changes in the total expression level
of genes as well as alternative usage of gene architecture. Alternative, or differential, usage
leads to expression of alternative mRNA isoforms, which we refer to here as differen-
tial transcript usage (DTU). Forms of DTU can include alternative splicing (AS), such as
through exon skipping or retained introns, alternative 5′ promoter usage or 3′ end use, or
changes in 3′UTR length through the use of alternative polyadenylation (APA) sites. RNA
sequencing (RNA-seq) studies have revealed high levels of alternative transcript usage
between tissues, with 95% of multi-exon genes estimated to undergo AS among human
tissues [1]. Similarly, APA is widespread among the mammalian genome and is estimated
to occur in most genes [2]. While the extensive use of AS and APA among tissues is
documented, DTU between the diverse sub-tissue cell types revealed in recent years by
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single-cell RNA-seq (scRNA-seq) is relatively unexplored, nor is the regulatory logic well
understood.
There is a strong impetus to develop strategies for studying DTU at the single-cell

level, given that studies to date have found the different forms of DTU to play significant
functional roles across many biological contexts. Functional consequences of DTU can
include changes to mRNA stability, localisation, protein translation, and nuclear export
as determined by AS [3] or APA in 3′UTRs [4]. DTU plays roles in differentiation and
organ development through AS [5, 6], including intron retention (IR) [7, 8], a form of AS
that appears widespread in mammals [9, 10]. DTU is also relevant in disease contexts. As
examples, AS is linked to disease through miss-splicing caused by genomic variants [11]
whereas 3′UTR shortening has been reported as widespread in cancer cells [12] and has
been found to repress tumour-suppressor genes [13]. Alternative usage of introns is also
linked to cancer both through intronic polyadenylation [14] and IR [15, 16]. Overall, stud-
ies to date reveal a pattern of widespread alternative mRNA transcript usage of different
forms and functional consequences across tissues, development, and disease contexts.
The advance of scRNA-seq technologies opens up new avenues for deeper exploration

of DTU at the level of single cells [17]; however, there are technical features of the
high-throughput nanodroplet technologies like the 10x Genomics Chromium platform,
including low depth and limited gene coverage, that make detecting DTU a non-trivial
task. Some scRNA-seq protocols such as Smart-seq provide read coverage across the gene
and therefore enable the analysis of alternative isoform expression [17]. For example, anal-
ysis of neural Smart-seq scRNA-seq data has demonstrated alternative splicing events at
the single-cell level in the brain [18] and methods have been specifically developed for
analysing alternative isoform expression in scRNA-seq experiments that have reads span-
ning the transcript [19–21]. The above studies utilise increased transcript read coverage
at the expense of lower-throughput profiling of cells; however, high-throughput nan-
odroplet technologies like 10x Chromium have become the technology of choice for many
scRNA-seq experiments due to the capacity to profile thousands of single-cell transcrip-
tomes at low cost. Currently, gene-level expression data is primarily utilised in analysing
10x Chromium data; however, the enrichment of 3′ ends in barcoded and polyA-captured
scRNA-seq means that APA and alternative 3′ end usage can be explored, with the poten-
tial to unveil additional levels of information among cell types currently masked when
only considering an aggregate of each gene. Despite polyA-captured nanodroplet scRNA-
seq experiments now routine, to the best of our knowledge, there is no computational
pipeline described that can leverage such datasets to identify DTU between cell types.
We present here a novel computational pipeline for unbiased identification of poten-

tial polyadenylation (polyA) sites in barcoded polyA-captured scRNA-seq experiments,
and evaluation of DTU between cell populations. We demonstrate that we can identify
DTU—which we define as any change in relative transcript usage, including differential
exon usage, alternative 3′UTR usage, and changes in 3′UTR length—between cell types
and across different tissues and disease contexts. We demonstrate the application of our
pipeline using public data generated from a variety of 10x Chromium scRNA-seq exper-
iments on human PBMCs, murine cardiac interstitial and enriched fibroblast cells from
injured and uninjured hearts, and a multi-tissue atlas from the Tabula Muris. We validate
our approach by comparing DTU calls from cardiac scRNA-seq data to bulk ribo− RNA-
seq of matched cell populations derived from FACS and find a significant overlap in DTU
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genes from both the scRNA-seq and bulk RNA-seq experiments. Our analysis can detect
multiple types of DTU among cardiac interstitial cell types, including alternative 3′ end
usage, APA, and even alternative 5′ start sites that are validated from the matched bulk
RNA-seq samples. We further apply our method to detect 3′UTR shortening in prolifer-
ating cardiac fibroblasts from injured mouse hearts and show not only that we can detect
3′UTR shortening in proliferating cells as observed previously in other tissues, but can
detect shortening in related activated populations that are not proliferating—a granularity
that is not possible to observe in bulk RNA-seq studies. We also provide an in vivo valida-
tion of candidate 3′UTR shortening genes using real-time quantitative RT-PCR. Finally,
we apply our approach to 12 tissues from the Tabula Muris, presenting an initial atlas of
cell type-specific DTU across mouse tissues. Our analysis pipeline is implemented as an
open source R package, named Sierra, available at https://github.com/VCCRI/Sierra.

Results
The Sierra R package contains a start-to-end pipeline for identification of used polyadeny-
lated sites in scRNA-seq data, differential usage analysis, and visualisation (see the
‘Methods’ section). Briefly, the Sierra pipeline starts with a BAM file, such as that pro-
duced by the 10x Genomics CellRanger software, and the reference GTF file used for
mapping (Fig. 1). Based on the observation that aligned reads from 10x Chromium
scRNA-seq experiments fall into Gaussian-like distributions, peak calling is run to iden-
tify local regions with high read coverage, or ‘gene peaks’, within genes that correspond,
for example, to different potential polyA sites or other transcript features. The peak coor-
dinates are utilised to construct a new reference file of genomic regions, enabling a unique
molecular identifier (UMI) matrix of peak coordinates to be built for a supplied list of cell
barcodes. Each of the gene peaks is annotated according to the genomic feature it falls

Fig. 1 Sierra workflow. Sierra starts with a BAM file produced by an alignment program such as CellRanger.
Standard gene-level workflow (top row) involves using a gene model to produce a matrix of gene-level
counts used for clustering. The Sierra pipeline performs splice-aware peak calling to identify coordinates
corresponding to potential polyadenylation sites. Peak coordinates are used to build an annotated UMI count
matrix for each gene peak. This new data can be used to identify genes showing differential peak usage, with
visualisation options for plotting relative peak expression and read coverage across selected cell populations

https://github.com/VCCRI/Sierra
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on (3′UTR, exon, intron, or 5′UTR) and proximity to sequence features including A-rich
regions and the canonical polyAmotif—enabling discrimination of likely cases of internal
priming to A-rich sequences from true polyA sites.
For downstream analysis, Sierra can utilise either the Bioconductor [22] SingleCellEx-

periment class [23] or the widely used Seurat R package [24] to create objects containing
the peak counts and annotation information required for DTU testing, in addition to pre-
determined cell identities/clusters and dimensionality reduction coordinates (t-SNE or
UMAP) for visualisation purposes. For Seurat users, Sierra can directly import cluster
identities and t-SNE/UMAP coordinates over from a pre-existing Seurat object, allowing
for straightforward analysis of pre-defined cell types.
To test for DTU between cell groups, we utilise the differential exon usage method

developed for bulk RNA-seq, DEXSeq [25], but applied to peak coordinates, whereby a
gene will be called as DTU if it shows significant change in the relative usage of peaks.
Cells within each cell group are first aggregated into a small number of pseudo-bulk
profiles, which are used as replicates in DEXSeq, enabling computational efficiency and
statistical power for DTU identification. Sierra also contains several functions for visual-
isation of peak expression from DTU genes (Fig. 1). These include the plotting of relative
expression between two or more gene peaks, where the expression of a set of gene peaks
is transformed according to their relative usage within each cell population (Fig. 1; see
the ‘Methods’ section). Relative expression can then be plotted on, for example, t-SNE
or UMAP coordinates as with gene expression data. Finally, in order to aid in interpre-
tation of DTU between cell types, we provide functionality for gene-level plotting of
read coverage across defined single-cell populations. Single-cell populations (e.g. clus-
ters) are first extracted from an aggregate BAM file according to cell barcode, generating
population-level BAMs. Read coverage for DTU genes can then be visualised at a single-
cell population level (Fig. 1). The coverage plots, which also show a gene model, allow for
deeper interpretation of the nature of the DTU detected.

Features of Sierra data

We applied Sierra to 19 publicly available datasets representing a variety of common
scRNA-seq experimental settings: two human PBMC datasets (a 7k cell and 4k cell) from
10x Genomics (https://www.10xgenomics.com/), total non-cardiomyocyte cells (total
interstitial population [TIP]) from uninjured (sham) hearts or hearts at 3 or 7 days fol-
lowing myocardial infarction (MI) surgery [26], enriched cardiac fibroblast lineage cells
(Pdgfra-GFP+) also fromMI and shammouse hearts [26], and the TabulaMuris [27], with
twelve tissues from Tabula Muris analysed in this study (Additional file 1).
Sierra typically detected 30,000–50,000 peaks covering 10,000–15,000 genes across the

datasets tested (Additional File 1). Most genes had a small number of peaks, typically with
a median of 2 peaks per gene (Additional File 1). In the PBMC 7k dataset for example,
over 4000 genes were called with 1 peak, followed by ∼ 2000 and ∼ 1000 genes with 2
and 3 peaks, respectively, while a minority of genes were called with 20 to 100+ peaks
(Fig. 2a). Considering the genomic features associated with these peaks, we found that for
genes with 1–2 peaks, themajority of these fell in 3′UTRs (Fig. 2b), while genes with larger
numbers of peaks tended to show more intronic peaks. For genes with over 20 peaks, on
average, ∼ 75% of these were intronic (Fig. 2b). These metrics were consistent in both
the PBMC 4k and TIP datasets (Additional File 2: Figure S1A-D). We next stratified the

https://www.10xgenomics.com/
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Fig. 2 Representative feature of Sierra data from a 7k cell PBMC dataset. a Counts of genes according to
number of detected peaks. Dotted red line indicates median number of peaks. b Average composition of
genomic feature types that peaks fall on, according to number of peaks per gene. c Percentage of cells
expressing each genomic feature type with increasing stringency of cellular detection rates for peaks. d
Number of genes expressing multiple (≥ 2) 3′UTR or exonic peaks with increasing stringency of cellular
detection rates. e Comparison of PTPRC gene expression across cell populations on t-SNE coordinates with
peaks identified as DU in monocytes. f, g Overlapping genes from a CD14+ monocyte vs CD4+ T cell
comparisons for the PBMC 7k and PBMC 4k datasets for f DTU genes and g DE genes, visualised with [28]

peaks according to genomic feature type and examined how increasing the stringency of
cellular detection rates (i.e. only considering peaks expressed in some x% of cells) affected
the feature-type composition of peaks. With no filtering, we found that the largest num-
ber of called peaks was intronic, followed by 3′UTRs (≥ 0% detection rate; Fig. 2c and
Additional File 2: Figure S1E,F). Progressively stringent filtering of peaks according to cell
detection rates showed that intronic peaks tended to be detected in a smaller number
of cells (Fig. 2c and Additional File 2: Figure S1E,F). The substantial presence of intronic
peaks is in agreement with previous observations made about RNA molecules contain-
ing intronic sequences in 10x Genomics Chromium data [29], and likely corresponds to
pre-spliced mRNA.
We compared the expression characteristics of the peaks with gene-level expression

data from CellRanger (Additional file 2: Figure S2A-D) and found a strong correlation
between gene expression and expression of peaks in 3′UTRs as expected, with weaker
correlations in intronic peaks for both 7k PBMCs (Additional file 2: Figure S2A) and the
cardiac TIP dataset (Additional file 2: Figure S2C). We also compared gene and peak
expression using mean expression vs dispersion plots, calculated with Monocle [30]. We
noticed a wider range of dispersion values in peaks compared to genes for both datasets,
although intronic peaks partially explain this, with a higher dispersion range among more
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lowly expressed genes (Additional file 2: Figure S2B,D). Finally, we annotated each peak
according to whether it was proximal to an A-rich region or the canonical polyA motif
(Additional File 1). We found 3′UTR peaks had the highest percentage of proximity to the
polyA motif (on average 47%), while 5′UTRs had the lowest (average of 5%). Intronic and
exonic peaks also had low levels of polyAmotif proximity (average of 9% and 10%, respec-
tively). Conversely, 3′UTR peaks had the lowest proximity to A-rich regions (average of
10%), while intronic peaks had the highest (50%), with exonic and 5′UTR peaks showing
an average of 28% and 18%, respectively (Additional file 1).

Differential transcript usage among human PBMCs

We next considered the extent to which we could call DTU between human PBMC cell
populations as defined by gene-level clustering. Seurat clustering of the 7k PBMCs yielded
16 clusters including several populations of monocytes (Mo), CD4+ T cells, CD8+ T cells,
B cells, two natural killer cell (NKC) populations, and several minor populations. As DTU
testing only applies to genes with multiple peaks, we evaluated how many genes had mul-
tiple 3′UTR/exonic peaks expressed across the PBMC 7k cell populations at increasing
cell detection rates. When filtering for peaks with expression in at least 10% of cells, there
were over 3000 genes with multiple peaks. This dropped to just over 1000 genes when
requiring peaks to be detected in 25% of cells (Fig. 2d). For the below analyses, we used
a 10% detection rate cutoff. We applied DEXSeq [25] to call peaks exhibiting differential
usage (DU) between cell types after aggregating cells within cell types into a small num-
ber of pseudo-bulk profiles to create pseudo-replicates (see the ‘Methods’ section). We
restricted our testing to peaks falling on 3′UTRs or exons.
We performed DU analyses both between clusters and aggregated groups of cells (e.g.

all CD4+ T cells vs monocytes). We readily detected significant DTU genes using our
pseudo-bulk replicates with DEXSeq between cell types (padj < 0.01; LFC > 0.5). We
detected the largest numbers of DTU genes when comparing cell groups from different
lineages; for example, Mo against lymphoid populations including B cells (BC), T cells
(TC), or NKCs (see Table 1 for representative examples). When comparing populations
Mo1 and CD4+ TC1, 825 distinct peaks were called by DEXSeq as DU, representing 492
DTU genes (i.e. a gene containing at least one DU peak is classified as a DTU gene). In
contrast, DEXSeq detected 83 DU peaks corresponding to 63 DTU genes when compar-

Table 1 Differential transcript usage (DTU) examples on the PBMC 7k dataset. Shown are the specific
cluster comparisons performed, the number of peaks called as differentially used (DU), the
percentage identified as proximal to the canonical polyadenylation motif, the percentage proximal
to an A-rich region, the number of unique called DTU genes, the number of genes called as
differentially expressed (DEG), and the number of overlapping genes from the DTU and DEG lists

Comparison Peaks % Motif % A-rich DTU DEG Overlap

Mo1 vs CD4+ TC1 825 32 17 492 2042 251

Mo1 vs BC1 576 33 17 347 2059 189

CD8+ TC1 vs FCGR3A+ Mo 339 35 17 214 1817 87

Mo2 vs NKC2 201 32 19 130 1471 57

NKC1 vs CD4+TC1 83 29 33 63 1506 35

CD4+ TC1 vs CD8+ TC3 66 26 24 50 786 22

NKC1 vs BC1 39 18 36 26 1339 17

BC1 vs CD8+ TC1 28 36 21 21 957 9

CD4+ TC1 vs CD4+ TC2 33 27 27 28 386 10
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ing populations NKC1 to CD4+ TC1 (Table 1). Of the DU peaks, on average, 20% were
near an A-rich region, and potentially due to internal priming, while an average of 32%
flanked the canonical polyAmotif. Among the DTU genes, there were known examples of
alternatively spliced genes in immune cells, including IKZF1 (Ikaros) and PTPRC (CD45)
[31]. Although PTPRC gene expression is ubiquitous among immune cell types, we found
we could distinguish clear patterns of alternative peak usage in monocytes compared
to other cell types (Fig. 2e) according to t-SNE visualisations of relative peak expres-
sion, demonstrating that we are able to detect cell type gene expression activity masked
when only considering an aggregate of the reads across a gene. Plotting read coverage for
PTPRC and IKZF1 revealed examples of DU peaks corresponding to alternative 3′ end
use between the Mo and TC populations (Additional file 2: Figure S3A,B).
We next explored whether a relationship existed between DTU genes and differentially

expressed (DE) genes using counts derived from CellRanger. We compared DTU genes to
DE genes from the same population comparisons using the Seurat FindMarkers program
with MAST testing [32]. For the PBMC 7k dataset, we found on average that 50% of
the DTU genes overlapped with DE genes. We also found a strong positive correlation
between the number of DTU and DE genes (Spearman’s correlation test; ρ = 0.79; p =
3.2× 10−51). Finally, we evaluated the reproducibility of calling DTU genes by comparing
the PBMC 7k DTU genes with genes identified by the same cell type comparisons in the
4k PBMC dataset. For example, comparing CD14+ Mo to CD4+ TCs, there were 653
DTU genes in the PBMC 7k dataset and 247 in the lower-depth PBMC 4k dataset, with
202 overlapping (Fig. 2f ), representing 82% of the DTU genes from the PBMC 4k analysis.
For comparison, we performed the same analysis with DE genes and found a similar level
of overlap (Fig. 2g). Across all comparisons, we found that on average, 60% of DTU genes
were matched between PBMC 4k and PBMC 7k datasets, while for DE genes, an average
of 80% were matched (Additional file 3). Thus, the majority of DTU genes can be found in
a replicate experiment, and at levels not far below DE testing, indicating that our method
of detecting DTU genes is reproducible.

Patterns of differential transcript usage in the mouse heart

We validated Sierra DTU calls by comparing single-cell populations from the mouse
heart [26] to a bulk RNA-seq dataset of matched cardiac populations isolated with
FACS [33]. Importantly, the bulk RNA-seq experiment used a ribo− protocol instead of
polyA+, which makes this a unique validation resource that does not have the 3′ bias
of the scRNA-seq. The cardiac scRNA-seq experiment was performed on the total non-
cardiomyocyte compartment of the heart (total interstitial population [TIP]) and reported
several interstitial cell types including fibroblasts, endothelial cells (ECs), and numerous
sub-populations of leukocytes [26] (Fig. 3a). In addition to cardiomyocytes, the bulk RNA-
seq dataset contains sorted ECs (CD31+), fibroblasts (CD90+), and leukocytes (CD45+).
These populations were isolated from adult mouse hearts at 3 days post-sham or myocar-
dial infarction (MI) surgery; the TIP scRNA-seq experiment contains a sham and two MI
time points: MI-day 3 and MI-day 7. Both datasets therefore contain comparable popu-
lations and conditions (sham and MI-day 3). To compare with the scRNA-seq, we first
applied DEXSeq to calculate DTU genes between an aggregate of the scRNA-seq fibrob-
last cells, ECs, and leukocytes from the sham hearts (i.e. pairwise comparisons between
these cell lineages) and the sham populations againstMI leukocytes (Additional file 4).We
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Fig. 3 Comparison of differential transcript usage between cardiac scRNA-seq and bulk RNA-seq populations.
a t-SNE plot of the cardiac TIP cell lineages. b, c Gene expression visualised on t-SNE for b Cxcl12 and c Igf1. d,
e Relative peak expression visualised on t-SNE for example DU peaks between d sham fibroblasts and sham
ECs, Cxcl12, and between e sham fibroblasts and MI leukocytes, Igf1. f, g Read coverage plots across the Cxcl12
and Igf1 genes for f single-cell and bulk fibroblast and EC populations (Cxcl12) and g single-cell and bulk sham
fibroblast and MI leukocyte populations (Igf1). h Fisher’s exact tests on the number of overlapping DTU genes
detected from scRNA-seq and bulk for different cell type/condition comparisons. Shown are the −log10 p
values and the percentage of single-cell DTU genes overlapping the bulk. Red line indicates the significance
(0.05) threshold. i Overlapping genes between single-cell and bulk RNA-seq from the sham fibroblast and MI
leukocyte comparison. j Log fold-change comparisons for DU peaks identified in both the single-cell and
bulk RNA-seq for the sham fibroblast vs EC analysis. Shown is the Spearman correlation coefficient

did not include MI fibroblasts or ECs as these populations are diluted in the scRNA-seq
due to an overwhelming influx of monocytes and macrophages at MI-day 3 [26].
We found clear examples of DTU masked when considering an aggregate of the gene.

As examples, top DTU genes from fibroblast to EC and fibroblast to MI leukocyte com-
parisons were Cxcl12 and Igf1, respectively. Cxcl12 was observed to be expressed in
fibroblasts, ECs, and mural cells (Fig. 3b), while Igf1 was expressed in fibroblasts and
macrophage populations (Fig. 3c). When we compared relative expression of DU peaks,
we found we could distinguish clear patterns of specificity between fibroblasts and ECs
for Cxcl12 (Fig. 3d) and between fibroblasts and macrophages for Igf1 (Fig. 3e). We plot-
ted read coverage acrossCxcl12 for the fibroblast and EC populations and compared them
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to the bulk RNA-seq of sorted fibroblasts and ECs. This showed that the peak upreg-
ulated in fibroblasts corresponded to a 3′UTR of a short transcript isoform of Cxcl12,
while the top EC peak corresponded to a longer isoform (Fig. 3f ). The difference in tran-
script isoform expression between fibroblasts and ECs was also observed in the bulk
RNA-seq, confirming our observations made in the single-cell data (Fig. 3f ). The fibrob-
last and EC transcripts correspond to the Cxcl12-α and Cxcl12-γ isoforms, respectively,
with their protein products showing alternative localisation and functional properties
(see the ‘Discussion and conclusion’ section). We were able to experimentally validate
Cxcl12 transcript isoform expression by specifically targeting the different 3′ exons using
real-time quantitative RT-PCR (qRT-PCR) (Additional file 2: Figure S4A,B).
In the case of Igf1, the two DU peaks corresponded to proximal and distal sites on the

same 3′UTR, relative to the terminating exon, and are annotated in current RefSeq gene
models. The peak distal to the terminating exon (peak 2) was preferentially expressed in
fibroblasts, and from the bulk RNA-seq, we could also observe that fibroblasts prefer-
entially expressed this longer 3′UTR in Igf1 (Fig. 3g), demonstrating that we can detect
APA corresponding to changes in 3′UTR length. We could observe other examples of
APA from DTU genes between fibroblasts and leukocytes, including Tfpi and Tm9sf3
(Additional file 2: Figure S5A,B). We also detected examples of alternative 5′ start sites in
Lsp1 and Plek (Additional file 2: Figure S5C,D), demonstrating that Sierra detects DTU
corresponding to a variety of alternative transcript expression events.
We next asked how many DTU genes detected from the single-cell comparisons

could also be detected in the bulk RNA-seq. We used the peak coordinates mapped
to 3′UTRs and exons as a reference to generate counts from the bulk RNA-seq and
again applied DEXSeq to determine DTU between the same cell types and condi-
tions as with the scRNA-seq data. For all comparisons, we found that there was an
overlap between the scRNA-seq and bulk RNA-seq DTU genes greater than expected
by chance (Fig. 3h; Fisher’s exact test; p < 0.05), after using the set of genes with
multiple 3′UTR/exon peaks expressed in the relevant scRNA-seq populations as a
random-expectation background. The comparison with the largest and most significant
overlap was between sham fibroblasts and MI leukocytes, with 343 out of 531 com-
parable DTU genes (65%) from the scRNA-seq analysis also observed as DU in the
bulk RNA-seq (Fig. 3h, i). We next compared the fold-change direction of the peaks
called as DU in both the scRNA-seq and bulk RNA-seq experiments. For all compar-
isons, we found a significant positive correlation in fold-change (Spearman’s correlation
test; p < 0.05). The strongest correlation was found in the fibroblast vs EC compar-
ison (Fig. 3j; ρ = 0.82). We also considered whether filtering out peaks annotated as
A-rich prior to the DTU analysis would improve the correlation with the bulk RNA-
seq. We recalculated DU peaks from the single-cell populations, first filtering out peaks
proximal to A-rich regions. For 5/6 of the comparisons, there was no major change
in the metrics used for the comparisons; however, for the sham EC vs sham leuko-
cyte comparison, we noticed the overlap increased from 51% (with Fisher’s exact test
p = 0.004) to 56% (p = 0.001) and the Spearman correlation coefficient increased from
0.31 (with Spearman’s correlation test p = 0.005) to 0.4 (p = 9 × 10−4). Together,
these results show that Sierra can detect multiple types of alternative mRNA isoform
usage with a significant number of these corroborated by an independent bulk RNA-seq
experiment.
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3′UTR shortening in activated and proliferating cardiac fibroblasts

Proliferating cells have previously been observed to have, on average, shortened 3′UTRs
[34, 35].We sought to determine whether we could apply Sierra to infer 3′UTR shortening
at the single-cell level. In the heart, fibroblasts become activated and proliferate following
MI, with the peak of proliferation occurring within days 2 to 4 post-MI [36]. scRNA-
seq of enriched (Pdgfra-GFP+) murine cardiac fibroblasts at day 3 post-sham or MI has
revealed several sub-types of cardiac fibroblasts [26]. In the uninjured heart, predominant
fibroblast populations can be distinguished on the basis of the expression of Ly6a (Sca1)—
referred to as Fibroblast Sca1-low (F-SL) and Sca1-high (F-SH) (Fig. 4a) [26, 37]. Following
MI, there is the expansion of a pool of activated fibroblasts (F-Act) leading to a population
of actively cycling fibroblasts (F-Cyc) (Fig. 4b). In between F-Act and F-Cyc in pseudo-
time is an intermediary activated population, F-CI (cycling intermediate), that does not
express markers of actively proliferating cells.
We investigated whether we could infer 3′UTR shortening in the F-Cyc population

compared to the main resting populations, F-SL and F-SH. We applied DEXSeq to find
examples of DU peaks falling on 3′UTRs, filtering out peaks tagged as near A-rich regions
prior to DU testing in order to enrich for real polyA sites (Additional file 5). For the DU
3′UTR peaks, we considered all expressed and non-A-rich peaks that occurred on the
same 3′UTR and ranked them according to their relative location to the terminating exon.
Each peak was given a score between 0 (most proximal to the terminating exon) and 1
(most distal), and we determined if there was a difference in relative location for upreg-
ulated and downregulated peaks. We reasoned that an increased number of upregulated
peaks proximal to the terminating exon should imply a preference of shortened 3′UTRs,
as well as a downregulation of distal peaks.
Comparing F-Cyc to F-SL/F-SH, we found 598 DU 3′UTR peaks representing 424 DTU

genes (LFC > 0.5; padj < 0.01). Comparing their relative peak locations, we found a
strong shift towards proximal peak upregulation in F-Cyc and a corresponding propensity
for distal peaks to be downregulated (Fig. 4c; Wilcoxon rank-sum test; p = 1.1 × 10−68).
We next considered whether the remaining activated populations also showed evidence
of 3′UTR shortening (Additional file 5). Interestingly, we found that the intermediate F-CI
population, which we have previously interpreted to be a pre-proliferative state showing
strong upregulation of translationalmachinery compared to F-Act [26], had an even larger
number of DU 3′UTR peaks (785; 545 DTU genes) than F-Cyc and also showed a strong
pattern of proximal peak upregulation (Fig. 4d;Wilcoxon rank-sum test; p = 6.5×10−98).
We directly compared F-Cyc to F-CI but found only 8 3′UTR peaks showing DU, sug-
gesting the 3′UTR shortening is occurring in the F-CI population prior to cell cycle entry.
We also evaluated F-Act relative to F-SL/F-SH and found a smaller number of DU peaks
(106; 94 DTU genes), which showed a significant, albeit reduced, pattern of proximal peak
upregulation (Fig. 4e; Wilcoxon rank-sum test; p = 5.5 × 10−8).
We compared the genes implicated in 3′UTR shortening to the bulk RNA-seq of sorted

fibroblasts from sham day 3 and MI-day 3 hearts described above [33]. While the pro-
liferating cells would have comprised a minority within the bulk RNA-seq, the most
significant examples of 3′UTR shortening should still be detectable in the bulk RNA-
seq. Two of the top significant DTU genes were Timp2 and Cd47, which showed clear
patterns of relative higher proximal peak usage in F-Cyc compared to resting fibroblasts
(Fig. 4f, g). We analysed read distributions in the 3′UTRs, including isolated single-cell
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Fig. 4 3′UTR shortening in activated and proliferating cardiac fibroblasts following MI. a, b UMAP
visualisation of fibroblast populations from Pdgfra-GFP+/CD31− mouse cardiac cells at 3 days post-sham or
MI surgery showing a an aggregate of all cells and b the UMAP plot separated according to condition. c–e
Counts of 3′UTR peaks showing differential usage according to their relative location to the terminating
exon. Location of 0 indicates the peak most proximal to the terminating exon, with 1 representing the most
distal. Comparisons performed are for c F-Cyc against F-SL and F-SH combined, d F-CI against F-SL and F-SH
combined, and e F-Act against F-SL and F-SH combined. f, g Relative expression of peaks most distal and
proximal (to terminating exon) for f Timp2 and g Cd47 as visualised on UMAP coordinates. h, i Read coverage
across 3′UTR for select single-cell fibroblast populations from sham (F-SL/F-SH combined) and MI (F-Act, F-CI,
F-Cyc) datasets compared to bulk RNA-seq of FACS-sorted fibroblasts from sham and MI conditions for h
Timp2 and i Cd47

populations F-SH/F-SL combined (from sham hearts) and the MI populations (F-Act, F-
CI, and F-Cyc), and compared these to the bulk RNA-seq of sorted fibroblasts from sham
and MI-day 3 hearts (Fig. 4h, i). In both the single-cell MI populations, as well as the MI
bulk RNA-seq, we observed a decrease in coverage in the distal regions of the 3′UTR for
both Timp2 (Fig. 4h) and Cd47 (Fig. 4i). We tested for DTU genes from the bulk RNA-seq
using peaks from the GFP+ fibroblast lineage cells compared to sham cells, restricting our
testing to 3′UTR and non-A-rich peaks as above. We found a significant overlap in DTU
genes with the F-Cyc (Fisher’s exact test; p = 1.6 × 10−15) and F-CI (p = 7.6 × 10−15)
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populations, but not for F-Act (p = 0.078). Comparing fold-changes, we found a highly
significant positive correlation between the bulk RNA-seq and the F-Cyc and F-CI pop-
ulations (Additional file 2: Figure S6A,B; Spearman’s correlation test; p < 1 × 10−100).
Despite the smaller overlap in DTU with F-Act, the peaks that did overlap nonetheless
exhibited a positive correlation (Additional file 2: Figure S6C; p = 10−4).

In vivo validation of candidate genes for altered 3′UTR usage

We performed an in vivo validation of candidate genes associated with changes in 3′UTR
length in proliferating cardiac fibroblasts, as detected by Sierra, using qRT-PCR. We
first sought to determine the levels of cardiac fibroblast proliferation in murine hearts
at different anatomical locations (zones) following MI injury (Fig. 5a), in order to define
proliferative and non-proliferative fractions for qRT-PCR analysis. We utilised a mouse
model (PdgfratdTom) that expresses a red fluorescent protein (tdTomato) in PDGFRα+

cells, allowing for quantification of actively cycling fibroblasts using imaging (see the
‘Methods’ section). We subjected 8-week-old PdgfratdTom mice to MI and measured pro-
liferation seen as incorporation of the nucleotide analogue 5-ethynyl-2′-deoxyuridine
(EdU) into the newly synthesised DNA in replicating cells (Additional file 2: Figure
S7A). We found EdU incorporation in lineage-traced (tdTomato+) cells was exclusively
restricted to the infarct zone (IZ), with 12.07 ± 1.76% of tdTomato+ cells also EdU+, and
absent from sham hearts and the remote zone (RZ) in MI mice (Fig. 5b). Thus, both the
sham and RZ form non-proliferative controls, with the caveat that the RZ likely contains
activated fibroblasts [26].
Furthermore, we performed MI surgeries on Pdgfra+/GFP mice to validate the presence

of altered 3′UTR usage as identified by Sierra. Given the zone-specific distribution of pro-
liferating cells, we FACS-sorted GFP+/CD31− fibroblast lineage cells from sham hearts,
RZ and IZ of MI hearts at day 3 post-surgery (Additional file 2: Figure S7B) and per-
formed qRT-PCR assays. To validate that fibroblasts from the IZ were proliferative, we
first confirmed that the expression of proliferation-associated genes (Aurka, Ccnb1, and
Mki67), as well as an activation marker (Postn), were increased in the IZ samples (Fig. 5c).
We tested differential 3′UTR shortening in 7 top candidate genes drawn from the Sierra
analysis of proliferating (F-Cyc) vs resting (F-SH and F-SL) fibroblasts (Fig. 5d) by design-
ing PCR primers to cover the proximal and distal peaks on the 3′UTRs (see the ‘Methods’
section; Additional file 6). We selected 6 genes showing 3′UTR shortening (Cd47, Sept8,
Il13ra1, Pdgfra, Camk2d, andMtfr1) and 1 that exhibited lengthening (Col1a2).
We further validated the peak expression, first by evaluating the difference (�ct) in

proximal vs distal expression within each sample, then comparing the �ct between
samples to test for changes in proximal/distal peak usage (see the ‘Methods’ section).
Comparing the RZ to sham samples, only one gene, Sept8, showed a significant differ-
ence (Fig. 5e; t test; p < 0.05). Given our findings above that activated fibroblasts (F-Act)
exhibit some changes in 3′UTR usage compared to resting (sham) fibroblasts (F-SH/F-
SL), observing that 1/7 genes show a significant difference between RZ and sham was
not unexpected, and Sept8 was in fact one of the DU genes detected in F-Act vs sham
in scRNA-seq comparisons (Additional file 5). However, we found the largest differences
between IZ and RZ samples, and between IZ and sham samples, with 6/7 genes exhibit-
ing significant (p < 0.05) shifts towards proximal or distal usage in line with the Sierra
output (Fig. 5e). The only gene that did not show a significant difference was Cd47, which
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Fig. 5 In vivo qRT-PCR validation of candidate genes with altered 3′UTR length in proliferating cardiac
fibroblasts. a Diagram showing different anatomical locations of an MI heart: remote zone (RZ) and infarct
zone (IZ). b Representative immunofluorescence images showing EdU+ cells in sham or indicated
anatomical location of MI hearts. Scale bar indicates 50 μm. c qRT-PCR expression of proliferation marker
genes in Pdgfra-GFP+ cells sorted from sham hearts, and RZ and IZ samples. Shown is the mean expression
and standard error (n = 3), with stars indicating significant difference between comparisons (1-tail t test;
p < 0.05). d Sierra candidate genes exhibiting a shift to proximal or distal peak usage from scRNA-seq
population F-Cyc in comparison to F-SH/F-SL. Shown is the difference in proximal to distal peak fold-change
(log2). e qRT-PCR comparison of proximal to distal (P–D) peak expression from candidate genes in
Pdgfra-GFP+cells (Additional file 2: Figure S7) sorted from sham hearts, and RZ and IZ samples. Y-axis
represents � � (P–D) expression (log2; see the ‘Methods’ section) of sample comparisons RZ vs sham, IZ vs
RZ, and IZ vs sham. Shown is the mean expression difference and standard error (n = 3), with stars indicating
a significant difference for the comparison (1-tail t test; p < 0.05)

was unexpected as we observed a clear shift towards proximal peak usage from single-
cell and bulk RNA-seq of MI fibroblasts (Fig. 4i). Nonetheless, the direction of difference
seen was in line with our expectation from Sierra. Overall, these results provide strong
experimental support for the DTU genes detected by Sierra.

Clustering using peak-level expression

Our approach can clearly identify patterns of DTUwhen analysing single-cell populations
defined through gene-level clustering. We next asked whether clustering on peak-level
expression data could yield new information. We performed clustering using Seurat on
the gene counts, with increasing cluster granularity through modification of the ‘res-
olution’ parameter in the Seurat FindClusters program, and compared the results to
clustering performed on the peak counts, again selecting for peaks falling on 3′UTRs or
exons (see the ‘Methods’ section).



Patrick et al. Genome Biology          (2020) 21:167 Page 14 of 27

We compared the clustering consistency between gene and peak counts using the
Fowlkes and Mallows (FM) index and the Adjusted Rand Index (ARI). We found in gen-
eral that the lower clustering resolutions, with fewer clusters, yielded higher consistency
as determined by FM index and ARI (Table 2). We also noticed that the effect on clus-
ter numbers returned from peak-level clustering tended to be dataset dependent. For the
TIP dataset, there were fewer clusters relative to gene-level clustering (e.g. at a resolution
of 0.6, there were 21 vs 25 clusters for peak-level and gene-level clustering, respectively).
For the GFP+ dataset, there were consistently two additional clusters when using peaks,
and for the PBMC 7k dataset, the numbers were the same (Table 2). Overall, using peak-
level expression in place of gene-level expression does not appear to have a major impact
on clustering results, particularly at lower clustering resolutions.
We visually compared the clusters returned by peak- and gene-level clustering by

imposing the clusters on the same t-SNE coordinates calculated on gene expression in
the TIP dataset (Additional file 2: Figure S8A-D). We found broad consensus between the
clusters returned for most of the cell populations, further indicating that in general, the
use of peak expression was not leading to the identification of many different populations.
Of the few differences, we noticed that at resolution 0.6, the peak-level clustering identi-
fied a small sub-population of ECs (cluster ‘17’; Additional file 2: Figure S8B) that was not
present in the gene-level clustering (Additional file 2: Figure S8A). We calculated DTU
between cluster ‘17’ and the main EC population (cluster ‘1’) and found only a small num-
ber of DU peaks (16) between these clusters; however, differential gene expression testing
between clusters ‘17’ and ‘1’ showed that cluster ‘17’ corresponded to a minor population
of lymphatic ECs upregulating Vwf, Lyve1, and Prox1 (Additional file 2: Figure S8E). The
presence of these lymphatic ECs was observed in the original analysis by marker gene
expression [26], but as a sub-set of cells within a larger cluster. Thus, clustering using peak
expression may allow for a finer-resolution identification of some cell types.

Amouse tissue atlas of cell type-specific differential transcript usage

We applied Sierra to the Tabula Muris [27], a compendium of scRNA-seq datasets across
mouse tissues, to construct an initial tissue atlas of cell type-specific DTU. Applying
Sierra’s peak calling to each of the 12 tissues, followed by merging of peak coordinates,
we obtained a total of 107,425 peaks across the whole dataset. To determine DTU across

Table 2 Comparisons for clustering results based on peak counts relative to gene counts. Columns
from left to right show the dataset tested, the resolution parameter (res) for the Seurat FindClusters
program, the number of clusters returned from gene-level clustering, the number of clusters from
peak-level clustering, the Fowlkes and Mallows (FM) index, and the Adjusted Rand Index (ARI)

Dataset Resolution Clusters (gene) Clusters (peaks) FM index ARI

TIP 0.6 25 21 0.92 0.91

TIP 0.8 29 25 0.86 0.85

TIP 1.0 30 27 0.79 0.76

PBMC 7k 0.6 17 16 0.84 0.82

PBMC 7k 0.8 18 18 0.82 0.80

PBMC 7k 1.0 20 20 0.81 0.79

GFP+ 0.6 10 12 0.75 0.70

GFP+ 0.8 12 14 0.75 0.71

GFP+ 1.0 14 16 0.66 0.62



Patrick et al. Genome Biology          (2020) 21:167 Page 15 of 27

Fig. 6 Detecting differential transcript usage across the Tabula Muris dataset. a Comparison of the number
of DU peaks across cell types within each tissue. Only cell types with more than 100 cells are included in the
analysis. b, cMammary gland tissue results. b Number of DU peaks between cell types. c Relative expression
plot of DTU genes between a cell type and all remaining cell types in the tissue

tissues, we considered tissues that contained at least two cell types with at least 100 cells,
leaving 10 tissues for our analysis. We calculated DTU within each tissue by performing
pairwise comparisons between each of the cell types. Stratifying the DU peaks across tis-
sues for each of the cell types, we found the greatest amount of DTU in mammary gland
tissue, with most cell types exhibiting over 2000 examples of DU peaks. The smallest
amount was observed in the heart tissue, which only contained fibroblasts and ECs after
filtering for cell number, and between which there were 106 detected DU peaks (Fig. 6a).
As mammary gland tissue contained the greatest number of DTU genes, we focused

more on this tissue type (Fig. 6b, c). Across the mammary gland cell types, we found the
largest number of DTU genes was called when comparing luminal epithelial cells to T
cells and B cells. The smallest number of DTU genes was detected in the T cell vs B cell
comparison. We next considered whether the Sierra DTU calls could be used to define
‘marker peaks’ in an analogous manner to marker genes for cell types. Here, we define
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marker peaks as peaks that are DU between the cell type of interest and all other cell types.
Applying marker DU testing to cell types from the mammary gland tissue, we defined
DTU genes with high cell type relative peak expression, including Mrc1 in macrophages,
Ctla4 in T cells, and Dapk1 in stromal cells (Fig. 6c). We have made the processed Tabula
Muris data available online (see Availability of data and materials).

Discussion and conclusion
We have presented Sierra, a computational pipeline for discovery, analysis, and visuali-
sation of differential transcript usage in scRNA-seq data. Sierra is applicable to polyA-
captured scRNA-seq experimental data such as those produced using the 10x Genomics
Chromium system. Our method for detecting genomic regions corresponding to poten-
tial polyA sites enables a data-driven approach to detecting novel DTU events, such as
alternative 3′ usage andAPA between single-cell populations.We first determine the loca-
tion of potential polyA sites by applying splice-aware peak calling to a scRNA-seq dataset,
followed by annotation of the identified peaks and peak-coordinate UMI counting across
individual cells. Finally, we use a statistical testing approach to determine genes exhibit-
ing DTU with a novel pseudo-bulk approach to define replicates. While the software and
analysis presented here are focused on the analysis of scRNA-seq data from UMI tech-
nologies, there is potential for our methodologies to be used in other enrichment-based
datasets such as single-cell ChIP-seq or ATAC-seq.
Using the Sierra approach, we find thousands of genes that display significant DTU in

publicly available datasets from human and mouse. Importantly, we provide several vali-
dations of our approach. Firstly, by the use of qRT-PCR, we experimentally confirm select
candidate DTU genes detected by Sierra. Secondly, we compare DTU calls made from
scRNA-seq populations in the heart to DTU calls from ribo− bulk RNA-seq of matched
cardiac populations obtained with FACS. Both the qRT-PCR results and the significant
overlap in DTU genes with the bulk RNA-seq point to the DTU detected by Sierra as
representing real biology, and not technical artefacts of the scRNA-seq. For the bulk RNA-
seq comparison, despite the significance of the overlap, there were uniquely detected
DTU genes in either the bulk RNA-seq or the scRNA-seq. These differences could be
due to several reasons, both technical and biological. It is to be expected that more DTU
genes will be detected in bulk RNA-seq data due to the increased depth and transcript
coverage; however, there could also be examples of DTU genes that can more easily be
detected with 3′ end-based scRNA-seq than with bulk RNA-seq, for example, due to the
transcript averaging effects in the latter, indicating a unique benefit of using 3′ end-based
scRNA-seq for detecting some forms of alternative isoform expression.
The ability of Sierra to detect DTU provides the ability to contextualise prior known

isoform information. For example, Cxcl12 transcript isoforms are uniquely regulated and
have known activities (reviewed in [38]). The Cxcl12 isoforms detected by Sierra as DU
between cardiac fibroblasts and endothelial cells correspond to α and γ isoforms, respec-
tively. In the heart, the terminating amino acid sequence of Cxcl12-γ encodes a nuclear
localisation sequence (NLS) and accumulates in the nucleolus, with any competing 5′ sig-
nal peptide being bypassed through the use of a non-canonical CUG start codon [39].
In other tissues, such as the brain, Cxcl12-γ is secreted, presumably because the 5′ sig-
nal peptide takes precedence over the 3′ NLS. Interestingly, Cxcl12-γ is retained at cell
surface due to its highly charged amino acid tail, which confers a 10× higher affinity for
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glycosaminoglycans when compared to other Cxcl12 isoforms [40, 41]. Cxcl12-α is the
most widely expressed isoform but also is likely to have the shortest half-life due to the 3′

end being a preferred proteolytic target of CD26 [38, 42]. A unique feature of Cxcl12-β is
that the 3′ UTR sequence contains at least two binding sites for miR-141/200 which have
been shown to regulate only this isoform [43, 44]. The unique properties of Cxcl12 iso-
forms demonstrate the kinds of additional biology that can be inferred from scRNA-seq
data when analysed by Sierra.
The flexibility of Sierra means that diverse questions can be asked about DTU.While we

focus on mature transcripts in this manuscript, the presence of intronic peaks means that
questions about pre-spliced mRNA can be explored as well. The RNA velocity approach
utilises ratios of spliced and unspliced reads from scRNA-seq to estimate rates and direc-
tion of cell differentiation [29]. With Sierra, it should be possible to test for genes that
show differences in relative usage of intronic peaks, as an indicator of changes in the
expression level of pre-spliced mRNA transcripts. Such analyses could be useful in differ-
entiation contexts in identifying what genes are tending to be newly transcribed. There
are additional applications that could be used for intronic peaks. One form of AS is intron
retention, which has been found to have a role in cancer [15]. Intronic polyadenylation has
also been linked to cancer through the inactivation of tumour-suppressor genes [14]. The
majority of intronic peaks from our analysis are annotated as proximal to A-rich regions,
indicating that most will be due to internal priming, but by filtering for peaks more likely
to represent true polyA sites, analysis of intronic polyadenylation represents a potential
application of Sierra.
In conclusion, we have developed a novel computational pipeline for detecting differ-

ential transcript usage from 3′ end-based scRNA-seq experiments. Our novel approach
to analysing scRNA-seq yields biological insights unobserved when considering only an
aggregate of genes and allows new questions to be asked about the nature of transcrip-
tional regulation between cells.

Methods
Datasets

The locations of datasets used in this study are listed under Declarations. Previously gen-
erated bulk RNA-seq datasets [33] were downloaded, trimmed using Trimmomatic [45],
and aligned using the two-pass STAR alignment method [46].

Sierra pipeline

The Sierra pipeline is implemented as an R package and can be divided into the following
main steps, each described in detail. (1) Splice-aware peak calling is applied to a BAM file
to identify peak coordinates. (2) If multiple datasets are being analysed, peak coordinates
frommultiple BAM files are merged together into one set of unified peak coordinates. (3)
UMI counting is performed against the set of unified peak coordinates for a provided set
of cell barcodes. (4) The peak coordinates are annotated according to the genomic fea-
tures they fall on and, optionally, according to proximal sequence features corresponding
to A-rich regions, T-rich regions, or the presence of a canonical polyA motif. (5) Differ-
ential transcript usage analysis by applying DEXSeq to pseudo-bulk profiles of cells. (6)
Visualisation of relative peak expression and read coverage across genes for select cell
populations.
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Peak calling

The Sierra peak calling procedure, implemented as the FindPeaks program, requires three
inputs: (1) a BAM file containing the data for the entire experimental run, such as pro-
duced by the 10x Genomics CellRanger software; (2) the reference (GTF) file used for the
mapping; and (3) a file containing splice junctions from the experiment (BED format).
The BAM file must include the error-corrected cell and UMI barcode tags. Although
many peak callers have been developed to work with DNA sequencing data, e.g. ChIP-seq
analysis, we found it was not appropriate for RNA sequencing in single cells due to the
presence of exon junction reads that result in peaks spliced across the genome.
To make the Sierra peak caller splice aware, we first extract the splice junctions from

the BAM file using ‘regtools’ [47] (≥ version 0.5.1). The advantage of this approach is
that by extracting splice junctions directly from the data, we do not depend on exist-
ing transcript annotations, enabling discovery of novel splicing events. Using the set of
identified junctions, we separate read coverage into ‘within junction’ and ‘across junc-
tion’ sub-sets and perform peak finding for each coverage sub-set separately. The ‘within
junction’ coverage comes from reads that align inside the identified junctions, i.e. not on
junction coordinates (Additional file 2: Figure S9). In most cases, the ‘within junction’
reads will correspond to intronic genomic regions. The ‘across junction’ coverage comes
from remaining reads following removal of the within junction reads. In most, but not all,
cases, these reads overlap with the exonic genomic regions.
Using the above input files, we perform the following steps (illustrated in Additional

file 2: Figure S9) one gene at a time:

1. The read coverage of the gene is extracted.
2. The next step is to identify a list of reliable junctions. To control for spurious

splicing events, we first remove junctions with less than a specified number of
junction reads. By default, this is set to either 50 reads or 5% of the maximum
coverage for the gene, whichever is highest. These values are defined in FindPeaks
using the min.jcutoff and min.jcutoff.prop parameters, respectively. The use of two
criteria and stringent thresholds for filtering junctions means Sierra is relatively
robust to splicing noise in genes with varying levels of read coverage.

3. To find peaks in the ‘across junction’ regions, the following steps are applied:

(a) Remove junction regions and piece together remaining coverage.
(b) To call a peak, we find the genomic locus in which the local read coverage

is maximum and fit a Gaussian to the read count (per base pair) using the
R nls (non-linear least squares) program, parameterised with the
following function: y = k × exp(−1/2 × (x − mu)2/sigma2), where y is
the read coverage, k is the peak maximum, x is the position, mu is the
centre of the peak location, and sigma controls the width of the peak. We
assume peaks are approximately 600 bp in width and fit a 600-bp region in
each iteration. We initialise mu to be 300 (denoting the peak location in
the centre of the provided region), sigma to be 100, and k to be the
maximum peak coverage. We consider a peak called if the nls function
returns a fit without error. The called peak location is set to range from
three standard deviations upstream and to three standard deviations
downstream from the centre of the peak, defined as s − 300 + mu, where
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s is the site of maximum coverage for that region. Alternatively, Sierra
supports Gaussian curve fitting using the maximum likelihood method,
implemented using the R mle function. We compared peaks called using
nls and mle and found them to be highly comparable, with an average of
92% of called peaks identified by both methods across 10 datasets tested
(Additional file 2: Figure S10A). We also compared runtime for calling
peaks with the nls and mle method, but found no obvious speed benefit to
either method (Additional file 2: Figure S10B). In this study, we used the
nls method for Gaussian curve fitting.

(c) The coverage is set to zero at the location of the fitted peak to allow the
next site of maximum coverage to be identified. Steps 3b and 3c are
iterated until one of two criteria has been met: either (1) a specified
proportion of the read coverage has been assigned to called peaks for the
gene, or (2) the maximum peak coverage is below some threshold. To
evaluate the first criteria, the FindPeaks function takes in two parameters,
min.cov.prop (default 5%) and min.cov.cutoff (default 500), which define
the proportion of read coverage and total coverage, respectively. The first
criteria are met when both of these thresholds are passed. The second
stopping criteria relate to the maximum size of the peak. Again, two
thresholds are required to be met: an absolute threshold (defined by the
parameter min.peak.cutoff ; default 200) and a relative threshold
(min.peak.prop; default 5%) defining the ratio of the current peak height
relative to the maximum peak height for the gene.

4. To find peaks in the ‘within junction’ regions, we repeat the procedure described in
steps 3b and 3c for each of the ‘within junction’ regions.

Peak merging

Peaks are defined by their position in the genome, and peaks called from multiple inde-
pendent datasets are merged into a unified set of peak coordinates prior to UMI counting.
The presence of peaks called across splice junctions presents a specific challenge, as
some peaks may overlap but represent distinct biological signals. As an example, Addi-
tional file 2: Figure S11A indicates the location of three peaks called from the Cxcl12
gene across two datasets. While ‘peak 3’ is clearly distinct, peak 1 spans multiple exons
and contains peak 2. Despite the overlapping coordinates, peak 1 and peak 2 represent
the expression of alternative transcript isoforms. As a result, not all overlapping peaks
should be merged. Instead, the following procedure is applied to generate a unified set
of peaks.
For a given gene, we evaluate the distance between any two peaks across datasets by

calculating the absolute difference between start and end coordinates divided by the
width of the peak. We convert the distance to a ‘similarity score’ between 0 and 1 by
taking one minus the distance, setting any negative values to 0. A score of 1 indicates a
direct correspondence between start/end coordinates, and 0 indicates that the difference
between start and end coordinates is greater than the width of the peak. This calculation
is illustrated in Additional file 2: Figure S11A.
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In order to determine a similarity score threshold for merging peaks, we calculated
similarity scores between peaks from the GFP+ experiment (which contains two sequenc-
ing datasets) and TIP (3 datasets). For each peak, we plotted the similarity score for its
best match from the comparison dataset. We found for all comparisons that the similar-
ity scores formed a bimodal distribution (Additional file 2: Figure S11B-E), such that on
average, 95% of peaks could either be matched with a similarity score ≥ 0.75 or consid-
ered clearly not matching as indicated by a score of 0. Given the drop-off in similarity
distributions observed < 0.75, a default threshold of ≥ 0.75 is used to match peaks.
This process is run for all pairwise combinations of datasets to merge. That is, for each

pair of datasets, peaks are compared both ways and two peaks are considered matched
if at least one has a similarity score ≥ 0.75, with a relaxed criteria for the second peak
(allowing a 25% deviation from the threshold). For peaks that are matched, the union of
the start and end coordinates is taken to create a final merged peak.

UMI counting

To perform UMI counting in single cells, Sierra requires a set of unified peak coordinates
from FindPeaks or MergePeakCoordinates, a GTF file of gene positions, a scRNA-seq
BAM file, and a white list of cell barcodes. We extract alignments for each gene using
the GenomicAlignments package (≥ version 1.14.2), then count the overlaps between
the peak coordinates and the alignments using the countOverlaps function in Genomi-
cRanges [48] (≥ version 1.30.3). Extra filtering is performed to ensure only cells that are
in the barcodes white list are counted. The final peak to cell matrix is output in matrix
market format.

Detecting differential transcript usage

We test for differential transcript usage using the differential exon usage testing method
DEXSeq [25] (≥ version 1.24.4), which was originally developed for bulk RNA-seq. We
adapted DEXSeq to scRNA-seq after transforming the single cells to be tested into a small
number of pseudo-bulk samples. Instead of testing for differential exon usage of genes
between groups, we use DEXSeq to test for differential peak usage within genes between
groups. The use of pseudo-bulk samples allows for computational efficiency of testing.
Given two sets of cells to be compared, we first build some n number of pseudo-bulk pro-
files for each of the cell sets by randomly assigning cells into n groups and summing their
peak counts. By default, the value of n is set to 6 (see below). We use the DEXSeqDataSet
function in DEXSeq to build a DEXSeq object, where countData is the raw peak counts,
groupID is set to gene names, and featureID is a set of unique gene-peak numbers. We
run the estimateSizeFactors function, setting the locfunc option to use the shorth function
from the genefilter R package [49], as it is suggested in the DEXSeq documentation that
the shorth function may provide better results for low counts. After estimating size fac-
tors, we follow the standard DEXSeq pipeline for testing differential usage. The function
to perform DU testing is implemented in Sierra as DUTest and contains options to filter
for genomic feature types and peaks annotated as near A-rich regions prior to DU testing.
The main parameter that is introduced here is the n value determining the number

of pseudo-bulk profiles. In order to decide on a default value, we considered the impact
of different values of n when running DU testing on the TIP and PBMC 7k datasets
by re-running tests for 10 different seeds (and therefore different random assignments
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of cells to pseudo-bulk profiles) for three values of n: 3, 6, and 10. We evaluated the
number of DTU genes obtained (Additional file 2: Figure S12A,B), the consistency of
those results across the ten seeds (Additional file 2: Figure S12C,D), and finally the
computational time taken for a DTU test (Additional file 2: Figure S12E,F). We found
that on average, there was a small increase in the number of DU genes detected,
as well as the consistency, with an increased value of n; however, the computational
time increased drastically when increasing n from 6 to 10. Thus, a value of 6 main-
tains a fast computational time while returning a similar number and consistency of
DTU genes to a higher n value of 10, and was therefore selected as the default value
for Sierra.

Peak annotation

All reported peaks were annotated to identify overlapping feature information within
gene transcripts using the Sierra function AnnotatePeaksFromGTF. This function takes
peak coordinates (GRanges format) and identifies if the boundaries are within a UTR,
exon, or intron of known genes (supplied as a GTF formatted file). In cases where a
gene has multiple transcripts, an annotation hierarchy is applied such that when peaks
overlap multiple features UTR > exon > intron. In cases where a peak overlaps multi-
ple features within a single transcript, all features are returned. This same function also
assesses genomic sequence downstream from peaks for the existence of polyA motifs (i.e.
AAUAAA) or A-rich region (defined as 13 consecutive A with up to 1 mismatch). Sim-
ilarly, genomic sequence upstream of peaks was assessed for the existence of a T-rich
region (13 consecutive T with up to 1 mismatch) as previously identified by [29].

Coverage plots

Cell type BAM files were extracted from the original total single-cell population BAM
alignment files using the Sierra function SplitBam. For bulk RNA-seq datasets, the
BAM files had previously been imported into SeqMonk using default RNA-seq set-
tings. Coverage information was extracted from SeqMonk files by exporting wig-like
files (via selecting running window generator on specific gene lists). Single-cell split
BAM files and bulk RNA-seq coverage data files were passed to the Sierra PlotCoverage
function.

Detecting 3′UTR shortening

In order to evaluate 3′UTR shortening, we first calculate DU peaks, selecting for peaks
falling on 3′UTRs and filtering out peaks annotated as proximal to an A-rich region to
enrich for real polyA sites. This is performed in Sierra using theDUTest function with fea-
ture.type = ‘UTR3’ and filter.pA.stretch = TRUE. To ensure that our comparative analysis
was performed on the same 3′UTR, we selected exon IDs for DU 3′UTR peaks using the
GenomicFeatures [48] (≥ version 1.30.3) threeUTRsByTranscript function. For each DU
3′UTR peak, we compared the DU peak to the remaining peaks expressed on the same
UTR. The peaks were ordered according to their proximity to the start of the 3′UTR and
assigned a score between 0 and 1, with the most proximal peak scored 0 and the most dis-
tal scored 1. The ordering scores were compared between up- and downregulated peaks
using Wilcoxon’s rank-sum test to evaluate shifts towards more proximal or distal peak
expression.
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Plotting relative peak expression

For situations where overall gene expression may mask relative differences in peak usage,
Sierra provides functionality for plotting the relative expression of peaks within a gene,
whereby the peak expression is transformed according to the relative usage of the peaks
among cell populations. For every gene g, which has n peaks (in which n ≥ 2), the relative
expression of any peak expression value x within cluster c is computed as:

R = log2(
x

G + v
× P + 1)

in which x is the original peak expression value, G is the mean gene-level expression of
cluster c, v is a pseudo-count (a value of 1 is used in this manuscript), and P is the relative
usage of the peak, where P > 1 indicates higher relative usage and P < 1 indicates lower
usage. G is defined as:

G = 1
n × m

n∑

i=1

m∑

j=1
xi,j,

where xi,j is the expression for peak i and cell j. P is defined as:

P =
1
m

∑m
j=1 xj
G

,

where m is the number of cells as above and xj is the peak expression of cell j. The
primary motivation of this approach is to scale the individual peak expression levels based
on the mean expression level each that peak and gene, within a cluster. This approach
highlights the variation of peak expression within a cluster.
Finally, the relative peak expression can be visualised using similar methods for visual-

ising gene expression, including plots on (1) t-SNE coordinates, (2) UMAP coordinates,
(3) box plots, and (4) violin plots. Plots are generated using ggplot2 [50] (≥ version 3.1.1).

Clustering analyses

Gene-level clustering of the 4k and 7k PBMC datasets was performed using the Seu-
rat R package (version 3.0.2). We applied the following quality control metrics: for both
datasets, cells with > 10% UMIs mapping to mitochondrial genes were filtered out. We
visualised the distribution of expressed genes and UMIs and filtered out cells with out-
liers. For 7k PBMCs, we filtered out cells with over 15,000 UMIs and 3000 genes, and
for 4k PBMCs, we filtered for 10,000 UMIs and 2000 genes. For both datasets, the UMIs
were then normalised to counts-per-ten-thousand, log-transformed and top 2000 vari-
able genes were selected using the FindVariableFeatures program. The variable genes
were used for principal component (PC) analysis, with the top 20 PCs input to the
FindNeighbors program. A range of resolutions (res parameter) were applied to the Find-
Clusters program with a resolution of 0.6 chosen for both the 7k and 4k PBMCs for the
DTU analysis presented in this manuscript.
For the comparisons between gene-level and peak-level clustering, we used three

datasets: the PBMC 7k, Pdgfra-GFP+, and TIP. For the GFP+ and TIP datasets, which
were originally clustered in Seurat version 2, we reclustered in version 3 for the purpose
of comparisons, though retaining the same PCs used for the original clustering [26]. For
all datasets, the pipeline for clustering on peaks remained identical to that for the rele-
vant gene-level clustering, such as the same number of PCs used for clustering; however,
we experimented with increasing the number of highly variable features included for PC
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analysis, due to the peaks in effect splitting genes into multiple features. For the more het-
erogeneous TIP data, we selected 3500 features; for 7k PBMCs, we used 2500 and 2000
were retained for GFP+. We compared the returned clusters across 3 res parameters: 0.6,
0.8, and 1.0. To compare gene- and peak-level clusters, we used the adjustedRand function
from the clues R package [51] (version 0.5.9).

Mice

Mice were bred and housed in the BioCORE facility of the Victor Chang Cardiac Institute.
Rooms were temperature and light/dark cycle controlled. Standard food was provided ad
libitum. Mouse lines carrying targeted alleles used in this study are as follows:

1. Wild type [Inbred C57BL/6J]
2. Pdgfra+/GFP [B6.129S4-Pdgfratm11(EGFP)Sor/J]
3. RaMCM [B6.Cg-Pdgfra< tm1.1(cre/Esr1*)Nshk] [52]
4. tdTomato [B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J]

Mice carrying tamoxifen-inducible Cre recombinase (MerCreMer), knocked-in
Pdgfra+/GFP locus (RaMCM+/−) were crossed with tdTomato+/+ mice to generate
Pdgfra+/GFP lineage-tracer mice (PdgfratdTom). Male mice aged 8–12 weeks were used
for the experiments.

Tamoxifen treatment

Reporter activation in PdgfratdTom mice was induced by 3 intraperitoneal injections of
tamoxifen on consecutive days at 100 mg/kg body weight (BW).

Surgically inducedmyocardial infarction

MI surgeries were performed 1 week after the tamoxifen treatment. To induce acute
MI, mice were anaesthetised by intraperitoneal injection of a combination of ketamine
(100 mg/kg BW) and xylazine (20 mg/kg BW), and intubated. The hearts were exposed
via a left intercostal incision followed by ligation of the left anterior descending coronary
artery. Sham-operatedmice underwent surgical incisionwithout ligation. The hearts were
harvested for cryo-embedding or FACS sorting at 3 days post-surgery, as indicated in the
‘Results’ section.

FACS

Cardiac fibroblasts (PDGFRα+) and endothelial cells (CD31+) were isolated from
wild-type C57Bl/6J mouse hearts and sorted using APC-conjugated anti-PDGFRα+

(eBioscience 17-1401-81) and PE-CY7-conjugated anti-CD31 (eBioscience 25-0311-82)
antibodies as described previously [37]. Cardiomyocytes were isolated from wild-type
C57Bl/6J mice as described previously [53].

RNA isolation and real-time quantitative RT-PCR

Total RNA from isolated cells or whole heart was isolated using TRIzol Reagent
(Thermo Fisher Scientific 15596026) following the manufacturer’s instructions. RNA
was re-suspended in nuclease-free water and RNA concentration and purity determined
spectrophotometrically. 1 μg RNA was used to prepare cDNA using Quantitect reverse
transcription kit (Qiagen 205313) followed by real-time PCR using SYBR Green (Roche
Applied Science 04707516001). For altered 3′UTR usage candidates, we used oligo dT for
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cDNA synthesis. PCR was performed on a BioRad CFX96 Real-Time Detection System
using the following conditions: an initial denaturation for 5 min at 95 ◦C, followed by 35
cycles of 10 s denaturation at 95 ◦C, annealing for 10 s at 60 ◦C, and extension for 15 s at
72 ◦C. Melting curve analyses of the amplification products were performed to verify the
specificity of the amplification. The threshold cycle (Ct) was determined, and the relative
quantitative expression of mRNAs were calculated usingmethod��ct and normalised to
Hprt as an internal control. For altered 3′UTR usage candidates, quantitative expression
was calculated as described in Additional file 2: Figure S13.

Primers used in qRT-PCR

The primers used for qRT-PCR were synthesised by IDT (IDT Inc.) and are listed in
Additional file 6.

EdU pulse-chase experiment, immunohistochemistry, and confocal microscopy

For EdU (5-ethynyl-2′-deoxyuridine, Thermo Fisher Scientific, A10044) labelling experi-
ments in vivo, animals were injected intraperitoneally (i.p.) at 200 μg g−1 body weight at
day 3 post-MI and sacrificed after 24 h. Hearts were fixed in 4% PFA for 3 h and washed
in PBS before being incubated in 30% w/v sucrose/PBS overnight at 4 ◦C. Tissues were
embedded in Tissue-Tek (Sakura, 4583) and frozen on dry ice. 8 μm thick transverse
sections were prepared for immunohistochemistry. Sections were washed in PBS and
treated with 5% BSA, 0.1% Triton X-100 for 1 h at room temperature. EdU staining was
performed with Click-iT EdU Imaging kit (Thermo Fisher Scientific, C10337) according
to the manufacturer’s instructions.
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